EXAMPLE: Water Flow in a Pipe
|
|
|
- Shona Alison Lee
- 9 years ago
- Views:
Transcription
1 EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along the pipe. Does the water slow down as it flows from one end to the other? Only component of velocity is in the x-direction. v = v x i Incompressible Continuity: v y = v z = 0 v x x v x x + v y y + v z z = 0 = 0 and the water does not slow down.
2 EXAMPLE: Flow Through a Tank V = constant (always full) Integral Mass Balance: ( v n)da = 0 S v 1 A 1 = v 2 A 2 Q Constant volumetric flow rate Q. EXAMPLE: Simple Shear Flow v y = v z = 0 v x = v x (y) satisfied identically v v x x + v y y + v z z = 0
3 NAVIER-STOKES EQUATIONS (p. 1) (in the limit of slow flows with high viscosity) ρ = density η = viscosity v = typical velocity scale D = typical length scale Reynolds Number: R e ρvd η (1-62) For R e 1 have laminar flow (no turbulence) ρ v t = P + ρ g + η 2 v Vector equation (thus really three equations) The full Navier-Stokes equations have other nasty inertial terms that are important for low viscosity, high speed flows that have turbulence (airplane wing).
4 NAVIER-STOKES EQUATIONS (p. 2) ρ v t = P + ρ g + η 2 v ρ v t = v t = acceleration ρ = force unit volume mass unit volume ( F = m a) Newton s 2 nd Law Navier-Stokes equations are a force balance per unit volume What accelerates the fluid? P = Pressure Gradient ρ g = Gravity η 2 v = Flow (fluid accelerates in direction of increasing velocity gradient. Increasing v 2 v > 0
5 GENERAL FLUID MECHANICS SOLUTIONS v r = constant r Already know the way velocity varies with position, and have not used the Navier-Stokes equations! Navier-Stokes equations + Continuity + Boundary Conditions Four coupled differential equations! Always look for ways to simplify the problem! EXAMPLE: 2D Source Flow Injection Molding a Plate Continuity equation v = 1 r 1. Independent of time 2. 2-D v z = 0 3. Symmetry Polar Coordinates 4. Symmetry v θ = 0 d (rv dr r) = 0 rv r = constant
6 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 1) Independent of time v y = v z = 0 Cartesian coordinates Continuity: Navier-Stokes equation: v x x = 0 v x = v x (y) P = P (x) P x + µ 2 v x y 2 = 0 P y = P z = 0 v x = v x (y) P x = v x µ 2 y 2 How can f(x) = h(y)? Each must be constant! P x = C 1 P = C 1 x + C 2 B.C. x = 0 P = P 1 C 2 = P 1 x = L P = P 2 C 1 = P/L where : P P 1 P 2 P = P 1 P x L
7 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 2) µ 2 v x y 2 = C 1 = P/L 2 v x y 2 = P µl v x y = P µl y + C 3 v x = P 2µL y2 + C 3 y + C 4.C. NO SLIP top plate y = d/2 v x = 0 bottom plate y = d/2 v x = 0 0 = P 8µ L d2 + C 3 d 2 + C 4 0 = P 8µ L d2 C 3 d 2 + C 4 v x = P 2µl C 3 = 0 [ d 2 4 y2 ] C 4 = P d2 8µL Parabolic velocity profile
8 EXAMPLE: Poiseuille Flow between Parallel Plates (important for injection molding) (P. 3) Where is the velocity largest? Maximum at vx = 0 = P y y µl maximum at y = 0 centerline What is the average velocity? A v ave = v xda da = 1 v x da A A A v ave = 1 z d/2 v x dydz = 1 d/2 zd 0 d/2 d d/2 v ave = P [ ] d 2 d/2 2µLd 4 y y3 3 d/2 For constant P, µ, L: double d quadruple v A = zd [ ] P d 2 2µL 4 y2 dy = P d2 12µL
9 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 1) P 1 > P 2 Independent of Time Cylindrical Coordinates v r = v θ = 0 v z = v z (r) Continuity: vz z = 0 Navier-Stokes equation: P z = µ [ 1 r f(z) = g(r) = a constant Split into two parts - Pressure Part: P z = C 1 P = C 1 z + C 2 r ( r v )] z r B.C. z = 0 P = P 2 C 2 = P 2 z = L P = P 1 C 1 = P/L where : P P 1 P 2 P = P 2 + P L z P = P 2 + P z analogous to Poiseuille flow between parallel plates. L
10 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 2) [ 1 µ r r ( r v )] z = P r L r v z r = P 2µL r2 + C 3 v z r = P 2µL r + C 3 r v z = P 4µL r2 + C 3 ln r + C 4 B.C. NO SLIP at r = R i, v z = 0 at r = R 0, v z = 0 0 = P 4µL R2 i + C 3 ln R i + C 4 subtract 0 = P 4µL R2 0 + C 3 ln R 0 + C 4 ( ) 0 = P 4µL (R2 0 Ri 2 R ) + C 3 ln 0 R i C 3 = P (R2 0 Ri 2 ) 4µL ln(r 0 /R i ) C 4 = P [ ] R0 2 (R2 0 Ri 2 ) ln R 0 4µL ln(r 0 /R i )
11 EXAMPLE: Poiseuille Flow in an Annular Die (important for blow molding) (P. 3) v z = P [ r 2 (R2 0 Ri 2 ) 4µL ln(r 0 /R i ) ln r R2 0 + (R2 0 Ri 2 ) ln(r 0 /R i ) ] [ 1 + r2 v z = P R2 0 4µL r < R 0 always, so v z < 0 R 2 0 (R2 0 R 2 i ) ln(r 0 /R i ) ln(r/r 0) Leading term is parabolic in r (like the flow between plates) but this one has a logarithmic correction. What is the volumetric flow rate? Q = π P R4 0 8µL Q = [ A 1 + v z da = ( Ri R 0 R0 R i v z 2πrdr ) ] 4 + (1 (R i/r 0 ) 2 ) 2 ln(r 0 /R i ) ]
