# 1 The basic equations of fluid dynamics

Size: px
Start display at page:

Transcription

1 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which we derive in this section. These encode the familiar laws of mechanics: conservation of mass the continuity equation, Sec. 1.2) conservation of momentum the Cauchy equation, Sec. 1.3) at the level of fluid elements, defined in Sec In any domain, the flow equations must be solved subject to a set of conditions that act at the domain boundary, Sec If the flow leads to compression of the fluid, we must also consider thermodynamics: conservation of energy. However we defer this complication until later in the course, Sec. 5, assuming initially that the flow remains incompressible, Sec The continuum hypothesis; fluid elements At a microscopic scale, fluid comprises individual molecules and its physical properties density, velocity, etc.) are violently non-uniform. However, the phenomena studied in fluid dynamics are macroscopic, so we do not usually take this molecular detail into account. Instead, we treat the fluid as a continuum by viewing it at a coarse enough scale that any small fluid element actually still contains very many molecules. One can then assign a local bulk flow velocity vx,t) to the element at point x, by averaging over the much faster, violently fluctuating Brownian molecular velocities. Similarly one defines a locally averaged density ρx, t), etc. These locally averaged quantities then vary smoothly with x on the macroscopic scale of the flow. 1.2 Conservation of mass The continuity equation Consider a volume bounded by a surface S that is fixed in space. This mass inside it is given by ρd, so the rate of decrease of mass in = d dt ρd = ρ d. 1) t If mass is conserved, Eqn. 1 must equal the total rate of mass flux out of. How do we calculate this? The rate of outward mass flux across any small element ds of S is ρv ds where the magnitude of ds is equal to the element s area and we take ds along the outward normal. Integrating over the whole surface we have rate of mass flux out of = ρv ds = ρv)d 2) where we used Green s formula to convert to a volume integral. The integrand ρv) on the RHS is expressed in Cartesian coordinates x = x,y,z), v = u,v,w) as S ρv) = ρu) x + ρv) + ρw) y z. 3) 2

2 y ρv + ρv) y δy ρu δy δx ρu + ρu) δx x ρv x Figure 1: Mass fluxes entering and leaving an element. See Fig. 1, which shows clearly that gradients in the flow field are required for non-zero net flux. For mass to be conserved everywhere, Eqns. 1 and 2 must be equal for any volume and so we get the continuity equation: ρ +.ρv) = 0. 4) t The material derivative The continuity equation contains the time-derivative of the fluid density. What does this mean exactly? For any physical quantity f = fx, t) density, temperature, each velocity component, etc.), we must actually take care to distinguish two different time derivatives. By f/ t, as in Eqn. 4, we mean the rate of change of f at a particular point that is fixed in space. But we might instead ask about the rate of change of f in a given element of fluid as it moves along its trajectory x = xt) in the flow. This defines the material or substantive) derivative Df = d dt fxt),yt),zt),t) = f t + dx f dt x + dy f dt y + dz f dt z = f t + u f x + v f y + w f z = f t + v f 5) This. 5 conveys the intuitively obvious fact that, even in a time-independent flow field f/ t = 0 everywhere), any given element can suffer changes in f via v f) as it moves from place to place. Check as an exercise that the continuity equation can also be written in the form Dρ + ρ v = 0. 6) 3

3 1.2.3 Incompressible continuity equation If the fluid is incompressible, ρ = constant, independent of space and time, so that Dρ/ = 0. The continuity equation then reduces to which in Cartesian coordinates is v = 0, 7) u x + v y + w z 1.3 Conservation of momentum The Cauchy equations = 0. 8) Consider a volume bounded by a material surface S that moves with the flow, always containing the same material elements. Its momentum is d ρv, so: rate of change of momentum = d d ρv = d ρ Dv dt. 9) The mass ρd of each material element is constant.) This must equal the net force on the element. Actually there are two different types of forces that act in any fluid: Long ranged external body forces that penetrate matter and act equally on all the material in any element d. The only one considered here is gravity, ρg d. Short ranged molecular forces, internal to the fluid. For any element, the net effect of these due to interactions with other elements acts in a thin surface layer. In 3D, each of the 3 sets of surface planes bounding an element experiences a 3-component force, giving 9 components in all. These form the stress tensor [Π], defined so the force exerted per unit area across a surface element ds ˆn ds by the fluid on the side to which ˆn points on the fluid on the other side) is f = [Π] ˆn. Total force body + surface) = = d ρg + [Π] ds S d ρg + [Π]). 10) By Newton s second law, Eqns. 9 and 10 must be equal for any, so we get finally the Cauchy equation: ρ Dv = ρg + [Π]. 11) The physical meaning of this is seen clearly in Cartesian coordinates in 2D in Fig. 2): Momentum, x : ρ Du Momentum, y : ρ Dv Momentum, z : ρ Dw = ρg x + x Π xx) + y Π xy) + z Π xz) = ρg y + x Π yx) + y Π yy) + z Π yz) = ρg z + x Π zx) + y Π zy) + z Π zz). 12) 4

