Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
|
|
|
- Dina Hodges
- 9 years ago
- Views:
Transcription
1 Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility Toughness Hardness Chapter Outline Optional reading (not tested): details of the different types of hardness tests, variability of material properties (starting from the middle of page 174) 1
2 Introduction To understand and describe how materials deform (elongate, compress, twist) or break as a function of applied load, time, temperature, and other conditions we need first to discuss standard test methods and standard language for mechanical properties of materials. Stress, σ (MPa) Strain, ε (mm / mm) 2
3 Types of Loading Tensile Compressive Shear Torsion 3
4 Concepts of Stress and Strain (tension and compression) To compare specimens of different sizes, the load is calculated per unit area. Engineering stress: σ = F / A o F is load applied perpendicular to speciment crosssection; A 0 is cross-sectional area (perpendicular to the force) before application of the load. Engineering strain: ε = Δl / l o ( 100 %) Δl is change in length, l o is the original length. These definitions of stress and strain allow one to compare test results for specimens of different crosssectional area A 0 and of different length l 0. Stress and strain are positive for tensile loads, negative for compressive loads 4
5 Concepts of Stress and Strain (shear and torsion) Shear stress: τ = F / A o F is load applied parallel to the upper and lower faces each of which has an area A 0. Shear strain: γ = tgθ ( 100 %) θ is strain angle Torsion is variation of pure shear. The shear stress in this case is a function of applied torque T, shear strain is related to the angle of twist, φ. Shear Ao Torsion F θ 5
6 Stress-Strain Behavior Stress Elastic Plastic Elastic deformation Reversible: when the stress is removed, the material returns to the dimensions it had before the loading. Usually strains are small (except for the case of some plastics, e.g. rubber). Strain Plastic deformation Irreversible: when the stress is removed, the material does not return to its original dimensions. 6
7 Stress-Strain Behavior: Elastic Deformation In tensile tests, if the deformation is elastic, the stressstrain relationship is called Hooke's law: σ = E ε E is Young's modulus or modulus of elasticity, has the same units as σ,n/m 2 or Pa Unload Stress Slope = modulus of elasticity E Load Strain Higher E higher stiffness 7
8 Elastic Deformation: Nonlinear Elastic Behavior In some materials (many polymers, concrete...), elastic deformation is not linear, but it is still reversible. Δσ/Δε = tangent modulus at σ 2 Definitions of E Δσ/Δε = secant modulus between origin and σ 1 8
9 Elastic Deformation: Atomic scale picture Chapter 2: force-separation curve for interacting atoms Energy, ev, Force, ev/å Force Energy Distance between atoms, r ij,å E ~ (df/dr) at r o (r 0 equilibrium separation) 9
10 Elastic Deformation: Anelasticity (time dependence of elastic deformation) So far we have assumed that elastic deformation is time independent (i.e. applied stress produces instantaneous elastic strain) However, in reality elastic deformation takes time (finite rate of atomic/molecular deformation processes) - continues after initial loading, and after load release. This time dependent elastic behavior is known as anelasticity. The effect is normally small for metals but can be significant for polymers ( visco-elastic behavior ). 10
11 Elastic Deformation: Poisson s ratio Unloaded Loaded ε ν = ε x z = ε ε y z Materials subject to tension shrink laterally. Those subject to compression, bulge. The ratio of lateral and axial strains is called the Poisson's ratio υ. Sign in the above equations shows that lateral strain is in opposite sense to longitudinal strain υ is dimensionless Theoretical value for isotropic material: 0.25 Maximum value: 0.50, Typical value:
12 Elastic Deformation: Shear Modulus Δy Unloaded Z o τ Loaded Relationship of shear stress to shear strain: τ = G γ, where: γ = tgθ = Δy / z o G is Shear Modulus (Units: N/m 2 or Pa) For isotropic material: E = 2G(1+υ) G ~ 0.4E (Note: single crystals are usually elastically anisotropic: the elastic behavior varies with crystallographic direction, see Chapter 3) 12
13 Stress-Strain Behavior: Plastic deformation engineering stress Plastic deformation: engineering strain stress and strain are not proportional to each other the deformation is not reversible deformation occurs by breaking and re-arrangement of atomic bonds (in crystalline materials primarily by motion of dislocations, Chapter 7) 13
