Practice Test SHM with Answers
|
|
- Joy Doyle
- 4 years ago
- Views:
Transcription
1 Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one correct choice.) A) The period is doubled. B) The angular frequency is doubled. C) The amplitude is doubled. D) The period is reduced to one-half of what it was. E) The angular frequency is reduced to one-half of what it was., D 2) The figure shows a graph of the position x as a function of time t for a system undergoing simple harmonic motion. Which one of the following graphs represents the velocity of this system as a function of time? A) graph a B) graph b C) graph c D) graph d 3) In simple harmonic motion, when is the magnitude of the acceleration the greatest? (There could be more than one correct choice.) A) when the speed is a maximum B) when the displacement is a zero 1
2 C) when the magnitude of the displacement is a maximum D) when the potential energy is a maximum E) when the kinetic energy is a minimum, D, E 4) An object attached to an ideal spring executes simple harmonic motion. If you want to double its total energy, you could A) double the amplitude of vibration. B) double the force constant (spring constant) of the spring. C) double both the amplitude and force constant (spring constant). D) double the mass. E) double both the mass and amplitude of vibration. 5) A mass on a spring undergoes SHM. When the mass passes through the equilibrium position, which of the following statements about it are true? (There could be more than one correct choice.) A) Its acceleration is zero. B) Its speed is zero. C) Its elastic potential energy is zero. D) Its kinetic energy is a maximum. E) Its total mechanical energy is zero., C, D 6) An object is attached to a vertical spring and bobs up and down between points A and B. Where is the object located when its kinetic energy is a minimum? A) at either A or B B) midway between A and B C) one-third of the way between A and B D) one-fourth of the way between A and B E) at none of the above points 7) An object is attached to a vertical spring and bobs up and down between points A and B. Where is the object located when its elastic potential energy is a minimum? A) at either A or B B) midway between A and B C) one-third of the way between A and B D) one-fourth of the way between A and B E) at none of the above points 8) Two simple pendulums, A and B, are each 3.0 m long, and the period of pendulum A is T. Pendulum A is twice as heavy as pendulum B. What is the period of pendulum B? A) T/ B) T C) T 2
3 D) 2T E) T/2 9) Identical balls oscillate with the same period T on Earth. Ball A is attached to an ideal spring and ball B swings back and forth to form a simple pendulum. These systems are now taken to the Moon, where g = 1.6 m/s2, and set into oscillation. Which of the following statements about these systems are true? (There could be more than one correct choice.) A) Both systems will have the same period on the Moon as on Earth. B) On the Moon, ball A will take longer to complete one cycle than ball B. C) On the Moon, ball B will take longer to complete one cycle than ball A. D) On the Moon, ball A will execute more vibrations each minute than ball B. E) On the Moon, ball B will execute more vibrations each minute than ball A., D 10) Grandfather clocks are designed so they can be adjusted by moving the weight at the bottom of the pendulum up or down. Suppose you have a grandfather clock at home that runs fast. Which of the following adjustments of the weight would make it more accurate? (There could be more than one correct choice.) A) Raise the weight. B) Lower the weight. C) Add more mass to the weight. D) Remove some mass from the weight. E) Decrease the amplitude of swing by a small amount. 11) A pendulum of length L is suspended from the ceiling of an elevator. When the elevator is at rest the period of the pendulum is T. How does the period of the pendulum change when the elevator moves downward with constant acceleration? A) The period does not change. B) The period increases. C) The period decreases. D) The period becomes zero. E) The period increases if the upward acceleration is more than g/2 but decreases if the upward acceleration is less than g/2. 12) A pendulum of length L is suspended from the ceiling of an elevator. When the elevator is at rest the period of the pendulum is T. How would the period of the pendulum change if the supporting chain were to break, putting the elevator into freefall? A) The period does not change. B) The period increases slightly. C) The period decreases slightly. D) The period becomes zero. E) The period becomes infinite because the pendulum would not swing. Answer: E 3
4 13) A simple pendulum and a mass oscillating on an ideal spring both have period T in an elevator at rest. If the elevator now moves downward at a uniform 2 m/s, what is true about the periods of these two systems? A) Both periods would remain the same. B) Both periods would increase. C) Both periods would decrease. D) The period of the pendulum would increase but the period of the spring would stay the same. E) The period of the pendulum would decrease but the period of the spring would stay the same. 14) A leaky faucet drips 40 times in What is the frequency of the dripping? A) 1.3 Hz B) 0.75 Hz C) 1.6 Hz D) 0.63 Hz 15) If your heart is beating at 76.0 beats per minute, what is the frequency of your heart's oscillations in hertz? A) 4560 Hz B) 1450 Hz C) 3.98 Hz D) 2.54 Hz E) 1.27 Hz Answer: E 16) If the frequency of a system undergoing simple harmonic motion doubles, by what factor does the maximum value of acceleration change? A) 4 B) 2 C) D) 2/π 17) The position of an air-track cart that is oscillating on a spring is given by the equation x = (12.4 cm) cos[(6.35 s-1)t]. At what value of t after t = 0.00 s is the cart first located at x = 8.47 cm? A) 4.34 s B) s C) s D) 7.39 s E) 7.75 s 18) An object is oscillating on a spring with a period of 4.60 s. At time t = 0.00 s the object has zero speed and is at x = 8.30 cm. What is the acceleration of the object at t = 2.50 s? 4
