Curso Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Size: px
Start display at page:

Download "Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía."

Transcription

1 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2. A body moves with decreasing speed. Which of the following statements is true? A) The net work done on the body is positive, and the kinetic energy is increasing. B) The net work done on the body is positive, and the kinetic energy is decreasing. C) The net work done on the body is zero, and the kinetic energy is decreasing. D) The net work done on the body is negative, and the kinetic energy is increasing. E) The net work done on the body is negative, and the kinetic energy is decreasing. 4. Initially a body moves in one direction and has kinetic energy K. Then it moves in the opposite direction with three times its initial speed. What is the kinetic energy now? A) K B) 3K C) 3K D) 9K E) 9K Section: 6-1 Topic: Work and Kinetic Energy Type: Factual 5. The SI unit of energy can be expressed as A) kg m/s D) kg m s 2 B) kg m/s 2 E) None of these is correct. C) m/(kg s) Section: 6-1 Topic: Work and Kinetic Energy 7. A 6.0-kg block slides from point A down a frictionless curve to point B. After the block passes point B, a friction force opposes the motion of the block so that it comes to a stop 2.5 m from B. Calculate the coefficient of kinetic friction between the block and the surface after position B. A) 2.5 B) 0.40 C) >0.40 D) 0.40 N E) 2.5 N

2 Section: 6-1 Topic: Work and Kinetic Energy 9. The kinetic energy of a car is J. If the car's speed is increased by 20 percent, the kinetic energy of the car becomes A) J B) J C) J D) J E) unknown; the answer depends on the mass of the car, which is not given. Section: 6-1 Topic: Work and Kinetic Energy 10. A bullet with a mass of 12 g moving horizontally strikes a fixed block of wood and penetrates a distance of 5.2 cm. The speed of the bullet just before the collision is 640 m/s. The average force that the wood exerted on the bullet was A) N B) 74 N C) N D) unknown; the mass of the wood is required. E) None of these is correct. 14. The weight of an object on the moon is one-sixth its weight on the earth. A body moving with a given speed on the moon has kinetic energy equal to it would have if it were moving at the same speed on the earth. A) the kinetic energy D) 6 times the kinetic energy B) 1/36 the kinetic energy E) 36 times the kinetic energy C) 1/6 the kinetic energy 15. A force F pushes a block along a horizontal surface against a force of friction F f. If the block undergoes a displacement s at constant velocity, the work done by the resultant force on the block A) is equal to the work done by the force of friction F f. B) is given by W = F s. C) increases the kinetic energy of the block. D) increases the potential energy of the block. E) is zero. 17. A particle moves halfway around a circle of radius R. It is acted on by a radial force of magnitude F. The work done by the radial force is A) zero B) FR C) F R D) 2FR E) 2 R 19. A variable force is represented on an F-versus-x graph. Which of the following is the work done by this force? A) the slope of the curve B) the area bounded by the curve and the x axis C) the area bounded by the curve and the F axis

3 D) the F value multiplied by the x value E) the F value divided by the x value Section: 6-1 Topic: Work and Kinetic Energy 21. A particle that is subjected to a variable force travels a distance of 20 m in a straight line in the same direction as the force. The force varies as follows: First, 5.0 m and F = 0. Next, 5.0 m and F = 3.0 N. Next, 5.0 m and F = 6.0 N. Last, 5.0 m and F decreases uniformly from 6.0 N to zero. 25. What was the total work done by this force during the full 20-m trip? A) 15 J B) 30 J C) 45 J D) 60 J E) 75 J Section: 6-1 Topic: Work and Kinetic Energy 29. In pushing a load, a woman exerts a force as given by the graph. What was the the total work done by the woman? A) 400 J B) 200 J C) 2000 J D) 1000 J E) 500 J Section: 6-1 Status: New to 5th edition Topic: Work and Kinetic Energy Two parents when moving into a new house attempt to pull a large crate down the large hallway, as shown in the figure above. One parent applies a force of magnitude 150 N directed 45 degrees to the direction of motion, while the other parent applies a force of 120 N on the other side of the direction of motion. If they move the crate 15 m and perform work 2.6 kj, at what angle to the direction of motion did the second parent pull on the crate? A) 54 degrees D) 34 degrees B) 30 degrees E) 56 degrees C) 60 degrees Section: 6-1 Status: New to 5th edition Topic: Work and Kinetic Energy Type: Conceptual 33. A vertical light spring stretches a distance h meters when a mass m is hung from it. The spring/mass system is now placed on a horizontal frictionless table and set into oscillation with amplitude h and maximum velocity v. What is the total energy involved in the spring/mass oscillating system. A) ½ kh 2 + ½ mv 2 D) mgh + ½ kh 2 + ½ mv 2

