Chapter 12 Equilibrium and Elasticity. Questions: 3, 5 Problems: 3, 7, 11, 18, 19, 25, 31, 34, 43, 49


 Thomas Austin
 1 years ago
 Views:
Transcription
1 Chapter 12 Equilibrium and Elasticity Questions: 3, 5 Problems: 3, 7, 11, 18, 19, 25, 31, 34, 43, 49
2 Equilibrium Four situations: 1) book sitting on a table 2) hockey puck sliding with constant velocity on frictionless surface 3) rotating blades of ceiling fan 4) wheel of bicycle that is traveling in straight path at constant speed All have two conditions: 1) linear momentum about center of mass is constant 2) angular momentum about any point is constant Objects that fit these two requirements are said to be in equilibrium.
3 For the first situation, the book on a table, not only are the linear and angular momentums constant, they are zero. The book is not moving. The book is in static equilibrium. Objects in static equilibrium will not move or fall over (rotate) as long as no more outside forces are applied.
4 Stable equilibrium if an object in equilibrium is displaced by a small amount by a force and it returns to the initial state, the object is in stable static equilibrium. A small force does not end the equilibrium. If you push the ball in either direction, it will return to the bottom of the trough. When you push the ball in either direction, you increase the potential energy of the ball. The ball wants to minimize the potential energy so it returns to the original position. This is related to the potential energy curve.
5 Unstable equilibrium if you give a small displacement to an object and the displacement increases afterwards, the object is in unstable equilibrium. A small force can end the equilibrium. Push the ball slightly in either direction and it will roll down the side.
6 When the center of mass is directly above a supportive edge, the object is unstable. When the center of mass is between the supportive edges of an object it is not at unstable. This tells us that the size of the base of an object determines how stable the object is. (see pictures with dominos and block)
7 Requirements for Equilibrium All the external forces acting on an object balance out. dp Fnet dt F 0 net All the external torques acting on an object balance. dl net dt 0 net
8 These two conditions are vector equations, so we can write them for each direction. F net,x =0 F net,y =0 F net,z =0 F 0 0 net net,x=0 net,y=0 net,z=0 net In 3D the object can rotate about all 3 axis. You end up with a system of 6 equations and 6 unknowns. If we stick to 2D (objects in the xy plane, they can only rotate about the z axis). We now will see systems of 3 equations and 3 unknowns.
9 Sample problem 121 Examples A uniform beam of length L and mass m=1.8 kg is at rest on two scales. A block of mass 2.7 kg with is on the beam with its center L/4 from the left end. What do the two scales read? Problem number 74 A beam of length 12 m is supported by a cable and a hinge. The tension in the cable is 400 N. The beam is 50 0 from the vertical. What is the gravitational force on the beam and what is the force that the hinge exerts on the beam?
10 Indeterminate structures We will solve problems in 2D by using a system of 3 equations and 3 unknowns. Two of the equations come from the sum of the forces and the third comes from taking the torque about a point. Sometimes there are more than 3 unknowns. Theses problems are indeterminate.
11 Elasticity Rigid bodies are made up of a 3D lattice of atoms. The atoms are held together by interatomic forces that can be modeled as tiny springs.. When forces act to stretch, compress, or twist a rigid object, the springs that connect the atom are deformed. Just like springs, if you deform an objet too much you can permanently deform or break the object.
12 Book gives example of hanging cars from a steel rod. Hang a 1 m long, 1 cm diameter steel rod from ceiling. Attach a small car to one end. The rod will stretch about 0.5 mm or 0.05 %. When you remove the car, the rod will return to its original length. Hang two small cars. The rod will stretch about 1 mm but will not return to its original length after removing the car. Hang 3 small cars. The rod will stretch less than 2 mm but will then break.
13 3 ways to deform a solid Elasticity in length (tension and compression) Elasticity in shape (shearing) Elasticity in volume (hydraulic stress)
14 Pressure Pressure is force per area. SI unit for pressure is the Pascal. 1 Pa = 1N/m 2
15 Definitions Stress is the force per unit area causing a deformation. (Stress acts like pressure) Strain is a measure of the amount of the deformation. The stress will be proportional to the strain. stress = elastic modulus X strain Similar to Hooke s Law for springs F = k x
16 Young s Modulus Elasticity in length Take a long rod. Internal forces keep the rod together. Pull on the rod a bit. Internal forces resist the force of the pull. So even if the rod is stretched a tiny bit, the bar is in equilibrium. The internal forces balance out the external force. The rod is stressed. This is an example of tensile stress.