5 A) 1.33 cm/s2 B) cm/s2 C) 11.5 cm/s2 D) 14.9 cm/s2 E) 0.00 cm/s2 Answer: D 19) If the amplitude of the motion of a simple harmonic oscillator is doubled, by what factor does the maximum speed of the oscillator change? A) 2 B) 4 C) It does not change. D) 1/2 E) 1/4 20) A kg stone is attached to an ideal spring and undergoes simple harmonic oscillations with a period of s. What is the force constant (spring constant) of the spring? A) 2.45 N/m B) 12.1 N/m C) 24.1 N/m D) N/m E) N/m 21) When a kg package is attached to a vertical spring and lowered slowly, the spring stretches 12.0 cm. The package is now displaced from its equilibrium position and undergoes simple harmonic oscillations when released. What is the period of the oscillations? A) s B) s C) s D) s E) 1.44 s 22) A 0.39-kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is The block is pulled from its equilibrium position at x = m to a displacement x = m and is released from rest. The block then executes simple harmonic motion along the horizontal x-axis. When the position of the block is its kinetic energy is closest to A) 0.90 J. B) 0.84 J. C) 0.95 J. D) 1.0 J. E) 1.1 J. 5
6 23) How much mass should be attached to a vertical ideal spring having a spring constant (force constant) of 39.5 N/m so that it will oscillate at 1.00 Hz? A) 39.5 kg B) 2.00 kg C) 1.00 kg D) 1.56 kg E) 6.29 kg 24) A 0.50-kg object is attached to an ideal spring of spring constant (force constant) 20 N/m along a horizontal, frictionless surface. The object oscillates in simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same? A) m B) m C) 0.12 m D) 0.17 m Answer: D 25) A ball vibrates back and forth from the free end of an ideal spring having a force constant (spring constant) of 20 N/m. If the amplitude of this motion is 0.30 m, what is the kinetic energy of the ball when it is 0.30 m from its equilibrium position? A) 0.00 J B) 0.22 J C) 0.45 J D) 0.90 J E) 1.4 J 26) A 34-kg child on an 18-kg swing set swings back and forth through small angles. If the length of the very light supporting cables for the swing is how long does it take for each complete back-and-forth swing? Assume that the child and swing set are very small compared to the length of the cables. A) 4.4 s B) 4.8 s C) 5.3 s D) 5.7 s 27) On the Moon, the acceleration of gravity is g/6. If a pendulum has a period T on Earth, what will its period be on the Moon? A) T B) T/ C) T/6 D) 6T E) T/3 6
7 28) A simple pendulum having a bob of mass M has a period T. If you double M but change nothing else, what would be the new period? A) 2T B) T C) T D) T/ E) T/2 29) A simple pendulum takes 2.00 s to make one compete swing. If we now triple the length, how long will it take for one complete swing? A) 6.00 s B) 3.46 s C) 2.00 s D) 1.15 s E) s 30) An astronaut has landed on Planet N-40 and conducts an experiment to determine the acceleration due to gravity on that planet. She uses a simple pendulum that is m long and measures that 10 complete oscillations 26.0 s. What is the acceleration of gravity on Planet N- 40? A) 4.85 m/s2 B) 1.66 m/s2 C) 3.74 m/s2 D) 2.39 m/s2 E) 9.81 m/s2 Free response 1) If a floating log is seen to bob up and down 15 times in 1.0 min as waves pass by you, what are the frequency and period of the wave? Answer: 0.25 Hz, 4.0 s 2) A sewing machine needle moves in simple harmonic motion with a frequency of 2.5 Hz and an amplitude of 1.27 cm. (a) How long does it take the tip of the needle to move from the highest point to the lowest point in its travel? (b) How long does it take the needle tip to travel a total distance of cm? Answer: (a) 0.20 s (b) 0.90 s 3) A point on the string of a violin moves up and down in simple harmonic motion with an amplitude of 1.24 mm and a frequency of 875 Hz. 7
8 (a) What is the maximum speed of that point in SI units? (b) What is the maximum acceleration of the point in SI units? Answer: (a) 6.82 m/s (b) m/s2 4) A ball is oscillating on an ideal spring with an amplitude of 8.3 cm and a period of 4.6 s. Write an expression for its position, x, as a function of time t, if x is equal to 8.3 cm at t = 0.0 s. Use the cosine function. Answer: x = (8.3 cm) cos[2πt/(4.6 s)] or x = (8.3 cm) cos[(1.4 s-1)t] 5) An object oscillates such that its position x as a function of time t obeys the equation x = (0.222 m) sin(314 s-1 t), where t is in seconds. (a) In one period, what total distance does the object move? (b) What is the frequency of the motion? (c) What is the position of the object when t = 1.00 s? Answer: (a) m (b) 50.0 Hz (c) m 6) When a laboratory sample of unknown mass is placed on a vertical spring-scale having a force constant (spring constant) of 467 N/m, the system obeys the equation y = (4.4 cm) cos(33.3 s-1 t). What is the mass of this laboratory sample? Answer: kg 7) An object of mass 6.8 kg is attached to an ideal spring of force constant (spring constant) 1720 N/m. The object is set into simple harmonic motion, with an initial velocity of and an initial displacement of Calculate the maximum speed the object raches during its motion. Answer: 4.5 m/s 8) A 0.50-kg box is attached to an ideal spring of force constant (spring constant) 20 N/m on a horizontal, frictionless floor. The box oscillates in simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. (a) What is the amplitude of vibration? (b) At what distance from the equilibrium position are the kinetic