4 B) ½ kh 2 + mgh E) ½ mv 2 C) ½ mv 2 + ½ mgh 2 Section: 6-2 Topic: Work and Energy in Three Dimensions If vector A = 2 î + 3 ĵ and a vector B = 4 î 5 ĵ, the inner product A B is A) 23 B) 7 C) 7 D) 23 E) 17 Section: 6-2 Topic: Work and Energy in Three Dimensions The angle between the vector A = î + 2 ĵ + 3 ˆk and the z axis is approximately A) 17º B) 37º C) 75º D) 58º E) 26º Section: 6-2 Topic: Work and Energy in Three Dimensions A 10-kg object undergoes a displacement s = 6 î 4 ĵ + 2 ˆk. During the displacement, a constant force F = 3 î + 6 ĵ 9 ˆk acts on the object. All values are given in SI units. The work done by the force F on this object is A) 42 J B) 36 J C) 30 J D) 53 J E) 60 J Section: 6-3 Topic: Power Type: Conceptual 50. Consider two engines. The larger is rated at 2 W and the smaller at 1 W. The smaller one can do a certain quantity of work in 2 h. The larger can do twice as much work in a time of A) 30 min B) 1 h C) 2 h D) 4 h E) 1.4 h Section: 6-3 Topic: Power 51. A motor is lifting a mass of 35.0 kg at a constant speed of 6.00 m/s. If friction is neglected, the power developed by the motor to do this lifting is A) 740 W B) W C) W D) 59 W E) 43 W Section: 6-3 Topic: Power 56. A body is acted upon by a force of 10 N and undergoes a displacement in the direction of the force in accordance with the relation s = 3t2 + 2t, where s is the displacement in meters and t is in seconds. The rate at which the force is doing work at the instant t = 2 s is A) 14 W B) 12 W C) 120 W D) 140 W E) 160 W

5 Section: 6-3 Topic: Power 58. A motor develops power as shown in the graph. The energy expended by the motor in the time interval between t = 10 s and t = 30 s is A) 1.0 J B) 1.3 J C) 0.20 kj D) 0.60 kj E) 0.70 kj Section: 6-3 Topic: Power Type: Conceptual 63. A force F acts on a body and produces an acceleration a. The body undergoes a displacement s and attains a velocity v in time t. The instantaneous power being developed at time t is given by A) F v B) F ½ at2 C) F a D) ( F 2 s ) /t2 E) F s Section: 6-3 Status: New to 5th edition Topic: Power 67. If the average power output of a car engine is the same as a 100-W light bulb, how long would it take a 1200-kg car to go from zero to 96 km/h (60 mph)? A) s B) s C) 65 s D) 160 s E) s Section: 6-4 Topic: Potential Energy Type: Conceptual 73. A woman runs up a flight of stairs. The gain in her gravitational potential energy is U. If she runs up the same stairs with twice the speed, what is her gain in potential energy? A) U B) 2U C) ½U D) 4U E) ¼U Section: 6-4 Topic: Potential Energy 78. A 5200-kg cable car in Hong Kong is pulled a distance of 360 m up a hill inclined at 12º from the horizontal. The change in the potential energy of the car is A) J D) J B) J E) J C) J Section: 6-3 Status: New to 5th edition Topic: Power 72. The human heart is essentially a pump for moving blood around the body. If its average power output (over many beats) is about 2.0 W and it pumps blood at an overall average speed of 0.3 m/s into the output aorta channel, calculate the average force with which the heart moves the blood into the aorta. A) 0.60 N B) 6.7 N C) 22 N D) 66 N E) 0.18 N Section: 6-4 Topic: Potential Energy Type: Conceptual 82. When the potential energy U(r) is given as in Figure A, then the force is given in Figure B by curve