17 Tensile Strain tensile strain = ratio of the change in length ( L) to the original length (L 0 ). stress = modulus x strain F A E L L 0 F = k L E = Young s Modulus k = AE/L 0 E describes how easy it is for a solid to be stretched. Big E = Hard to stretch Steel: E = 20 x PA Small E = Easier to stretch Rubber: E = 0.1x10 7 Pa Table with some values on page 317
18 Yield strength the stress needed to be produced to permanently deform the object. Ultimate strength if the stress reached this amount, the object will rupture. Stress (F/A) Ultimate strength Yield strength rupture Range of permanent deformation Linear (elastic) range Important examples: 1) steel rod example 2) tendons and ligaments Strain( L/L)
19 Shear Modulus Elasticity in shape. See figure 1211b on page 316 Example: shearing a book Shear strain = x/h, where x is the horizontal distance the shear force moves, and h is the height of the object. shear stress = F A G = shear modulus G x h
20 Again we can make the analogy to Hooke s Law. F = (A G/h) x = k x k = (A G/h) Big G = difficult to bend Small G = easy to bend
21 Bulk Modulus volume elasticity (hydraulic stress) relates to the response of an object to uniform squeezing. A uniform squeezing could be produced by burying or submerging an object. The hydraulic stress, p, is defined as the ratio of the magnitude of the change in the applied Force F to the surface area A. volume strain = V/V p = B V/V
22 Note: I m use to seeing the equation for hydraulic stress with a negative and written like this.) This book takes the absolute value of V/V P = B V/V Notice the minus sign. If V is negative P is positive. If you squeeze an object, the pressure increases. B = bulk modulus. Tells how easy it is to compress an object. The reciprocal of B is defined as the compressibility ( ). B = 1/ Small B easy to compress Big easy to compress
23 Problems: 6, 10, 24, 50
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationSolid Mechanics. Stress. What you ll learn: Motivation
Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More information10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationExam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationTorsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationOUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1  HYDROSTATICS
Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1  HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters
More informationModeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationStress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationSOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
More informationNonlinear analysis and formfinding in GSA Training Course
Nonlinear analysis and formfinding in GSA Training Course Nonlinear analysis and formfinding in GSA 1 of 47 Oasys Ltd Nonlinear analysis and formfinding in GSA 2 of 47 Using the GSA GsRelax Solver
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More informationAP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.
1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the actionreaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies
More informationModern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module  2 Lecture  2 Part 2 of 2 Review of Atomic Bonding II We will continue
More information4.2 Free Body Diagrams
CE297FA09Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More informationAnswer, Key { Homework 6 { Rubin H Landau 1 This printout should have 24 questions. Check that it is complete before leaving the printer. Also, multiplechoice questions may continue on the next column
More information( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
More informationBending, Forming and Flexing Printed Circuits
Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationREHAB 442: Advanced Kinesiology and Biomechanics INTRODUCTION  TERMS & CONCEPTS
Rehab 442: Introduction  Page 1 REHAB 442: Advanced Kinesiology and Biomechanics INTRODUCTION  TERMS & CONCEPTS Readings: Norkin & Levangie, Chapters 1 & 2 or Oatis, Ch. 1 & 2 (don't get too bogged down
More informationexplain your reasoning
I. A mechanical device shakes a ballspring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive xdirection. +x a) The ball, of mass M,
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationP211 Midterm 2 Spring 2004 Form D
1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m
More informationPrecision Miniature Load Cell. Models 8431, 8432 with Overload Protection
w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force
More informationRheological Properties of Topical Formulations
Rheological Properties of Topical Formulations Hemi Nae, PhD Hydan Technologies, Inc. Key Words Complex Modulus, Creep/Recovery, Dilatant Flow, Dynamic Viscosity, Flow, Flow Curve, Flow Models, Frequency
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationStatics problem solving strategies, hints and tricks
Statics problem solving strategies, hints and tricks Contents 1 Solving a problem in 7 steps 3 1.1 To read.............................................. 3 1.2 To draw..............................................
More informationB.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN
No. of Printed Pages : 7 BAS01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O TermEnd Examination December, 2011 BAS010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationChapter 9. particle is increased.
