# Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Size: px
Start display at page:

Download "Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena."

Transcription

1 Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems are too complex to solve analytically and must be tested by experiment or approximated by computational fluid dynamics (CFD). These data have much more generality if they are expressed in compact, economic non dimensional form. Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Advantages of dimensional analysis 1) Reduce the number of variables: Suppose the force F on a particular body shape immersed in a stream of fluid depends only on the body length L, velocity V, fluid density and viscosity :,,, In general, it takes about 10 points to define a curve. To find the effects of each parameter on the force, we need to perform 10X10X10X10=10 4 tests! However, using dimensional analysis, we can reduce the parameters to only one: That is, the non dimensional force is a function of the dimensionless parameter Reynolds number. So, we do not have to vary L, V,, separately but only the grouping /. This can be done by varying velocity V in the wind tunnel or water channel. 2) Non dimensional equations: that will provide insight on controlling parameters and the nature of the problem. 3) Scaling laws: that allows testing models instead of expensive large full scale prototypes. There are rules for finding scaling laws or conditions of similarity. In our force example, if the similarity condition exists: Then one can write: where subscripts m and p indicate model and prototype, respectively. This equation is the scaling law: if you measure the model force at the model Reynolds number, the prototype force at the same Reynolds number equals the model force times the density ratio times the velocity ratio squared times the length ratio squared. Principle of dimensional homogeneity: in a dimensionally homogenous relationship for a physical process, each term will have the same dimensions. As an example, consider the Bernoulli s equation: 2 Each term, including the constant, has dimensions of velocity squared [L 2 T 2 ].

2 Variables and scaling parameters The variables are the things we wish to plot, the basic output of the experiment or theory. The parameters are those quantities whose effects on the variables we wish to know. For example, consider the relation that expresses the displacement of a falling body: 1 2 To non dimensionalize our results, we need to know how many dimensions are contained among our variables (S, t) and parameters (V 0, S 0, and g); in this case only two, length {L} and time {T}: {S} = {S 0 } = {L} {t} = {T} {V 0 } = {LT 1 } {g} = {LT 2 } Among our parameters, we therefore select two to be scaling parameters (or repeating parameters), used to define dimensionless variables. For the falling body problem, we select any two of the three parameters to be scaling parameters, thus we have three choices: Option 1: Scaling parameters S 0 and V 0 ; the effect of gravity g. Using these scaling parameters, we define non dimensional displacement and time as: Substituting these variables into the falling body equation, after simplifications, we find the nondimensional equation: where There is a single dimensionless parameter. Note that this plot cannot show the effect of S 0 and V 0 since they are hidden in the ordinate and abscissa. Option 2: Scaling parameters V 0 and g: the effect of initial displacement S 0. The non dimensional parameters will be: M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 2

3 Substituting these variables into the falling body equation, after simplifications, we find the nondimensional equation: where 1 2 The same single parameter α appears again. Option 3: Scaling parameter S 0 and g: the effect of initial speed V 0. Using the scaling parameters,, dimensionless displacement and time can be found: / Substituting these variables into the falling body equation, after simplifications, we find the nondimensional equation: where 1 Note that, in all three options, the same parameters appears but has a different meaning: dimensionless gravity, initial displacement, and initial velocity. So, in general, one can write:, M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 3

4 The selection of scaling parameters is left to the user, but there are some guidelines: 1) The scaling variables must not form a dimensionless group among themselves, but adding one more variable will form a dimensionless quantity. For example, in the above fluid flow problem, test the powers of,, : 0 2) Do not select output variables for your scaling parameters. 3) If convenient, select popular, not obscure, scaling variables because they will appear in all of your dimensionless groups. For example, select density not surface tension. Note: the two following criteria must be satisfied before performing dimensional analysis: 1) the proposed physical relation is dimensionally homogenous, and 2) all the relevant variables have been included in the proposed relation. The Pi theorem The Buckingham π theorem is a key theorem in dimensional analysis. This provides a method for computing sets of dimensionless parameters from the given variables, even if the form of the equation is still unknown. However, the choice of dimensionless parameters is not unique: Buckingham's theorem only provides a way of generating sets of dimensionless parameters, and will not choose the most 'physically meaningful'. Let,,, be n dimensional variables that are physically relevant in a given problem and that are inter related by an (unknown) dimensionally homogeneous set of equations. These can be expressed via a functional relationship of the form:,,, 0,, If k is the number of fundamental dimensions required to describe the n variables, then there will be k primary variables and the remaining j = k n variables can be expressed as n k dimensionless and independent quantities or Pi groups Π,Π,Π, Π. The functional relationship can thus be reduced to the much more compact form: ΦΠ,Π,Π, Π 0 Π Π,Π, Π Note: this set of non dimensional parameters is not unique. They are however independent and form a complete set. Application: 1) Clearly define the problem and think about which variables are important. Identify which is the main variable of interest, i.e.,,,. It is important to physically think about the problem. Are there any constrains, i.e. can I vary all these variables independently? For example, weight of an object (only two of these are independent, unless g is also variable). M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 4