6 A) 1 B) 2 C) 3 D) 4 E) 5 Section: 6-4 Status: New to 5th edition Topic: Potential Energy 89. The potential energy function for a conservative force acting in the x direction is shown in the figure on the right. Where would the particle experience a force directed to the right? A) between A & B, and E & F D) at points B and D B) between B & C and C & D E) at points C and E C) between B & C and D & E Type: Conceptual 2. A body falls through the atmosphere (consider air resistance) gaining 20 J of kinetic energy. How much gravitational potential energy did it lose? A) 20 J B) more than 20 J C) less than 20 J D) It is impossible to tell without knowing the mass of the body. E) It is impossible to tell without knowing how far the body falls. Type: Conceptual 3. A projectile of mass m is propelled from ground level with kinetic energy of 450 J. At the exact top of its trajectory, its kinetic energy is 250 J. To what height above the starting point does the projectile rise? 5. A) B) C) D) E) You ride a roller coaster car of mass 1500 kg down a frictionless track a distance H = 23 m above the bottom of a loop as shown. If the loop is 15 m in diameter, the downward force of the rails on your car when it is upside down at the top of the loop is A) N D) 0.98 kn B) N E) N C) N

7 10. A simple pendulum has a bob of mass M. The bob is on a light string of length. The string is fixed at C. At position A, the string is horizontal and the bob is at rest. The bob is released from A and swings to B, where the string is vertical. The tension in the string when the bob first reaches B is 12. A) B) 2Mg C) Mg D) Mg E) None of these is correct. Type: Conceptual A roller coaster starts from rest at point A. If you ignore friction and take the zero of potential energy to be at C, A) the kinetic energy of the coaster at D will be equal to its potential energy at A. B) the kinetic energy of the coaster at E will be equal to its potential energy at C. C) the kinetic energy of the coaster at C will be equal to its potential energy at A. D) the kinetic energy of the coaster at B will be equal to its potential energy at C. E) None of these is correct. Type: Conceptual 15. Assuming the incline to be frictionless and the zero of gravitational potential energy to be at the elevation of the horizontal line, A) the kinetic energy of the block just before it collides with the spring will be equal to mgh. B) the kinetic energy of the block when it has fully compressed the spring will be equal to mgh. C) the kinetic energy of the block when it has fully compressed the spring will be zero. D) the kinetic energy of the block just before it collides with the spring will be ½kx2. E) none of the above statements will be true. Section: 7-2 Topic: The Conservation of Energy Type: Conceptual

8 20. Consider a motion in which a particle goes from A back to A along path 2, as shown. W(AB, 1) = work in going from A B along path 1. W(BA, 2) = work in going from B A along path 2. If only conservative forces are acting, then A) W(AB, 1) > W(BA, 2) D) W(AB, 1) + W(BA, 2) < 0 B) W(AB, 1) < W(BA, 2) E) W(AB, 1) + W(BA, 2) = 0 C) W(AB, 1) + W(BA, 2) > 0 Section: 7-2 Topic: The Conservation of Energy 25. A system comprising two blocks is shown, one of which is on an inclined plane. The pulley is of negligible mass and is frictionless. The system starts from rest at position 1 and accelerates. Measurements taken when the blocks reach position 2 indicate that (1) the kinetic energy of block A has changed by 330 J, (2) the potential energy of block A has changed by 588 J, (3) the kinetic energy of block B has changed by 110 J, and (4) the potential energy of block B has changed by 98 J. The amount of mechanical energy that has been converted to heat because of friction is A) 12 J B) 50 J C) 258 J D) 478 J E) 710 J Section: 7-2 Status: New to 5th edition Topic: The Conservation of Energy 29. A 5-kg blob of putty is dropped from a height of 10.0 m above the ground onto a light vertical spring the top of which is 5 m above the ground. If the spring constant k = 200 N/m and the blob compresses the spring by 1.50 m, then find the amount of energy lost in sound and thermal energy. Una bola de masilla de 5-kg de masa se deja caer desde una altura de 10,0 m (respecto al suelo) sobre un ligero muelle vertical cuya parte superior está 5 m por encima del suelo. Si la constante del muelle es k = 200 N / m, y la bola comprime el resorte 1,50 m, encontrar la cantidad de energía perdida en forma de energía acústica y térmica. A) 20.0 J B) 169 J C) 266 J D) 438 J E) 94.0 J Respuestas (por orden): B D A E B C A A E A B D D E E A B E C C D D A E A C B B A B D C