4 y Π yy + Πyy y δy Π xy + Πxy δy y Π yx Π xx + δy Πxx δx x Π xx δx Π Π yx + yx δx x Π xy Π yy x Figure 2: Surface stresses on a fluid element in 2 dimensions. Π ij is the force per unit area in the i direction across a plane with normal in the j direction. As can be seen from the figure, gradients in the stress tensor are needed for there to be a net force on any element consistent with the surface integral of [Π] ˆn equating to a volume integral of [Π]). It is possible to show that the stress tensor is symmetric, i.e. Π xy = Π yx, Π zx = Π xz, Π yz = Π zy, 13) otherwise any small fluid element would suffer infinite angular acceleration Constitutive relations The surface stresses [Π] on any element arise from a combination of pressure p and viscous friction, as prescribed by the constitutive relations Π xx = p + λ v + 2µ u u x, Π xy = µ y + v ), 14) x Π yy = p + λ v + 2µ v v y, Π yz = µ z + w ), 15) y Π zz = p + λ v + 2µ w z, Π xz = µ u z + w x ). 16) µ and λ are the coefficients of dynamic and bulk viscosity respectively. These expressions assume that the relationship between stress and velocity gradients is linear which is valid for Newtonian fluids) and isotropic i.e., the intrinsic properties of the fluid have no preferred direction) Incompressible Navier-Stokes equations For incompressible flow, v = 0 Eqn. 7). The constitutive relations then reduce to ui Π ij = pδ ij + µ + u ) j. 17) x j x i Here we have used suffix notation v = u 1,u 2,u 3 ), x = x 1,x 2,x 3 ) and defined the Kronecker delta symbol δ ij = 1 if i = j and δ ij = 0 if i j. Check that you are happy 5

5 with this notation by working through the derivation of Eqn. 17 from Eqns. 14 to 16. Inserting Eqn. 17 into Eqn. 11, assuming constant µ, and utilising again the incompressibility condition 7, we get the incompressible Navier Stokes N S) equations: Continuity : 0 = u x + v y + w z Momentum, x : ρ Du Momentum, y : ρ Dv Momentum, z : ρ Dw or, in compact notation Continuity Momentum = ρg x p x + µ = ρg y p y + µ = ρg z p z + µ 2 ) u x u y u z 2 ) 2 v x v y v z 2 ) 2 w x w y w z 2 18) v = 0 19) ρ Dv = ρg p + µ v, 20) in which is the Laplacian operator. For uniform ρ we can simplify Eqn. 20 by realising that the gravitational force is exactly balanced by a pressure gradient p 0 = g that does not interact with any flow: defining P = p p 0, we get ρ Dv Physical interpretation = P + µ v. 21) The surface stresses pressure and viscous effects) on any fluid element were introduced above via the constitutive relation. What is their physical interpretation? iscous stresses are generated by velocity gradients. They oppose relative motion of fluid elements. Consider Fig. 3. Across any plane AB, a tangential viscous stress Π xy = µ u y acts: the faster fluid above AB drags the fluid below forward, and the slower fluid below drags the fluid above back. Even in the absence of velocity gradients, each element still experiences an isotropic pressure p. In rest at equilibrium, this equals the thermodynamic pressure in the equation of state. In flow this is no longer true: p is now defined in purely mechanical terms, as a measure of the local intensity of squeezing in the fluid. 1.4 Condition for incompressibility We have seen that the continuity equation, Eqn. 4, and the constitutive relations, Eqns. 14 to 16, take on much simpler forms Eqns. 7, 17) when the flow is incompressible. We therefore assume incompressibility for much of the course deferring compressible flow to Sec. 5). The criterion 1 for this is that the flow speed U should be much less than the speed of sound a. In practice, this only breaks down for high speed subsonic and hypersonic) gas flows. 1 Specifically, the Mach number Ma U/a must obey Ma 2 1. Tritton 5.8 for those interested.) 6

