Viscosity. Desmond Schipper Andrew R. Barron. 1 Introduction
|
|
|
- Lynette Tucker
- 10 years ago
- Views:
Transcription
1 OpenStax-CNX module: m Viscosity Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses how viscosity is characterized. 1 Introduction All liquids have a natural internal resistance to ow termed viscosity. Viscosity is the result of frictional interactions within a given liquid and is commonly expressed in two dierent ways. 1.1 Dynamic viscosity The rst is dynamic viscosity, also known as absolute viscosity, which measures a uid's resistance to ow. In precise terms, dynamic viscosity is the tangential force per unit area necessary to move one plane past another at unit velocity at unit distance apart. As one plane moves past another in a uid, a velocity gradient is established between the two layers (Figure 1). Viscosity can be thought of as a drag coecient proportional to this gradient. Version 1.2: May 9, :36 pm
2 OpenStax-CNX module: m Figure 1: Fluid dynamics as one plane moves relative to a stationary plane through a liquid. The moving plane has area A and requires force F to overcome the uid's internal resistance. The force necessary to move a plane of area A past another in a uid is given by (1) where V is the velocity of the liquid, Y is the separation between planes, and η is the dynamic viscosity. V/Y also represents the velocity gradient (sometimes referred to as shear rate). Force over area is equal to τ, the shear stress, so the equation simplies to (2). For situations where V does not vary linearly with the separation between plates, the dierential formula based on Newton's equations is given in (3). (1) (2) (3) 1.2 Kinematic viscosity Kinematic viscosity, the other type of viscosity, requires knowledge of the density, ρ, and is given by (4), where ν is the kinematic viscosity and η is the dynamic viscosity. (4) 1.3 Units of viscosity Viscosity is commonly expressed in Stokes, Poise, Saybolt Universal Seconds, degree Engler, and SI units.
3 OpenStax-CNX module: m Dynamic viscosity The SI units for dynamic (absolute) viscosity is given in units of N S/m 2, Pa S, or kg/(m s), where N stands for Newton and Pa for Pascal. Poise are metric units expressed as dyne s/cm 2 or g/(m s). They are related to the SI unit by g/(m s) = 1/10 Pa S. 100 centipoise, the centipoise (cp) being the most used unit of viscosity, is equal to one Poise. Table 1 shows the interconversion factors for dynamic viscosity. Table 2 lists the dynamic viscosities of several liquids at various temperatures in centipoise. The eect of the temperature on viscosity is clearly evidenced in the drastic drop in viscosity of water as the temperature is increased from near ambient to 60 degrees Celsius. Ketchup has a viscosity of 1000 cp at 30 degrees Celsius or more than 1000 times that of water at the same temperature! Unit Pa*S dyne s/cm 2 or g/(m s) (Poise) Centipoise (cp) Pa*S dyne s/cm 2 or g/(m s) (Poise) Centipoise (cp) Table 1: The interconversion factors for dynamic viscosity. Liquid η (cp) Temperature( C) Water Water Milk Olive Oil Toothpaste 70, , Ketchup Custard 1, Crude Oil (WTI)* 7 15 Table 2: Viscosities of common liquids (*at 0% evaporation volume) Kinematic viscosity The CGS unit for kinematic viscosity is the Stoke which is equal to 10-4 m 2 /s. Dividing by 100 yields the more commonly used centistoke. The SI unit for viscosity is m 2 /s. The Saybolt Universal second is commonly used in the oileld for petroleum products represents the time required to eux 60 milliliters from a Saybolt Universal viscometer at a xed temperature according to ASTM D-88. The Engler scale is often used in Britain and quanties the viscosity of a given liquid in comparison to water in an Engler viscometer for 200cm 3 of each liquid at a set temperature. 2 Newtonian versus non-newtonian uids One of the invaluable applications of the determination of viscosity is identifying a given liquid as Newtonian or non-newtonian in nature. Newtonian liquids are those whose viscosities remain constant for all values of applied shear stress.