5 2) Express each of n variables in terms of its fundamental dimensions, {MLTθ} or {FLTθ}. It is often useful to use one system to solve the problem, and then check that groups you obtain are dimensionless by converting to other system. 3) Determine the number of Pi groups, j = n k variables, where k is the number of reference dimensions and select k primary or repeating variables. Typically pick variables which characterize the fluid properties, flow geometry, flow rate 4) Form j dimensionless Π groups and check that they are all indeed dimensionless. 5) Express result in form Π Π,Π, Π where Π contains the quantity of interest and interpret your result physically! 6) Make sure that your groups are indeed independent; i.e. can I vary one and keep others constant? 7) Compare with experimental data! Example 1: Use the pi theorem to find the dimensionless parameters in the drag problem.,,, Non dimenalization of the basic equations Another useful application of pi theorem is application to the basic (governing) equations. Even though these equations cannot be solved in general, they will reveal basic dimensionless parameters, such as Reynolds number, in their proper form and proper position, giving clues when they are negligible. Consider incompressible steady flow governing equations:. 0 With boundary conditions. These equations contain the three basic dimensions M, L, and T. All variables p, V, x,y,z, and t can be non dimensionalized by using density and two reference constants that might be characteristic of the particular fluid flow: Reference velocity = U Reference length (or characteristics length) = L As an example, U can be the inlet or upstream velocity and L the diameter of a body immersed in the stream. We can define all dimensionless variables:,,, M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 5

6 , Note that for the pressure, we considered the piezometeric pressure, assuming that z is up (Bernoulli equation). Since,, are constants, the derivatives in the governing equations can all be handled in dimensionless form, for example: After substitution and simplifications, we obtain:. 0 The boundary conditions should also be non dimensionalized in a similar manner. Non dimensional Parameters The continuity equation contains no parameter; however, the momentum (Navier Stokes) equation reveals the Reynolds number: The Reynolds number is always important, with or without a free surface, and can be neglected only in flow regions away from high velocity gradients, e.g. away from solid surfaces, jets or wakes. Euler number (pressure coefficient) is rarely important unless the pressure drops low enough to cause vapor formation (cavitation) in a liquid: Froude number is the dominant effect in free surface flows and it does not appear if there is no free surface: Mach number has a strong effect on compressible flow properties if it is greater than 0.3: where a is the speed of sound in the fluid. M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 6

7 Table 5 2, in the textbook, provides a comprehensive list of important dimensionless groups in fluid mechanics. Modeling and its pitfalls Performing scale analysis is mathematically straightforward; however, there are several issues to consider: 1) We took for granted the important variables for the phenomena. Selection of important variables is not a trivial task and requires considerable judgment and experience. Note that each extra pi group that is retained increases the expense and effort and level of complexity of the solution. 2) Typically the Reynolds number of the model is too small (by a factor of 10 to 1000). As a result, we end up estimating the desired high Reynolds number prototype data, by extrapolating the model data in low Re, as shown in Fig.1. This may result in high uncertainty in the analysis; but there is no other practical alternative in hydraulic model testing. Fig.1: Reynolds number extrapolation. 3) After selecting important parameters and determining pi groups, we should seek to achieve similarity between the model tested and the prototype to be designed. In general: Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same corresponding values for the model and the prototype. Establishing complete similarity is highly unlikely. Therefore, we seek particular types of similarity. Geometric similarity: concerns the length dimension {L} and must be ensured before any model testing can proceed. In general geometrical similarity is established when: A model and prototype are geometrically similar if and only if all body dimensions in all 3 coordinates have the same linear scale ratio. M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 7

8 This means all the angles, flow directions, and the orientations of model and prototype with respect to surroundings must be identical. Fig. 2: Geometric similarity in model testing. Kinematic similarity: requires that the model and prototype have the same length scale ratio and the same time scale ratio; thus the velocity scale ratio will be the same for both. Length scale equivalence simply implies geometric similarity, but time scale equivalence may require additional dynamic considerations such as equivalence of the Reynolds and Mach numbers. Fig.3: Free surface flows are kinematically similar with length and time scales related by the Froude number. Frictionless flows with a free surface, see Fig. 3, are kinematically similar if their Froude numbers are equal: M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 8

9 If where α is a dimensionless ratio, the velocity scale becomes: Dynamic similarity: exists when the model and the prototype have the same length scale ratio, time scale ratio, and the force scale (mass scale) ratio. Dynamic similarity exists, simultaneously with kinematic similarity, if the model and prototype force and pressure coefficients are identical. This is established if: 1) For compressible flow, the model and prototype Reynolds number and Mach number and specific heat ratio are correspondingly equal. 2) For incompressible flow a) With no free surface: model and prototype Reynolds numbers are equal. b) With a free surface: model and prototype Reynolds number, Froude number, and (if necessary) Weber number and cavitation number are correspondingly equal. Fig. 4: dynamic similarity in sluice gate flow. Model and prototype yield identical homologous force polygons if the Reynolds and Froude numbers are the same correspondingly. M. Bahrami Fluid Mechanics (S 09) Dimensional Analysis and Similarity 9