6 A y x v = uy) x B 1.5 Boundary conditions Figure 3: Planar shear flow. In any flow domain, the flow equations must be solved subject to a set of conditions that act at the domain boundary. For a rigid bounding wall moving at velocity U and having unit normal ˆn, we assume for the local fluid velocity v that 1. The wall is impermeable: v ˆn = U ˆn. 2. The fluid doesn t slip relative to the wall: v ˆn = U ˆn. Condition 2 is not obvious: why shouldn t slip occur? The underlying notion is that the fluid interacts with the wall in the same way as with other fluid: there cannot exist any discontinuity in velocity, or an infinite viscous stress would arise. But the ultimate justification comes from experimental verification. 1.6 Summary In this section, we have derived the basic equations governing incompressible fluid flow. In what follows, we are mainly concerned with flow fields that are time-independent and two-dimensional. Eqns. 19 and 21 then reduce, in Cartesian coordinates x,y) to: Continuity: Momentum: ρ u u ) x + v u y ρ u v ) x + v v y u x + v y = 0, 22) = P 2 x + µ u x u y 2 = P y + µ 2 v x v y 2 ) ), 23), 24) where v = u,v) is the velocity field. As discussed above, the first term on the RHS in Eqns. 23 and 24 refers to pressure forces, P. The rest of the RHS describes viscous forces, µ 2 v. The LHS is the momentum change that any element experiences as it moves between regions of different velocity in the flow field. This has the dimensions of a force, and is referred to as the inertia force, ρv v. We will refer back to these basic equations 22 to 24 extensively throughout the rest of the course. 7

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

### CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

### ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ

ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers Derivation of Flow Equations Asst. Prof. Dr. Orhan GÜNDÜZ General 3-D equations of incompressible fluid flow Navier-Stokes Equations

### Governing Equations of Fluid Dynamics

Chapter 2 Governing Equations of Fluid Dynamics J.D. Anderson, Jr. 2.1 Introduction The cornerstone of computational fluid dynamics is the fundamental governing equations of fluid dynamics the continuity,

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

### The Navier Stokes Equations

1 The Navier Stokes Equations Remark 1.1. Basic principles and variables. The basic equations of fluid dynamics are called Navier Stokes equations. In the case of an isothermal flow, a flow at constant

### Scalars, Vectors and Tensors

Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

### - momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

### Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

### 11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

### CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

### 27.3. Introduction. Prerequisites. Learning Outcomes

olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect

### Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

### 4 Microscopic dynamics

4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

### Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

### Introduction to COMSOL. The Navier-Stokes Equations

Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

### This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

### 3 The boundary layer equations

3 The boundar laer equations Having introduced the concept of the boundar laer (BL), we now turn to the task of deriving the equations that govern the flow inside it. We focus throughout on the case of

### Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

### EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### Laminar to Turbulent Transition in Cylindrical Pipes

Course I: Fluid Mechanics & Energy Conversion Laminar to Turbulent Transition in Cylindrical Pipes By, Sai Sandeep Tallam IIT Roorkee Mentors: Dr- Ing. Buelent Unsal Ms. Mina Nishi Indo German Winter Academy

### FLUID MECHANICS FOR CIVIL ENGINEERS

FLUID MECHANICS FOR CIVIL ENGINEERS Bruce Hunt Department of Civil Engineering University Of Canterbury Christchurch, New Zealand? Bruce Hunt, 1995 Table of Contents Chapter 1 Introduction... 1.1 Fluid

### LECTURE 2: Stress Conditions at a Fluid-fluid Interface

LETURE 2: tress onditions at a Fluid-fluid Interface We proceed by deriving the normal and tangential stress boundary conditions appropriate at a fluid-fluid interface characterized by an interfacial tension

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

### Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

### Lecture 17: Conformal Invariance

Lecture 17: Conformal Invariance Scribe: Yee Lok Wong Department of Mathematics, MIT November 7, 006 1 Eventual Hitting Probability In previous lectures, we studied the following PDE for ρ(x, t x 0 ) that

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and

### Fluid Dynamics and the Navier-Stokes Equation

Fluid Dynamics and the Navier-Stokes Equation CMSC498A: Spring 12 Semester By: Steven Dobek 5/17/2012 Introduction I began this project through a desire to simulate smoke and fire through the use of programming

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

### Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

### The derivation of the balance equations

Chapter 3 The derivation of the balance equations In this chapter we present the derivation of the balance equations for an arbitrary physical quantity which starts from the Liouville equation. We follow,

### Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

### Viscosity and the Navier-Stokes equations

Chapter 6 Viscosity and the Navier-Stokes equations 6.1 The Newtonian stress tensor Generally real fluids are not inviscid or ideal. 1 Modifications of Euler s equations, needed to account for real fluid