4 OpenStax-CNX module: m Non-Newtonian liquids are those liquids whose viscosities vary with applied shear stress and/or time. Moreover, non-newtonian liquids can be further subdivided into classes by their viscous behavior with shear stress: Pseudoplastic uids whose viscosity decreases with increasing shear rate Dilatants in which the viscosity increases with shear rate. Bingham plastic uids, which require some force threshold be surpassed to begin to ow and which thereafter ow proportionally to increasing shear stress. 3 Measuring viscosity Viscometers are used to measure viscosity. There are seven dierent classes of viscometer: 1. Capillary viscometers. 2. Orice viscometers. 3. High temperature high shear rate viscometers. 4. Rotational viscometers. 5. Falling ball viscometers. 6. Vibrational viscometers. 7. Ultrasonic Viscometers. 3.1 Capillary viscometers Capillary viscometers are the most widely used viscometers when working with Newtonian uids and measure the ow rate through a narrow, usually glass tube. In some capillary viscometers, an external force is required to move the liquid through the capillary; in this case, the pressure dierence across the length of the capillary is used to obtain the viscosity coecient. Capillary viscometers require a liquid reservoir, a capillary of known dimensions, a pressure controller, a ow meter, and a thermostat be present. These viscometers include, Modied Ostwald viscometers, Suspended-level viscometers, and Reverse-ow viscometers and measure kinematic viscosity. The equation governing this type of viscometry is the Pouisille law ((5)), where Q is the overall owrate, P, the pressure dierence, a, the internal radius of the tube, η, the dynamic viscosity, and l the path length of the uid. Here, Q is equal to V/t; the volume of the liquid measured over the course of the experiment divided by the time required for it to move through the capillary where V is volume and t is time. For gravity-type capillary viscometers, those relying on gravity to move the liquid through the tube rather than an applied force, (7) is used to nd viscosity, obtained by substituting the relation (6) with the experimental values, where P is pressure, ρ is density, g is the gravitational constant, and h is the height of the column. (5) (6) An example of a capillary viscometer (Ostwald viscometer) is shown in Figure 2. (7)
5 OpenStax-CNX module: m Figure 2: The capillary, submerged in an isothermal bath, is lled until the liquid lies at Mark 3. The liquid is then drawn up through the opposite side of the tube. The time it takes for the liquid to travel from Mark 2 to Mark 1 is used to compute the viscosity. 3.2 Orice viscometers Commonly found in the oil industry, orice viscometers consist of a reservoir, an orice, and a receiver. These viscometers report viscosity in units of eux time as the measurement consists of measuring the time it takes for a given liquid to travel from the orice to the receiver. These instruments are not accurate as the set-up does not ensure that the pressure on the liquid remains constant and there is energy lost to friction at the orice. The most common types of these viscometer include Redwood, Engler, Saybolt, and Ford cup viscometers. A Saybolt viscometer is represented in Figure 3.
6 OpenStax-CNX module: m Figure 3: The time it takes for a 60 ml collection ask to ll is used to determine the viscosity in Saybolt units. 3.3 High temperature, high shear rate viscometers These viscometers, also known as cylinder-piston type viscometers are employed when viscosities above 1000 poise, need to be determined, especially of non-newtonian uids. In a typical set-up, uid in a cylindrical reservoir is displaced by a piston. As the pressure varies, this type of viscometry is well-suited for determining the viscosities over varying shear rates, ideal for characterizing uids whose primary environment is a high temperature, high shear rate environment, e.g., motor oil. A typical cylinder-piston type viscometer is shown in Figure 4. Figure 4: A typical cylinder-piston type viscometer.
7 OpenStax-CNX module: m Rotational viscometers Well-suited for non-newtonian uids, rotational viscometers measure the rate at which a solid rotates in a viscous medium. Since the rate of rotation is controlled, the amount of force necessary to spin the solid can be used to calculate the viscosity. They are advantageous in that a wide range of shear stresses and temperatures and be sampled across. Common rotational viscometers include: the coaxial-cylinder viscometer, cone and plate viscometer, and coni-cylinder viscometer. A cone and plate viscometer is shown in Figure 5. Figure 5: A cone is spun by a rotor in a liquid paste along a plate. The response of the rotation of the cone is measured, thereby determining viscosity. 3.5 Falling ball viscometer This type of viscometer relies on the terminal velocity achieved by a balling falling through the viscous liquid whose viscosity is being measured. A sphere is the simplest object to be used because its velocity can be determined by rearranging Stokes' law ((8)) to (9), where r is the sphere's radius, η the dynamic viscosity, v the terminal velocity of the sphere, σ the density of the sphere, ρ the density of the liquid, and g the gravitational constant (8) A typical falling ball viscometric apparatus is shown in Figure 6. (9)
8 OpenStax-CNX module: m Figure 6: The time taken for the falling ball to pass from mark 1 to mark 2 is used to obtain viscosity measurements. 3.6 Vibrational viscometers Often used in industry, these viscometers are attached to uid production processes where a constant viscosity quality of the product is desired. Viscosity is measured by the damping of an electrochemical resonator immersed in the liquid to be tested. The resonator is either a cantilever, oscillating beam, or a tuning fork. The power needed to keep the oscillator oscillating at a given frequency, the decay time after stopping the oscillation, or by observing the dierence when waveforms are varied are respective ways in which this type of viscometer works. A typical vibrational viscometer is shown in Figure 7.