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 1. A force accelerates a body of mass M. The same force applied to a second body produces three times the acceleration. What is the mass of the

More information

Physics 201 Fall 2009 Exam 2 October 27, 2009

Physics 201 Fall 2009 Exam 2 October 27, 2009 Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Physics Final Exam Free Response Section

Physics Final Exam Free Response Section Physics Final Exam Free Response Section 1. The first 10 meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Physics Energy Bucket Model

Physics Energy Bucket Model Physics Energy Bucket Model I. Overview This document provides an overview of the Energy Bucket problem solving strategy. This tutorial will help you to solve problems involving the Law of Conservation

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

More information

b) Find the speed (in km/h) of the airplane relative to the ground.

b) Find the speed (in km/h) of the airplane relative to the ground. I. An airplane is heading due east and is moving at a speed of 370 km/h relative to the air. The wind is blowing 45.0 degrees north of west at a speed of 93.0 km/h. a) Represent the airplane s and wind

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

AP Physics 1 Fall Semester Review

AP Physics 1 Fall Semester Review AP Physics 1 Fall Semester Review One Dimensional Kinematics 1. Be able to interpret motion diagrams. a. Assuming there are equal time intervals between each picture shown above, which car in the diagram

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Exam 2 Review Questions PHY Exam 2

Exam 2 Review Questions PHY Exam 2 Exam 2 Review Questions PHY 2425 - Exam 2 Section: 4 1 Topic: Newton's First Law: The Law of Inertia Type: Conceptual 1 According to Newton's law of inertia, A) objects moving with an initial speed relative

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled. Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

Physics 201 Homework 5

Physics 201 Homework 5 Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

More information

Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E.

Chapter 6: Energy and Oscillations. 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. Chapter 6: Energy and Oscillations 1. Which of the following is not an energy unit? A. N m B. Joule C. calorie D. watt E. kwh 2. Work is not being done on an object unless the A. net force on the object

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

PHYSICS 111 HOMEWORK#6 SOLUTION. February 22, 2013

PHYSICS 111 HOMEWORK#6 SOLUTION. February 22, 2013 PHYSICS 111 HOMEWORK#6 SOLUTION February 22, 2013 0.1 A block of mass m = 3.20 kg is pushed a distance d = 4.60 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

Spinning Stuff Review

Spinning Stuff Review Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object, as shown in the figure below. When released

More information

2. What magnitude of net force is required to give a 135-kg refrigerator an acceleration of magnitude 1.40 m/. [189 N]

2. What magnitude of net force is required to give a 135-kg refrigerator an acceleration of magnitude 1.40 m/. [189 N] PAGE 1 OF 14 E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I NEWTON S LAWS OF MOTION PRACTICE PROBLEMS 5.1 1. If a net horizontal force of 130 N is applied to a person with mass

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Potential and Kinetic Energy: The Roller Coaster Lab Student Advanced Version

Potential and Kinetic Energy: The Roller Coaster Lab Student Advanced Version Potential and Kinetic Energy: The Roller Coaster Lab Student Advanced Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Lesson 04: Newton s laws of motion

