Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Size: px
Start display at page:

Download "Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1"

Transcription

1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors 12.Analytical Chips 13.Particle-Laden Fluids a. Measurement Techniques b. Fundamentals of Biotechnology c. High-Throughput Screening Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

2 3. Physics of Microfluidic Systems Behavior of fluids in microfluidic structures System approach Hydrostatics: fluids at rest Fluid dynamics: mechanics of fluids in motion Scaling laws Shift in surface-to-volume ratio Shifted significance of physical effects in MF MF-effects Capillarity Electrokinetics Strictly laminar flow conditions Pros and cons of MF-effects New design principles Hazard for many applications Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 2

3 3. Physics of Microfluidic Systems 3.1. Navier-Stokes Equation 3.2. Laminar and Turbulent Flow 3.3. Fluid Dynamics 3.4. Fluid Networks 3.5. Energy Transport 3.6. Interfacial Surface Tension 3.7. Electrokinetics Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 3

4 3.1. Navier-Stokes Equation Central relationship of fluid dynamics Solutions for selected situations Assumptions Continuous media Viscous constant Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 4

5 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 5

6 Lagrangian and Eulerian Description of Motion Lagrange Systems with small numbers of particles of mass m i Description via set of position vectors {r i } Velocity v i - Time-derivative of {r i } Acceleration a i - Second time-derivative Relation to Newton s second law - Forces acting on each particle i Not suitable for fluid mechanics (n = 1 mol, N A = 6 x mol -1 ) Useful for treating special problems Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 6

7 Lagrangian and Eulerian Description of Motion Euler Backbone of NS-Equations Thermodynamic quantities (temperature, pressure) - Summarizing statistical details on molecular level Continuum Mechanics! Integral momentum of fluid in region t Material or substantial derivative Fundamental definition of acceleration a Particle mechanics: Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 7

8 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 8

9 Derivation of the NS-Equation Spatial region Vector function Representing change in particle position from t = 0 to given t Path of particle starting at r 0 at t = 0: t -> (r, t) Velocity of fluid observed at fixed position: r -> (r, t): ( / t) (r, t): Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 9

10 Transport Theorem Statement Time derivatives of integrals over time-dependent region Differentiable, scalar function f (x, t ) Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 10

11 Conservation of Mass Spatial integral of density over region Time derivative of mass integrals in transport theorem must vanish Integrands must vanish Equation holds for arbitrary regions Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 11

12 Compressible fluids Equation of Continuity Incompressible Fluids Velocity vector for multi-phase fluid Vector coordinates of each phase or substance i Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 12

13 Types of Forces Volume forces Gravity Coriolis Electro-magnetic Overall volume force density summarized Surface forces Pressure Electrokinetic force Friction Stress tensor - Relation between mechanical shear stress and strain Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 13

14 Momentum Equation Insertion into Newtonian equation Volume forces Surface forces Integration and differentiation of vectors (component-wise) NS momentum equation Transport theorem Product rule Gaussian theorem Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 14

15 Structure of Stress Tensor Stress tensor Non-viscous fluid Neglecting inner friction Diagonal matrix with scalar pressure on diagonal Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 15

16 Euler Equation of Motion Diagonal matrix Decoupling of differential equations (to be read component-wise) Partial differential equations of first order Commonly used in gas dynamics I.e., for compressible, non-viscous fluids Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 16

17 Viscous Fluids Stokes postulates for viscous contribution to stress tensor Viscosity Characteristic constant With strain tensor Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 17

18 Viscous Fluids Non-diagonal elements Transformation to system of partial differential equations Second order Additional constant of integration Additional information for solution required, e.g. - Equation of state - Caloric equation of state Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 18

19 Incompressible Fluids (x,t) = = const. Navier-Stokes equation for incompressible fluids Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 19

20 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 20

21 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 21

22 Interpretation of the Momentum Equation Left-hand side Material derivative v times mass density Change in momentum (Newton) Right-hand side Forces acting on fluid Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 22

23 Interpretation of the Momentum Equation Pressure gradient Pressure force density Estimate for absolute value Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 23

24 Interpretation of the Momentum Equation Viscosity term Force density f Inner friction of fluid Force density - Viscosity - Flow profile Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 24