9 OpenStax-CNX module: m Figure 7: A resonator produces vibrations in the liquid whose viscosity is to be tested. An external sensor detects the vibrations with time, characterizing the material's viscosity in realtime. 3.7 Ultrasonic viscometers This type of viscometer is most like vibrational viscometers in that it is obtaining viscosity information by exposing a liquid to an oscillating system. These measurements are continuous and instantaneous. Both ultrasonic and vibrational viscometers are commonly found on liquid production lines and constantly monitor the viscosity. 4 Bibliography D.S. Viswanath, T.K. Gosh, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani. Viscosity of Liquids : Theory, Estimation, Experiment, and Data, Springer, 1st edn., C.W. Macosko, Rheology : principles, measurements, and applications, Wiley-VCH, New Jersey, 1st edn., F.A. Morrison, Understanding Rheology, Oxford University Press, New York, 1 st edn., The Physics Hypertextbook, ( accessed January, 2014). Spring Handbook for Experimental Fluid Mechanics, Ed. C. Tropea, A.L. Yarin, J.F. Foss, Springer, 1 st edn., 2007.
PUMPS STEAM TURBINES BUILDING & FIRE WASTEWATER SERVICE PUMP CLINIC 22 VISCOSITY
PUMP CLINIC 22 VISCOSITY The viscosity of a fluid is that property which tends to resist a shearing force. It can be thought of as the internal friction resulting when one layer of fluid is made to move
Notes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
Rheological Properties of Topical Formulations
Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency
CHAPTER 2: LIQUID VISCOSITY MEASUREMENT
CHAPTER 2: LIQUID VISCOSITY MEASUREMENT Objective Calculate viscosity (dynamic or absolute, and kinematic) and determine how this property varies with changes in temperature for a constant-composition
RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
CE 204 FLUID MECHANICS
CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
02/21/2006 10:13 AM. Viscosity. The Physics Hypertextbook 1998-2005 by Glenn Elert All Rights Reserved -- Fair Use Encouraged.
Viscosity The Physics Hypertextbook 1998-2005 by Glenn Elert All Rights Reserved -- Fair Use Encouraged prev up next Discussion definitions Informally, viscosity is the quantity that describes a fluid's
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
Teil I. Student Laboratory Manuals
Teil I Student Laboratory Manuals 1 IR1 5. Fluid friction in liquids 5.1 Introduction Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics involved on
PHYSICS FUNDAMENTALS-Viscosity and flow
PHYSICS FUNDAMENTALS-Viscosity and flow The origin of viscosity When a force is applied to a solid, it will yield slightly, and then resist further movement. However, when we apply force to a fluid, it
VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.
VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law
Seite 1 Viscosity Topic: Mechanics 1 Key words Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law 2 Literatur L. Bergmann, C. Schäfer, Lehrbuch der Experimentalphysik, Band
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che
Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
8.62 Viscometers Application and Selection
8.62 ViscometersApplication and Selection C. H. KIM (1969, 1982) B. G. LIPTÁK (1995, 2003) Definition of Viscosity: Viscosity Units: Types of Viscous Behavior: Absolute viscosity is the ratio of applied
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in
SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT
Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
Journal bearings/sliding bearings
Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated
The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:
12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes
Determination of Viscosity Using A Brookfield Viscometer for Conditioning Polymers
LUBRIZOL TEST PROCEDURE TP-N01004 Edition: December 2, 2013 Previous Editions: August 10, 2000 / November 1, 2011 Determination of Viscosity Using A Brookfield Scope A material's flow property is an important
For Water to Move a driving force is needed
RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND
Lecture 24 - Surface tension, viscous flow, thermodynamics
Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
Unit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives
Structure 1.1.Introduction 1.2.Objectives 1.3.Properties of Fluids 1.4.Viscosity 1.5.Types of Fluids. 1.6.Thermodynamic Properties 1.7.Compressibility 1.8.Surface Tension and Capillarity 1.9.Capillarity
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as
Selecting a Centrifugal Pump to Handle a Viscous Liquid
Copyright 2002, 2005, 2008 Randall W. Whitesides, P.E. Introduction This course provides the student with an understanding of fluid viscosity and its effects on the performance of centrifugal pump operation.