14 Tensile Properties: Yielding Elastic Plastic σ y Yield strength σ y - is chosen as that causing a permanent strain of Stress Yield point P - the strain deviates from being proportional to the stress (the proportional limit) The yield stress is a measure of resistance to plastic deformation Strain 14
15 Tensile Properties: Yielding Stress Strain In some materials (e.g. low-carbon steel), the stress vs. strain curve includes two yield points (upper and lower). The yield strength is defined in this case as the average stress at the lower yield point. 15
16 Tensile Strength If stress = tensile strength is maintained then specimen will eventually break fracture strength Stress, σ Necking Tensile strength: maximum stress (~ MPa) Strain, ε For structural applications, the yield stress is usually a more important property than the tensile strength, since once the yield stress has passed, the structure has deformed beyond acceptable limits. 16
17 Tensile properties: Ductility L o A o A f L f Ductility is a measure of the deformation at fracture Defined by percent elongation (plastic tensile strain at failure) %EL l = l l f or percent reduction in area %RA = A A A 0 f
18 Typical mechanical properties of metals The yield strength and tensile strength vary with prior thermal and mechanical treatment, impurity levels, etc. This variability is related to the behavior of dislocations in the material, Chapter 7. But elastic moduli are relatively insensitive to these effects. The yield and tensile strengths and modulus of elasticity decrease with increasing temperature, ductility increases with temperature. 18
19 Toughness Toughness = the ability to absorb energy up to fracture = the total area under the strain-stress curve up to fracture ε f 0 σdε Units: the energy per unit volume, e.g. J/m 3 Can be measured by an impact test (Chapter 8). 19
20 True Stress and Strain True stress = load divided by actual area in the necked-down region (A i ): σ T = F/A i Sometimes it is convenient to use true strain defined as ε T = ln(l i /l o ) True stress continues to rise to the point of fracture, in contrast to the engineering stress. σ T = F/A i ε T = ln(l i /l o ) σ = F/A o ε = (l i -l o /l o ) If no volume change occurs during deformation, A i l i = A 0 l 0 and the true and engineering stress and stress are related as σ T = σ(1 + ε) ε T = ln(1 + ε) 20
21 Elastic Recovery During Plastic Deformation If a material is deformed plastically and the stress is then released, the material ends up with a permanent strain. If the stress is reapplied, the material again responds elastically at the beginning up to a new yield point that is higher than the original yield point. The amount of elastic strain that it will take before reaching the yield point is called elastic strain recovery. 21
22 Hardness (I) Hardness is a measure of the material s resistance to localized plastic deformation (e.g. dent or scratch) A qualitative Moh s scale, determined by the ability of a material to scratch another material: from 1 (softest = talc) to 10 (hardest = diamond). Different types of quantitative hardness test has been designed (Rockwell, Brinell, Vickers, etc.). Usually a small indenter (sphere, cone, or pyramid) is forced into the surface of a material under conditions of controlled magnitude and rate of loading. The depth or size of indentation is measured. The tests somewhat approximate, but popular because they are easy and non-destructive (except for the small dent). 22
23 Hardness (II) Tensile strength (MPa) Tensile strength (10 3 psi) Brinell hardness number Both tensile strength and hardness may be regarded as degree of resistance to plastic deformation. Hardness is proportional to the tensile strength - but note that the proportionality constant is different for different materials. 23
24 What are the limits of safe deformation? Stress For practical engineering design, the yield strength is usually the important parameter Strain Design stress: σ d = N σ c where σ c = maximum anticipated stress, N is the design factor > 1. Want to make sure that σ d < σ y Safe or working stress: σ w = σ y /N where N is factor of safety > 1. 24
25 Summary Stress and strain: Size-independent measures of load and displacement, respectively. Elastic behavior: Reversible mechanical deformation, often shows a linear relation between stress and strain. Elastic deformation is characterized by elastic moduli (E or G). To minimize deformation, select a material with a large elastic moduli (E or G). Plastic behavior: Permanent deformation, occurs when the tensile (or compressive) uniaxial stress reaches the yield strength σ y. Tensile strength: maximum stress supported by the material. Toughness: The energy needed to break a unit volume of material. Ductility: The plastic strain at failure. 25