25 Interpretation of the Momentum Equation Approximation Tube of diameter d Scales with - Maximum flow velocity v max - Inverse square of diameter d -2 Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 25

26 Interpretation of the Momentum Equation Gravity Force density term On earth - Fluids experience pressure associated with own weight (gravity) = const. Barometric formula - Thermalized compressible fluids Gravitational effects negligible for microfluidic devices! Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 26

27 Interpretation of the Momentum Equation Buoyancy Principle of Archimedes Body plunges in fluid Different pressures p 1 < p 2 on top and bottom surface Pressure - Weight of liquid column p i ~ g h Buoyancy force F buoy = F 2 - F 1 - Propelling body towards surface Body stops when F buoy matched by force of gravity F g h 2 < 0: swimming Force density Relevance to MF Large 10 4 N m -3 for = water Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 27

28 Interpretation of the Momentum Equation Centrifugal forces Present in MF systems like CDs Possible pumping mechanism - Depending on angular frequency = 2 Electrostatic forces Discarded so far (for simplicity) - Product of charge density and electrical field strength Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 28

29 Interpretation of the Momentum Equation Scaling of volume and surface forces Surface forces proportional to A l 2 Volume forces V l 3 Surface-to-volume ratio A / V l -1 Surface-related forces dominate in microworld Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 29

30 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 30

31 Common Boundary Conditions Required for complete definition of problem Determine evolution in time Initial field Initial values for entire vector field v Boundary regions Behavior at system boundaries Spatial boundary types Vector field components on boundary surface Derivatives in direction normal to surface Combinations Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 31

32 Common Boundary Conditions Full stiction of first fluid layer Impermeable walls Free- slip Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 32

33 Common Boundary Conditions Inflow boundary conditions Velocity components kept constant over time Outflow conditions Constant gradient of velocity field components in normal direction Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 33

34 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 34

35 Simplifications Equations of motion very complex System of differential equations Coupled Second order Analytical solutions Only for special situations - High symmetry - Neglect of coupling Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 35

36 Simplifications Incompressible fluids in MF-systems Neglecting Inertia term (v )v Volume forces g Stationary conditions v / t = 0 Simplified differential NS-equation Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 36

37 Simplifications Assumptions Frictionless ( = 0) and stationary ( v / t = 0) flow Elimination of terms - Non-stationary - Proportional to viscosity Discarding gravity Bernoulli equation Vector analysis Important for dynamic pressure (later on) Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 37

38 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 38

39 Dynamic Similarity of Flows Scalability of fluidic experiments Mathematical point of view Transformation to dimensionless variables Substitutions Dimensionless NS equation Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 39

40 Dynamic Similarity of Flows Identical results for similar geometries and C Scaled by scalar constant C Coincidence of - Reynolds number - Froude number MF: discarding gravity Re completely determines dynamics of momentum equation Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 40

41 Dynamic Similarity of Flows Reynolds number Re Measure for ratio - Work spent on acceleration - Energy dissipated by friction Approximating frictional energy Ratio Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 41

42 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 42

43 Numerical Solution of the NS-Equations Modeling the system Reduction of complexity Making system as simple as possible, but not any simpler. (A. Einstein) Discretization of continuous space Grid Number of grid points sets computational requirements Adaptive mesh refinement Free boundary problems CFD packages Special lecture Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 43

44 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 44

45 Example of an Analytical Solution NS (momentum) equation in cylindrical coordinates Discarding convective term yields Laplace-transformed profile of axial velocity for tube with circular cross section of radius r 0 Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 45

46 Example of an Analytical Solution With Laplace-transforms Arguments of Bessel function J 0 Integration of velocity profile yields Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 46

47 Example of an Analytical Solution Velocity profile for harmonic actuation Definition: Dynamic Reynolds number Reverse transform of Laplace-transformed profile of axial velocity Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 47

48 Example of an Analytical Solution Solution within "Microfluidic Limit" For small arguments r o *, i.e., Re dyn 1 Expansion of pressure flow relation Which is of the form Later on we will see that - Corresponds to hydrodynamic resistance R hd - Corresponds to hydrodynamic inertance L hd Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 48

49 3.1. Navier-Stokes Equations Lagrangian and Eulerian Description of Motion Derivation of the NS-Equation Consequences from the Continuity Equation Interpretation of the Momentum Equation Common Boundary Conditions Simplifications Dynamic Similarity of Flows Numerical Solution of the NS-Equations Example of an Analytical Solution Departure from Continuum Model Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 49