Natural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal Seconds.
DOCUMENT NO: ASTP 5005 VERSION: 2010-02-12 Page 1 of 9 1.0 PURPOSE This document establishes MSHA s Standard Test Procedure (STP) for the Determining the Viscosity of a Hydraulic Fluid in Saybolt Universal
MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD
130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.
Standard Test Methods for Viscosity of Adhesives 1
Designation: D 1084 97 Standard Test Methods for Viscosity of Adhesives 1 This standard is issued under the fixed designation D 1084; the number immediately following the designation indicates the year
Viscosity experiments: physical controls and implications for volcanic hazards. Ben Edwards Dept of Geology, Dickinson College
Viscosity experiments: physical controls and implications for volcanic hazards Student Name: Ben Edwards Dept of Geology, Dickinson College OBJECTIVES OF LAB Learn about the rheological property called
OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
Aids needed for demonstrations: viscous fluid (water), tubes (pipes), injections, paper, stopwatches, vessels,, weights
1 Viscous and turbulent flow Level: high school (16-17 years) hours (2 hours class teaching, 2 hours practical excercises) Content: 1. Viscous flow 2. Poiseuille s law 3. Passing from laminar to turbulent
4 Microscopic dynamics
4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline
Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics
3.3. Rheological Behavior of Vinyl Ester Resins
3.3. Rheological Behavior of Vinyl Ester Resins 3.3.1. Introduction Rheology is the study of the deformation and flow of matter 1. There has been significant appreciation of the importance of the rheological
Fluid Mechanic & Fluid Machine
Fluid Mechanic & Fluid Machine Contents Chapter Topic Page Chapter-1 Chapter-2 Chapter-3 s s s Problems Pressure and Its Measurements s s s Hydrostatic Forces on Surfaces s s s No 7 8 15 15 20 22 22 24
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic
Standard Test Method for Kinematic Viscosity of Asphalts (Bitumens) 1
Designation: D 2170 95 Designation: 319/84 (89) Standard Test Method for Kinematic Viscosity of Asphalts (Bitumens) 1 This standard is issued under the fixed designation D 2170; the number immediately
Understanding Rheology
Understanding Rheology Ross Clark Distinguished Research Fellow San Diego R&D Page 1 Background CP Kelco makes carbohydrate based water soluble polymers Fermentation Xanthan Gellan Plant derived Pectin
Measurement of the viscosities of He, Ne and Ar for the determination of their gas kinetic diameters.