Chapter 9 9. Figure 936 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
More informationStructural Analysis  II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture  02
Structural Analysis  II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture  02 Good morning. Today is the second lecture in the series of lectures on structural
More informationChapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics
Chapter 1: Statics 1. The subject of mechanics deals with what happens to a body when is / are applied to it. A) magnetic field B) heat C ) forces D) neutrons E) lasers 2. still remains the basis of most
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationHomework 9. Problems: 12.31, 12.32, 14.4, 14.21
Homework 9 Problems: 1.31, 1.3, 14.4, 14.1 Problem 1.31 Assume that if the shear stress exceeds about 4 10 N/m steel ruptures. Determine the shearing force necessary (a) to shear a steel bolt 1.00 cm in
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationStatically Indeterminate Structure. : More unknowns than equations: Statically Indeterminate
Statically Indeterminate Structure : More unknowns than equations: Statically Indeterminate 1 Plane Truss :: Determinacy No. of unknown reactions = 3 No. of equilibrium equations = 3 : Statically Determinate
More informationbi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
More informationLecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More informationCourse in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
More informationEVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised for ACCESS TO APPRENTICESHIP
EVALUAT ING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING for ACCESS TO APPRENTICESHIP SCIENCE SKILLS SIMPLE MACHINES & MECHANICAL ADVANTAGE AN ACADEMIC SKILLS MANUAL for The Construction Trades: Mechanical
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationRear Impact Guard TEST METHOD 223. Standards and Regulations Division. Issued: December 2003
Transport Canada Safety and Security Road Safety Transports Canada Sécurité et sûreté Sécurité routière Standards and Regulations Division TEST METHOD 223 Rear Impact Guard Issued: December 2003 Standards
More information30 minutes in class, 2 hours to make the first time
Asking questions and defining problems Developing and using models Planning and carrying out investigations 30 minutes in class, 2 hours to make the first time 3 12 x 24 x ¾ inch plywood boards 1 x 12
More informationKinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.
1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall
More informationLecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli
Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the
More informationMETU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B306) INTRODUCTION TENSION TEST Mechanical testing
More informationFluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
More informationProblem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani
Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length
More informationNotes on Elastic and Inelastic Collisions
Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just
More information2.5 Physicallybased Animation
2.5 Physicallybased Animation 320491: Advanced Graphics  Chapter 2 74 Physicallybased animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationMotion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.
Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in
More informationProfessor Alan Hedge, Cornell University, August 2013
Lifting and Back Stress DEA3250/6510 Professor Alan Hedge Low Back Pain Low back pain occurs in 80% of adults at some point in their lives Low back pain is second only to upper respiratory infections as
More informationSolving Newton s Second Law Problems
Solving ewton s Second Law Problems Michael Fowler, Phys 142E Lec 8 Feb 5, 2009 Zero Acceleration Problems: Forces Add to Zero he Law is F ma : the acceleration o a given body is given by the net orce
More informationFigure 2.31. CPT Equipment
Soil tests (1) Insitu test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1C3
More informationNUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY
NUMERICAL MODELLING OF PIEZOCONE PENETRATION IN CLAY Ilaria Giusti University of Pisa ilaria.giusti@for.unipi.it Andrew J. Whittle Massachusetts Institute of Technology ajwhittl@mit.edu Abstract This paper
More informationProblem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
More informationDEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR VIBRATION CONTROL OF STRUCTURES
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 16, 2004 Paper No. 2243 DEVELOPMENT AND APPLICATIONS OF TUNED/HYBRID MASS DAMPERS USING MULTISTAGE RUBBER BEARINGS FOR
More informationChapter 13  Solutions
= Chapter 13  Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a parttime job you are asked to bring a cylindrical iron rod
More informationAP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationLABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
More informationBiomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland
Biomechanical Analysis of the Deadlift (aka Spinal Mechanics for Lifters) Tony Leyland Mechanical terminology The three directions in which forces are applied to human tissues are compression, tension,
More informationUsing mechanical energy for daily
unit 3 Using mechanical energy for daily activities Physics Chapter 3 Using mechanical energy for daily activities Competency Uses mechanical energy for daytoday activities Competency level 3.1 Investigates
More informationMidterm Exam 1 October 2, 2012
Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should
More informationUniversity Physics 226N/231N Old Dominion University. Getting Loopy and Friction
University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012odu Friday, September 28 2012 Happy
More informationLongitudinal and lateral dynamics
Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic
More informationSimulation of 9C461125A_DRUMWHEEL BRAKE  410 MM DIA
Simulation of 9C461125A_DRUMWHEEL BRAKE  410 MM DIA Date: 21 Mayıs 2012 Pazartesi Designer: Solidworks Study name: Study 1 Analysis type: Frequency Description No Data Table of Contents Description...
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationActivity 2.3b Engineering Problem Solving Answer Key
Activity.3b Engineering roblem Solving Answer Key 1. A force of 00 lbs pushes against a rectangular plate that is 1 ft. by ft. Determine the lb lb pressure in and that the plate exerts on the ground due
More informationANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET
International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, JanFeb 2016, pp. 119130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1
More informationDesign of Bridges. Introduction. 3 rd to 4 th July 2012. Lecture for SPIN Training at the University of Dar es Salaam
Design of Bridges Introduction 3 rd to 4 th July 2012 1 FUNCTION OF A BRIDGE To connect two communities which are separated by streams, river, valley, or gorge, etc. 2 EVOLUTION OF BRIDGES 1. Log Bridge
More informationLECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More information