50 Departure from Continuum Model Typically averaging over ensemble of N = 6 x particles 1 l of water corresponds to about 55 mol 1 µl thus contains about 3 x molecules State quantities of thermodynamics - Statistical average Microscopic picture Discrete molecules Large absolute fluctuations N = N 0.5 Small relative fluctuations N / N =1 / N 0.5 < 10-9 Negligible fluctuations in concentration and composition Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 50

51 Knudsen Number: Rarefaction Applicability of continuum model for fluidic system Ratio between Mean free path Characteristic dimension Three regimes Kn < 0.1: continuum approximation Kn > 10: free particle motion Intermediate regime: handled by allowing slip at walls Kn for gases in MF-systems l mfp some 100 nm at STP l > 1 µm Kn < 0.1 even for smallest structures Continuum model applies to practically all MF-systems! Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 51

52 Departure from Continuum Model Molecular structure Many degrees of freedom per molecule For instance, rotation about molecular axis Deviations from conventional theory Surface viscosity Slip-flow of multiphase liquids Molecular effects in thin films Particles and clogging Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 52

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena. Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Static s Kinematics Dynamics Fluid Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Free Convection Film Flows and Heat Transfer

Free Convection Film Flows and Heat Transfer Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1 COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

EXAMPLE: Water Flow in a Pipe

EXAMPLE: Water Flow in a Pipe EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

Pre-requisites 2012-2013

Pre-requisites 2012-2013 Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.

1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?

More information

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2) Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

More information

Diffusion and Fluid Flow

Diffusion and Fluid Flow Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

The Navier Stokes Equations

The Navier Stokes Equations 1 The Navier Stokes Equations Remark 1.1. Basic principles and variables. The basic equations of fluid dynamics are called Navier Stokes equations. In the case of an isothermal flow, a flow at constant

More information

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Introduction to COMSOL. The Navier-Stokes Equations

Introduction to COMSOL. The Navier-Stokes Equations Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

Model of a flow in intersecting microchannels. Denis Semyonov

Model of a flow in intersecting microchannels. Denis Semyonov Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence 11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

More information

CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

More information

ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ

ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers Derivation of Flow Equations Asst. Prof. Dr. Orhan GÜNDÜZ General 3-D equations of incompressible fluid flow Navier-Stokes Equations

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Practice Problems on the Navier-Stokes Equations

Practice Problems on the Navier-Stokes Equations ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Implementation of a flexible fiber model in a general purpose CFD code

Implementation of a flexible fiber model in a general purpose CFD code Implementation of a flexible fiber model in a general purpose CFD code Jelena Andrić Supervisor: Håkan Nilsson Co-supervisors: Srdjan Sasic and Alf-Erik Almstedt Department of Applied Mechanics Chalmers

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

LECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity.

LECTURE 5: Fluid jets. We consider here the form and stability of fluid jets falling under the influence of gravity. LECTURE 5: Fluid jets We consider here the form and stability of fluid jets falling under the influence of gravity. 5.1 The shape of a falling fluid jet Consider a circular orifice of radius a ejecting

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

4 Microscopic dynamics

4 Microscopic dynamics 4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

How To Understand Fluid Mechanics

How To Understand Fluid Mechanics Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

More information

ATM 316: Dynamic Meteorology I Final Review, December 2014

ATM 316: Dynamic Meteorology I Final Review, December 2014 ATM 316: Dynamic Meteorology I Final Review, December 2014 Scalars and Vectors Scalar: magnitude, without reference to coordinate system Vector: magnitude + direction, with reference to coordinate system

More information

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands

Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes

More information

PHYSICS FUNDAMENTALS-Viscosity and flow

PHYSICS FUNDAMENTALS-Viscosity and flow PHYSICS FUNDAMENTALS-Viscosity and flow The origin of viscosity When a force is applied to a solid, it will yield slightly, and then resist further movement. However, when we apply force to a fluid, it

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS 1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of

More information

Notes on Polymer Rheology Outline

Notes on Polymer Rheology Outline 1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity

More information

Physics of the Atmosphere I

Physics of the Atmosphere I Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information