12 GENERAL FEATURES OF NEWTONIAN POISEUILLE FLOW Parallel Plates: Q = P d3 W 12µL Circular Tube: Q = π P R4 8µL Annular Tube: Q = π P R4 0 8µL f(r i/r 0 ) Rectangular Tube: All have the same general form: Q = P d3 w 12µL Q P Q 1/µ Weak effects of pressure, viscosity and flow length Q 1/L Q R 4 or d 3 w Strong effect of size. In designing and injection mold, we can change the runner sizes.
13 NON-NEWTONIAN EFFECTS EXAMPLE: Poiseuille Flow in a Circular Pipe Newtonian Velocity Profile: v z = P R2 4µL [ 1 (r/r) 2 ] Shear Rate: γ = v z r = P r 2µL Apparent Viscosity: where γ is higher Viscosity is lower Real Velocity Profile: Lower η a increases v z non-parabolic
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Viscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
Notes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
Practice Problems on the Navier-Stokes Equations
ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
Pipe Flow-Friction Factor Calculations with Excel
Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline
Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics
Introduction to COMSOL. The Navier-Stokes Equations
Flow Between Parallel Plates Modified from the COMSOL ChE Library module rev 10/13/08 Modified by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2008 Introduction to COMSOL The following
4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
p atmospheric Statics : Pressure Hydrostatic Pressure: linear change in pressure with depth Measure depth, h, from free surface Pressure Head p gh
IVE1400: n Introduction to Fluid Mechanics Statics : Pressure : Statics r P Sleigh: [email protected] r J Noakes:[email protected] January 008 Module web site: www.efm.leeds.ac.uk/ive/fluidslevel1
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
11 Navier-Stokes equations and turbulence
11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
Chapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
Distinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation.
CHAPTER 06 1.Name the four types of motion that a fluid element can experience. YOUR ANSWER: Translation, linear deformation, rotation, angular deformation. 2.How is the acceleration of a particle described?
Transport Phenomena I
Transport Phenomena I Andrew Rosen December 14, 013 Contents 1 Dimensional Analysis and Scale-Up 4 1.1 Procedure............................................... 4 1. Example................................................
Physics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 [email protected] heidelberg.de Last week The conservation of mass implies the continuity equation:
Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics
Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow
Lecture 24 - Surface tension, viscous flow, thermodynamics
Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis
Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
Free Convection Film Flows and Heat Transfer
Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey [email protected]
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
CHAPTER ONE Fluid Fundamentals
CHPTER ONE Fluid Fundamentals 1.1 FLUID PROPERTIES 1.1.1 Mass and Weight Mass, m, is a property that describes the amount of matter in an object or fluid. Typical units are slugs in U.S. customary units,
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
Fundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
4 Microscopic dynamics
4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will
Chapter 28 Fluid Dynamics
Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example
Differential Balance Equations (DBE)
Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance
CBE 6333, R. Levicky 1 Differential Balance Equations
CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,
SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT
Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,
Microfluidic Principles Part 1
Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 1 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Dr. Steven S. Saliterman www.tc.umn.edu/~drsteve
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions
A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer
Exergy Analysis of a Water Heat Storage Tank
Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
A fundamental study of the flow past a circular cylinder using Abaqus/CFD
A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
2.016 Hydrodynamics Reading #2. 2.016 Hydrodynamics Prof. A.H. Techet
Pressure effects 2.016 Hydrodynamics Prof. A.H. Techet Fluid forces can arise due to flow stresses (pressure and viscous shear), gravity forces, fluid acceleration, or other body forces. For now, let us
VISUAL PHYSICS School of Physics University of Sydney Australia. Why do cars need different oils in hot and cold countries?