26 Summary Make sure you understand language and concepts: Anelasticity Ductility Elastic deformation Elastic recovery Engineering strain and stress Engineering stress Hardness Modulus of elasticity Plastic deformation Poisson s ratio Shear Tensile strength True strain and stress Toughness Yielding Yield strength 26
27 Reading for next class: Chapter 7: Dislocations and Strengthening Mechanisms Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip Systems Plastic deformation in single crystals polycrystalline materials Strengthening mechanisms Grain Size Reduction Solid Solution Strengthening Strain Hardening Recovery, Recrystallization, and Grain Growth Optional reading (Part that is not covered / not tested): 7.7 Deformation by twinning In our discussion of slip systems, 7.4, we will not get into direction and plane nomenclature 27
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Stress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
Mechanical Properties - Stresses & Strains
Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =
Solution for Homework #1
Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen
CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng
Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
Torsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
Properties of Materials
CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing
Concepts of Stress and Strain
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original
PROPERTIES OF MATERIALS
1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties
LABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
Solid Mechanics. Stress. What you ll learn: Motivation
Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain
Tensile Testing of Steel
C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format
σ y ( ε f, σ f ) ( ε f
Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture
Description of mechanical properties
ArcelorMittal Europe Flat Products Description of mechanical properties Introduction Mechanical properties are governed by the basic concepts of elasticity, plasticity and toughness. Elasticity is the
Tensile Testing Laboratory
Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental
TENSILE TESTING PRACTICAL
TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in
STRESS-STRAIN CURVES
STRESS-STRAIN CURVES David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 August 23, 2001 Introduction Stress-strain curves are an extremely
Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc.
Mechanical Properties and Fracture Analysis of Glass David Dutt Chromaglass, Inc. IES ALC Williamsburg 2006 2 IES ALC Williamsburg 2006 3 Outline The Ideal The Practical The Reality IES ALC Williamsburg
MECHANICS OF MATERIALS
T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading
Lecture 12: Fundamental Concepts in Structural Plasticity
Lecture 12: Fundamental Concepts in Structural Plasticity Plastic properties of the material were already introduced briefly earlier in the present notes. The critical slenderness ratio of column is controlled
Introduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure
Material Deformations. Academic Resource Center
Material Deformations Academic Resource Center Agenda Origin of deformations Deformations & dislocations Dislocation motion Slip systems Stresses involved with deformation Deformation by twinning Origin
STRAIN-LIFE (e -N) APPROACH
CYCLIC DEFORMATION & STRAIN-LIFE (e -N) APPROACH MONOTONIC TENSION TEST AND STRESS-STRAIN BEHAVIOR STRAIN-CONTROLLED TEST METHODS CYCLIC DEFORMATION AND STRESS-STRAIN BEHAVIOR STRAIN-BASED APPROACH TO
Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening
Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
CH 6: Fatigue Failure Resulting from Variable Loading
CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).
The elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
Technology of EHIS (stamping) applied to the automotive parts production
Laboratory of Applied Mathematics and Mechanics Technology of EHIS (stamping) applied to the automotive parts production Churilova Maria, Saint-Petersburg State Polytechnical University Department of Applied
Design Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY)
Fatigue Performance Evaluation of Forged Steel versus Ductile Cast Iron Crankshaft: A Comparative Study (EXECUTIVE SUMMARY) Ali Fatemi, Jonathan Williams and Farzin Montazersadgh Professor and Graduate
Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.
Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling
Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer
Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation
Stress-Strain Material Laws
5 Stress-Strain Material Laws 5 Lecture 5: STRSS-STRAIN MATRIAL LAWS TABL OF CONTNTS Page 5. Introduction..................... 5 3 5.2 Constitutive quations................. 5 3 5.2. Material Behavior
LECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
AN EXPLANATION OF JOINT DIAGRAMS
AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing
TIE-31: Mechanical and thermal properties of optical glass
PAGE 1/10 1 Density The density of optical glass varies from 239 for N-BK10 to 603 for SF66 In most cases glasses with higher densities also have higher refractive indices (eg SF type glasses) The density
CRITERIA FOR PRELOADED BOLTS
National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................
Lap Fillet Weld Calculations and FEA Techniques
Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer [email protected] www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright
15. MODULUS OF ELASTICITY
Chapter 5 Modulus of Elasticity 5. MODULUS OF ELASTICITY The modulus of elasticity (= Young s modulus) E is a material property, that describes its stiffness and is therefore one of the most important
M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol
14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit
MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
Material property tests of Smooth-on Vytaflex60 liquid rubber
Material property tests of Smooth-on Vytaflex60 liquid rubber Sanjay R. Arwade March 16, 2006 During the fall semester of the 2005-2006 academic year, I decided to try to produce some scale models of structural
MATERIALS AND MECHANICS OF BENDING
HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL
Long term performance of polymers
1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form
3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux
3D plasticity 3D viscoplasticity 3D plasticity Perfectly plastic material Direction of plastic flow with various criteria Prandtl-Reuss, Hencky-Mises, Prager rules Write 3D equations for inelastic behavior
CERAMICS: Properties 2
CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 [email protected] 2 Nova Southeastern College of Dental
FATIGUE CONSIDERATION IN DESIGN
FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure
Lecture 14. Chapter 8-1
Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling
P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
Lösungen Übung Verformung
Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Hardened Concrete. Lecture No. 14
Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS
ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,
HW 10. = 3.3 GPa (483,000 psi)
HW 10 Problem 15.1 Elastic modulus and tensile strength of poly(methyl methacrylate) at room temperature [20 C (68 F)]. Compare these with the corresponding values in Table 15.1. Figure 15.3 is accurate;
Measurement of Material Creep Parameters of Amorphous Selenium by Nanoindentation and the Relationship Between Indentation Creep and Uniaxial Creep
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2004 Measurement of Material Creep Parameters of Amorphous Selenium by Nanoindentation
NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT
NEW TECHNIQUE FOR RESIDUAL STRESS MEASUREMENT NDT E. Curto. p.i. Ennio Curto Via E. di Velo,84 36100 Vicenza Tel. 0444-511819 E-mail [email protected] Key words: NDE Residual stress. New technique
R&DE (Engineers), DRDO. Theories of Failure. [email protected]. Ramadas Chennamsetti
heories of Failure ummary Maximum rincial stress theory Maximum rincial strain theory Maximum strain energy theory Distortion energy theory Maximum shear stress theory Octahedral stress theory Introduction
Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods
Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania ([email protected]) V.
MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN
MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge
5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS
5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS Samples of engineering materials are subjected to a wide variety of mechanical tests to measure their strength, elastic constants, and other material
Chapter Outline. Diffusion - how do atoms move through solids?
Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)
ENGINEERING COUNCIL CERTIFICATE LEVEL
ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent
STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable
There are as many reasons to test metals as there are metals:
Testing Their Mettle Metals testing procedures ensure quality in raw materials and finished products BY BILL O NEIL, ADRIAN RIDDICK, FRANK LIO, PAUL KING, CHRIS WILSON, AND PATTY HARTZELL There are as
MECHANICAL PROPERTIES OF MATERIALS. David Roylance
MECHANICAL PROPERTIES OF MATERIALS David Roylance 2008 2 Contents 1 Uniaxial Mechanical Response 5 1.1 Tensile Strength and Tensile Stress............................ 5 1.2 Stiffness in Tension - Young
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
SHORE A DUROMETER AND ENGINEERING PROPERTIES
SHORE A DUROMETER AND ENGINEERING PROPERTIES Written by D.L. Hertz, Jr. and A.C. Farinella Presented at the Fall Technical Meeting of The New York Rubber Group Thursday, September 4, 1998 by D.L. Hertz,
Lecture 18 Strain Hardening And Recrystallization
-138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing
Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)
Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)
Physics 3 Summer 1989 Lab 7 - Elasticity
Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue
1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Mechanical Design Concepts for Non-Mechanical Engineers
Mechanical Design Concepts for Non-Mechanical Engineers By Steve Mackay EIT Micro-Course Series Every two weeks we present a 35 to 45 minute interactive course Practical, useful with Q & A throughout PID
Module #17. Work/Strain Hardening. READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter
Module #17 Work/Strain Hardening READING LIST DIETER: Ch. 4, pp. 138-143; Ch. 6 in Dieter D. Kuhlmann-Wilsdorf, Trans. AIME, v. 224 (1962) pp. 1047-1061 Work Hardening RECALL: During plastic deformation,
NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1
NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope
Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,
different levels, also called repeated, alternating, or fluctuating stresses.
Fatigue and Dynamic Loading 1 Fti Fatigue fil failure: 2 Static ti conditions : loads are applied gradually, to give sufficient i time for the strain to fully develop. Variable conditions : stresses vary
Nonlinear Analysis Using Femap with NX Nastran
Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of
The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
Applying the Wheatstone Bridge Circuit
Applying the Wheatstone Bridge Circuit by Karl Hoffmann W1569-1.0 en Applying the Wheatstone Bridge Circuit by Karl Hoffmann Contents: 1 Introduction...1 2 Elementary circuits with strain gages...5 2.1
EUROLAB 25 years. The role of metrology and testing to characterize materials and products. EUROLAB 25th Anniversary Seminar
EUROLAB 25 years The role of metrology and testing to characterize materials and products April 9, 2015, Odense Danmark 1 Origin of Conformity Assessment The New Approach for the European Economic Community
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
3 Theory of small strain elastoplasticity 3.1 Analysis of stress and strain 3.1.1 Stress invariants Consider the Cauchy stress tensor σ. The characteristic equation of σ is σ 3 I 1 σ +I 2 σ I 3 δ = 0,
DETERMINATION OF SOIL STRENGTH CHARACTERISTICS PERFORMING THE PLATE BEARING TEST
III Międzynarodowa Konferencja Naukowo-Techniczna Nowoczesne technologie w budownictwie drogowym Poznań, 8 9 września 005 3rd International Conference Modern Technologies in Highway Engineering Poznań,
Version default Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 Responsable : François HAMON Clé : V6.03.161 Révision : 9783
Titre : SSNP161 Essais biaxiaux de Kupfer Date : 10/10/2012 Page : 1/8 SSNP161 Biaxial tests of Summarized Kupfer: Kupfer [1] was interested to characterize the performances of the concrete under biaxial
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139
Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 5 Heat Treatment of Plain Carbon and Low
Technical Notes 3B - Brick Masonry Section Properties May 1993
Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications
Hardness Testing at Elevated Temperatures. SJ Shaffer, Ph.D. Bruker-TMT [email protected]
Hardness Testing at Elevated Temperatures SJ Shaffer, Ph.D. Bruker-TMT [email protected] Outline What is Hardness? How is Hardness Measured? Overview of Hardness Test Methods Hardness Testing
SPECIFICATIONS, LOADS, AND METHODS OF DESIGN
CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural
Multiaxial Fatigue. Professor Darrell Socie. 2008-2014 Darrell Socie, All Rights Reserved
Multiaxial Fatigue Professor Darrell Socie 2008-2014 Darrell Socie, All Rights Reserved Outline Stresses around holes Crack Nucleation Crack Growth MultiaxialFatigue 2008-2014 Darrell Socie, All Rights
ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,
S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.