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

### Dimensional Analysis, hydraulic similitude and model investigation. Dr. Sanghamitra Kundu

Dimensional Analysis, hydraulic similitude and model investigation Dr. Sanghamitra Kundu Introduction Although many practical engineering problems involving fluid mechanics can be solved by using the equations

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### 2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

Pumping Systems: Parallel and Series Configurations For some piping system designs, it may be desirable to consider a multiple pump system to meet the design requirements. Two typical options include parallel

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

### Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### Natural Convection. Buoyancy force

Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

### Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### XI / PHYSICS FLUIDS IN MOTION 11/PA

Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

### A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

### LECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity.

LECTURE 5: Fluid jets We consider here the form and stability of fluid jets falling under the influence of gravity. 5.1 The shape of a falling fluid jet Consider a circular orifice of radius a ejecting

### CHAPTER 9 CHANNELS APPENDIX A. Hydraulic Design Equations for Open Channel Flow

CHAPTER 9 CHANNELS APPENDIX A Hydraulic Design Equations for Open Channel Flow SEPTEMBER 2009 CHAPTER 9 APPENDIX A Hydraulic Design Equations for Open Channel Flow Introduction The Equations presented

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### Civil Engineering Hydraulics Open Channel Flow. Adult: Where s your costume? What are you supposed to be?

Civil Engineering Hydraulics Calvin: Trick or treat! Adult: Where s your costume? What are you supposed to be? Calvin: I m yet another resource-consuming kid in an overpopulated planet, raised to an alarming

### Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### Applied Fluid Mechanics

Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT

Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,

### 2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT

2.0 BASIC CONCEPTS OF OPEN CHANNEL FLOW MEASUREMENT Open channel flow is defined as flow in any channel where the liquid flows with a free surface. Open channel flow is not under pressure; gravity is the

### Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

### TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

### 1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

### MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL

Engineering MECHANICS, Vol. 16, 2009, No. 6, p. 447 455 447 MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL Jaroslav Štigler*, Jan Svozil* This paper is concerning with simulations of cavitation flow

### Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057

Peter M. Arronax Consultants, Ltd. 1954 S. Quid Street, Captainee, MO 61057 To: Mr. J. A. Mesmason, Crew Chief Nautilus Salvage, Inc., 20000 Buena Vista Avenue, Vulcania, Hawaii 96807 From: J. Liu, T.

### APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS

APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

### Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

### Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.

APPLIED FLUID MECHANICS TUTORIAL No.6 DIMENSIONAL ANALYSIS When you have completed this tutorial you should be able to do the following. Explain the basic system of dimensions. Find the relationship between

### Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk

39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,

### HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

### FLUID FLOW Introduction General Description

FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

### CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

### CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

### Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

### Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

### Understanding Plastics Engineering Calculations

Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

### What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

### Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

### FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION

Engineering Review Vol. 32, Issue 3, 141-146, 2012. 141 NUMERICAL ANALYSIS OF WELLS TURBINE FOR WAVE POWER CONVERSION Z. 1* L. 1 V. 2 M. 1 1 Department of Fluid Mechanics and Computational Engineering,

### Chapter 4. Dimensionless expressions. 4.1 Dimensional analysis

Chapter 4 Dimensionless expressions Dimensionless numbers occur in several contexts. Without the need for dynamical equations, one can draw a list (real or tentative) of physically relevant parameters,

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### 3 The boundary layer equations

3 The boundar laer equations Having introduced the concept of the boundar laer (BL), we now turn to the task of deriving the equations that govern the flow inside it. We focus throughout on the case of

### THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

### Dimensional Analysis

Dimensional Analysis Mathematical Modelling Week 2 Kurt Bryan How does the escape velocity from a planet s surface depend on the planet s mass and radius? This sounds like a physics problem, but you can

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

### 3. Diffusion of an Instantaneous Point Source

3. Diffusion of an Instantaneous Point Source The equation of conservation of mass is also known as the transport equation, because it describes the transport of scalar species in a fluid systems. In this

### LECTURE 6: Fluid Sheets

LECTURE 6: Fluid Sheets The dynamics of high-speed fluid sheets was first considered by Savart after his early work on electromagnetism with Biot, and was subsequently examined in a series of papers by

### Chapter 7. Potential flow theory. 7.1 Basic concepts. 7.1.1 Velocity potential

Chapter 7 Potential flow theory Flows past immersed bodies generate boundary layers within which the presence of the body is felt through viscous effects. Outside these boundary layers, the flow is typically

### Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

### A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

### 220103 - Fluid Mechanics

Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2016 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 729 - MF - Department of Fluid Mechanics

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

### Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

Excerpt from the Proceedings of the COMSOL Conference 2 Boston Dimensionless versus Dimensional Analysis in CFD and Heat Transfer Heather E Dillon,, Ashley Emery, RJ Cochran 2, and Ann Mescher University

### Heat Transfer From A Heated Vertical Plate

Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California

### VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.

VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus

### - momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description