energy and the potential energy the same? Answer: (a) 0.24 m (b) 0.17 m 9) A 0.50-kg object is attached to an ideal spring of spring constant (force constant) 20 N/m along a horizontal, frictionless surface. The object oscillates in simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. What are (a) the total energy and (b) the amplitude of vibration of the system? Answer: (a) 0.56 J (b) 0.24 m 10) As shown in the figure, a 0.23-kg ball is suspended from a string 6.87 m long and is pulled slightly to the left. As the ball swings through the lowest part of its motion it encounters a spring attached to the wall. The spring pushes against the ball and eventually the ball is returned to its original starting position. Find the time for one complete cycle of this motion if the spring constant (force constant) is (Assume that once the pendulum ball hits the spring there is 8
9 no effect due to the vertical movement of the ball.) Answer: 3.0 s 9
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.
practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes
HOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
Work, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
AP Physics - Chapter 8 Practice Test
AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law
Physics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
Prelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the
11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single
Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
Oscillations: Mass on a Spring and Pendulums
Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Unit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
Review Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003
Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
Sample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
KE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the
Chapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
Physics 101 Hour Exam 3 December 1, 2014
Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep
Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
STUDY PACKAGE. Available Online : www.mathsbysuhag.com
fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth
Conceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
EXPERIMENT 2 Measurement of g: Use of a simple pendulum
EXPERIMENT 2 Measurement of g: Use of a simple pendulum OBJECTIVE: To measure the acceleration due to gravity using a simple pendulum. Textbook reference: pp10-15 INTRODUCTION: Many things in nature wiggle
Exam 4 Review Questions PHY 2425 - Exam 4
Exam 4 Review Questions PHY 2425 - Exam 4 Section: 12 2 Topic: The Center of Gravity Type: Conceptual 8. After a shell explodes at the top of its trajectory, the center of gravity of the fragments has
Chapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
Review Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2
Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.
Chapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
LAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Simple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
Candidate Number. General Certificate of Education Advanced Level Examination June 2012
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 212 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Monday
5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN
LAB 6 - GRAVITATIONAL AND PASSIVE FORCES
L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013
PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object
Candidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple
Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion
Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)
Mechanical Vibrations
Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Sound and stringed instruments
Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Chapter 9. particle is increased.
Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s
AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital
Physics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
Newton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
Unit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)
Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m.
PS/PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Tuesday, June 22, 2010 9:15 a.m. to 12:15 p.m., only The answers to all questions in this examination
circular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
Candidate Number. General Certificate of Education Advanced Level Examination June 2010
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
PHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed
Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.
Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by
Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE
1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object
WORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of
4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Lesson 3 - Understanding Energy (with a Pendulum)
Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.
PENDULUM PERIODS. First Last. Partners: student1, student2, and student3
PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,
PHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
Vibration Isolation in Data Centers
Vibration Isolation in Data Centers Vibrations in Data Centers Vibrations in Data Centers can be produced by nearby construction works, heavy traffic, railways or even the own cooling units inside or next
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
Fundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
CHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From