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW VISCOSITY POISEUILLE'S LAW? Why do cars need different oils in hot and cold countries? Why does the engine runs more freely as
Teil I. Student Laboratory Manuals
Teil I Student Laboratory Manuals 1 IR1 5. Fluid friction in liquids 5.1 Introduction Generally the term fluid is understood to be matter either in the gaseous or liquid state. The physics involved on
AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss
AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:
I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2)
FLUID FLOW AND MIXING IN BIOREACTORS (Part 2 of 2) Overview Power requirements for mixing Newtonian and non-newtonian liquids Ungassed and gassed systems Scale-up issues, scale-down approach Adapting bioreactor
CE 3500 Fluid Mechanics / Fall 2014 / City College of New York
1 Drag Coefficient The force ( F ) of the wind blowing against a building is given by F=C D ρu 2 A/2, where U is the wind speed, ρ is density of the air, A the cross-sectional area of the building, and
Viscosity and the Navier-Stokes equations
Chapter 6 Viscosity and the Navier-Stokes equations 6.1 The Newtonian stress tensor Generally real fluids are not inviscid or ideal. 1 Modifications of Euler s equations, needed to account for real fluid
Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che
Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing
How To Understand Fluid Mechanics
Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance
Viscous flow through pipes of various cross-sections
IOP PUBLISHING Eur. J. Phys. 28 (2007 521 527 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/28/3/014 Viscous flow through pipes of various cross-sections John Lekner School of Chemical and Physical
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
This tutorial provides a recipe for simulating L
Pipe Flow Tutorial for STAR-CCM+ ME 448/548 February 5, 2014 Gerald Recktenwald [email protected] 1 Overview This tutorial provides a recipe for simulating laminar flow in a pipe with STAR- L CCM+. The
OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
APPLIED FLUID MECHANICS. TUTORIAL No.6 DIMENSIONAL ANALYSIS. When you have completed this tutorial you should be able to do the following.
APPLIED FLUID MECHANICS TUTORIAL No.6 DIMENSIONAL ANALYSIS When you have completed this tutorial you should be able to do the following. Explain the basic system of dimensions. Find the relationship between
Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation
Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 [email protected]
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics
Chapter 1: Statics 1. The subject of mechanics deals with what happens to a body when is / are applied to it. A) magnetic field B) heat C ) forces D) neutrons E) lasers 2. still remains the basis of most
ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers. Equations. Asst. Prof. Dr. Orhan GÜNDÜZ
ENV5056 Numerical Modeling of Flow and Contaminant Transport in Rivers Derivation of Flow Equations Asst. Prof. Dr. Orhan GÜNDÜZ General 3-D equations of incompressible fluid flow Navier-Stokes Equations
FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER
VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
Dimensional Analysis
Dimensional Analysis Mathematical Modelling Week 2 Kurt Bryan How does the escape velocity from a planet s surface depend on the planet s mass and radius? This sounds like a physics problem, but you can
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
01 The Nature of Fluids
01 The Nature of Fluids WRI 1/17 01 The Nature of Fluids (Water Resources I) Dave Morgan Prepared using Lyx, and the Beamer class in L A TEX 2ε, on September 12, 2007 Recommended Text 01 The Nature of
HEAVY OIL FLOW MEASUREMENT CHALLENGES
HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional
Heat Exchangers - Introduction
Heat Exchangers - Introduction Concentric Pipe Heat Exchange T h1 T c1 T c2 T h1 Energy Balance on Cold Stream (differential) dq C = wc p C dt C = C C dt C Energy Balance on Hot Stream (differential) dq
cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS
cmn_lecture.2 CAD OF DOUBLE PIPE HEAT EXCHANGERS A double pipe heat exchanger, in essence, consists of two concentric pipes, one fluid flowing through the inner pipe and the outer fluid flowing countercurrently
CIVE2400 Fluid Mechanics Section 2: Open Channel Hydraulics
CIVE400 Fluid Mechanics Section : Open Channel Hydraulics. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...
Heat Transfer by Free Convection
Heat Transfer by Free Convection Introduction This example describes a fluid flow problem with heat transfer in the fluid. An array of heating tubes is submerged in a vessel with fluid flow entering at
Application of First Order Differential Equations in Mechanical Engineering Analysis
ME 130 Applied Engineering Analysis Chapter 3 Application of First Order Differential Equations in Mechanical Engineering Analysis Tai-Ran Hsu, Professor Department of Mechanical and Aerospace Engineering
Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation
Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by
Experiment # 3: Pipe Flow
ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel
Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer
MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD
130 Experiment-366 F MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD Jeethendra Kumar P K, Ajeya PadmaJeeth and Santhosh K KamalJeeth Instrumentation & Service Unit, No-610, Tata Nagar, Bengaluru-560092.
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Urban Hydraulics. 2.1 Basic Fluid Mechanics
Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able