### Review of Vector Analysis in Cartesian Coordinates

R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

### D Alembert s principle and applications

Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

### Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

### Compressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004

94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering

### Pre-requisites 2012-2013

Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

### = δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

### ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem

PH-211 A. La Rosa ENERGY CONSERVATION The irst Law of Thermodynamics and the Work/Kinetic-Energy Theorem ENERGY TRANSER of ENERGY Heat-transfer Q Macroscopic external Work W done on a system ENERGY CONSERVATION

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### 4. Introduction to Heat & Mass Transfer

4. Introduction to Heat & Mass Transfer This section will cover the following concepts: A rudimentary introduction to mass transfer. Mass transfer from a molecular point of view. Fundamental similarity

### Summary of Aerodynamics A Formulas

Summary of Aerodynamics A Formulas 1 Relations between height, pressure, density and temperature 1.1 Definitions g = Gravitational acceleration at a certain altitude (g 0 = 9.81m/s 2 ) (m/s 2 ) r = Earth

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

### FINAL EXAM SOLUTIONS Math 21a, Spring 03

INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

### Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

### Newton s Laws of Motion

Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the

### Dimensionless form of equations

Dimensionless form of equations Motivation: sometimes equations are normalized in order to facilitate the scale-up of obtained results to real flow conditions avoid round-off due to manipulations with

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### The Einstein field equations

The Einstein field equations Part I: the right-hand side Atle Hahn GFM, Universidade de Lisboa Lisbon, 21st January 2010 Contents: 1 Einstein field equations: overview 2 Special relativity: review 3 Classical

### Let s first see how precession works in quantitative detail. The system is illustrated below: ...

lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

### SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

### Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

### PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures)

PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures) Dr. Alok Kumar Department of Physical Sciences IISER, Bhopal Abstract The Curvilinear co-ordinates are the common name of

### Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE66 ELASTISITETSTEORI Klasse: 4.ID Dato: 7.0.009 Tid: Kl. 09.00 1.00 Tillatte hjelpemidler under eksamen: Kalkulator Kopi av Boken Mechanics

### Fluid Flow in T-Junction of Pipes

LAPPEENRANTA UNIVERSITY OF TECHNOLOGY Department of Information Technology Laboratory of Applied Mathematics Paritosh R. Vasava Fluid Flow in T-Junction of Pipes The topic of this Master s thesis was approved

### LECTURE 3: Fluid Statics

LETURE 3: Fluid Statics We begin by considering static fluid configurations, for which the stress tensor reduces to the form T = pi, so that n T p, and the normal stress balance assumes the form: ˆp p

### RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

### Solutions to Practice Problems for Test 4

olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,

### 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

Stress & Strain: A review xx yz zz zx zy xy xz yx yy xx yy zz 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Disclaimer before beginning your problem assignment: Pick up and compare any set

### 2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet

Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

### Transport Phenomena I

Transport Phenomena I Andrew Rosen December 14, 013 Contents 1 Dimensional Analysis and Scale-Up 4 1.1 Procedure............................................... 4 1. Example................................................

### THEORETICAL MECHANICS

PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents

### arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

### Dimensional Analysis

Dimensional Analysis Mathematical Modelling Week 2 Kurt Bryan How does the escape velocity from a planet s surface depend on the planet s mass and radius? This sounds like a physics problem, but you can

### Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

### Chapter 7. Potential flow theory. 7.1 Basic concepts. 7.1.1 Velocity potential

Chapter 7 Potential flow theory Flows past immersed bodies generate boundary layers within which the presence of the body is felt through viscous effects. Outside these boundary layers, the flow is typically

### Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### CONSERVATION LAWS. See Figures 2 and 1.

CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F

### If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

Oriented Surfaces and Flux Integrals Let be a surface that has a tangent plane at each of its nonboundary points. At such a point on the surface two unit normal vectors exist, and they have opposite directions.

### Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

### THE CONCEPT OF VISCOSITY

CHAPTER 3 THE CONCEPT OF VISCOSITY Fluid flow plays a very important part in the processing of materials. Most processes are based on the use of fluids either as raw materials, reagents, or heat transfer

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### Analysis of Stress CHAPTER 1 1.1 INTRODUCTION

CHAPTER 1 Analysis of Stress 1.1 INTRODUCTION The basic structure of matter is characterized by nonuniformity and discontinuity attributable to its various subdivisions: molecules, atoms, and subatomic

### GEOS 4430 Lecture Notes: Darcy s Law

GEOS 4430 Lecture Notes: Darcy s Law Dr. T. Brikowski Fall 2013 0 file:darcy law.tex,v (1.24), printed October 15, 2013 Introduction Motivation: hydrology generally driven by the need for accurate predictions