American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-57-62 www.ajer.org Research Paper Measurement of the viscosities of He, Ne and Ar for the determination
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
User's Guide. Digital Viscotesters. Model 345060 High Range (0.3 to 4000 dpas) Model 345055 Low Range (1.5 to 330 mpas) Introduction
User's Guide Digital Viscotesters Model 345060 High Range (0.3 to 4000 dpas) Model 345055 Low Range (1.5 to 330 mpas) Introduction Congratulations on your purchase of the Extech Digital Viscotester. The
Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)
Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
GAS VISCOSITY AT HIGH PRESSURE AND HIGH TEMPERATURE. A Dissertation KEGANG LING
GAS VISCOSITY AT HIGH PRESSURE AND HIGH TEMPERATURE A Dissertation by KEGANG LING Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Flow Sensors. - mass flow rate - volume flow rate - velocity. - stream line parabolic velocity profile - turbulent vortices. Methods of measurement
Flow Sensors Flow - mass flow rate - volume flow rate - velocity Types of flow - stream line parabolic velocity profile - turbulent vortices Methods of measurement - direct: positive displacement (batch
Introduction VISCOSITY. Appearance Color Physical Properties Viscosity Technical Service Index
Introduction Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is commonly perceived as flow behaviour or resistance to pouring. Viscosity describes a fluids internal
A H M 531 Penetration & Ring & Ball & Ductility & Flash & Fire point By: Mu'men Al-Otoom
The Civil Engineering Center 1 Visit www.ahm531.com for more lecture notes and E-book! The Civil Engineering Center 2 Visit www.ahm531.com for more lecture notes and E-book! Introduction : The grades of
HEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
Viscosity Cup Reference Table 1
Viscosity Viscosity The extent to which a liquid resists a tendency to flow is defined as viscosity. In the coatings industry, this behaviour is one of the key parameters. Elcometer manufactures and supplies
Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:
I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)
BIOMEDICAL ULTRASOUND
BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic
Asphalt Institute Technical Bulletin. Laboratory Mixing and Compaction Temperatures
ASPHALT INSTITUTE EXECUTIVE OFFICES AND RESEARCH CENTER Research Park Drive P.O. Box 14052 Lexington, KY 40512-4052 USA Telephone 859-288-4960 FAX No. 859-288-4999 Asphalt Institute Technical Bulletin
Putting the Simple Back into Viscosity. Written by John Sander Vice President of Technology Lubrication Engineers, Inc.
White Paper LE WHITE PAPER Written by John Sander Vice President of Technology Lubrication Engineers, Inc. The Lubrication Reliability Source www.le-inc.com 800-537-7683 1 Abstract: Simply stated, viscosity
Properties of Fluids
CHAPTER Properties of Fluids 1 1.1 INTRODUCTION A fluid can be defined as a substance which deforms or yields continuously when shear stress is applied to it, no matter how small it is. Fluids can be subdivided
Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
Viscosity and Laminar Flow; Poiseuille's Law
OpenStax-CNX module: m42209 1 Viscosity and Laminar Flow; Poiseuille's Law OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract
The performance of centrifugal pumps when pumping ultra-viscous paste slurries
The performance of centrifugal pumps when pumping ultra-viscous paste slurries by J. Crawford*, F. van Sittert, and M. van der Walt Synopsis Significant advances have been made in the design of centrifugal
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
VISCOSITY CLASSIFICATIONS
VISCOSITY CLASSIFICATIONS INDUSTRIAL LUBRICANT CASSIFICATIONS ISO (International Standards Organisation) viscosity classification The ISO viscosity classification uses mm 2 /s () units and relates to viscosity
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Chapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
CHAPTER 3: FORCES AND PRESSURE
CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or
Lovis 2000 M/ME. Microviscometer. ::: Viscometry at its best
Lovis 2000 M/ME Microviscometer ::: Viscometry at its best Lovis 2000 M/ME is a rolling ball viscometer which unites an established measuring principle (Höppler, DIN 53015 and ISO 12058) with innovative
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Elcometer Viscosity Cups (AFNOR, BS, DIN, FORD, ISO)
At a glance Anodized aluminium with a stainless steel orifice. For measuring the consistency of paints Expressed in second (s) flow time. Can be converted into centistokes. Available with adjustable stand.
109 Adopted: 27.07.95
109 Adopted: 27.07.95 OECD GUIDELINE FOR THE TESTING OF CHEMICALS Adopted by the Council on 27 th July 1995 Density of Liquids and Solids INTRODUCTION 1. This guideline is a revised version of the original
Pressure in Fluids. Introduction
Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure
Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers
Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic
Thickeners + Rheology Guide
Thickeners + Rheology Guide 2 Thickeners + Rheology Guide 3 Rheology Rheology is defined as the study of the deformation and flow of materials. When a force is applied to a liquid, the liquid will flow
Chapter 27 Static Fluids
Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational
explain your reasoning
I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,
Acceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
How To Understand Fluid Mechanics
Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance
CE 3500 Fluid Mechanics / Fall 2014 / City College of New York
1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and
Buoyant Force and Archimedes Principle
Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring
Chapter 13 - Solutions
= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod
7.2.4 Seismic velocity, attenuation and rock properties
7.2.4 Seismic velocity, attenuation and rock properties Rock properties that affect seismic velocity Porosity Lithification Pressure Fluid saturation Velocity in unconsolidated near surface soils (the