Lesson 04: Newton s laws of motion www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Physics 2048 Final Exam Dr. Jeff Saul Fall 2001

Physics 2048 Final Exam Dr. Jeff Saul Fall 2001 Physics 2048 Final Exam Dr. Jeff Saul Fall 2001 Name: Table: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

56 Chapter 5: FORCE AND MOTION I

56 Chapter 5: FORCE AND MOTION I Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference

More information

Conservation of Energy Workshop. Academic Resource Center

Conservation of Energy Workshop. Academic Resource Center Conservation of Energy Workshop Academic Resource Center Presentation Outline Understanding Concepts Kinetic Energy Gravitational Potential Energy Elastic Potential Energy Example Conceptual Situations

More information

Work, Kinetic Energy and Potential Energy

Work, Kinetic Energy and Potential Energy Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

WORK - ENERGY. Work i = F net s cos(θ) (1.2)

WORK - ENERGY. Work i = F net s cos(θ) (1.2) 1 Object WORK - ENERGY To investigate the work-kinetic energy relationship and conservation of energy. Apparatus Track and associated stops, one dynamics cart, one photogate timer, interface equipment,

More information

SPH4U1 - Energy Problems Set 1

SPH4U1 - Energy Problems Set 1 1 Conceptual Questions 1. You have two springs that are identical except that spring 1 is stiffer than spring 2. On which spring is more work done (a) if they are stretched using the same force, (b) if

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A container explodes and breaks into three fragments that fly off 120 apart from each

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

MOTION IN TWO AND THREE DIMENSIONS

MOTION IN TWO AND THREE DIMENSIONS Chapter 4: MOTION IN TWO AND THREE DIMENSIONS 1 Velocity is defined as: A rate of change of position with time B position divided by time C rate of change of acceleration with time D a speeding up or slowing

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

Physics 100 prac exam2

Physics 100 prac exam2 Physics 100 prac exam2 Student: 1. Earth's gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is B. small but not zero. C. billions and billions

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Q5.1. A. tension T 1 B. tension T 2 C. tension T 3 D. two of the above E. T 1, T 2, and T Pearson Education, Inc.

Q5.1. A. tension T 1 B. tension T 2 C. tension T 3 D. two of the above E. T 1, T 2, and T Pearson Education, Inc. Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram for the engine? A. tension T 1 B. tension T 2 C. tension

More information

Ch 5 Work and Energy. Conceptual Question: 5, 6, 9, 14, 18 Problems:1, 2, 3, 8, 9, 10, 13, 15, 21, 23, 30, 32, 41, 42, 69, 77

Ch 5 Work and Energy. Conceptual Question: 5, 6, 9, 14, 18 Problems:1, 2, 3, 8, 9, 10, 13, 15, 21, 23, 30, 32, 41, 42, 69, 77 Ch 5 Work and Energy Conceptual Question: 5, 6, 9, 14, 18 Problems:1, 2, 3, 8, 9, 10, 13, 15, 21, 23, 30, 32, 41, 42, 69, 77 Work and Energy Work done on an object by a force is: W = F x SI units Joule

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yourself questions Topic. Uniform motion Distance traveled in first.5 h is s = vt = 7.5 = 5 km. Remaining distance is 5 km and must be covered in 5 km. hr so average speed must be v = =

More information

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

More information

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

More information

Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion. Work-Energy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

Rotational Mechanics - 1

Rotational Mechanics - 1 Rotational Mechanics - 1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

Physics Honors Page 1

Physics Honors Page 1 1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12-ounce

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy work-energy theorem How to calculate work done by a varying force along a curved path The meaning and calculation

More information

Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.

Clicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

Explaining Motion:Forces

Explaining Motion:Forces Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A

Linear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A 1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser

More information

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces.

THE NATURE OF FORCES Forces can be divided into two categories: contact forces and non-contact forces. SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems X-planation

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

General Physics I Can Statements

General Physics I Can Statements General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

More information

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition

Chapter 6. Circular Motion, Orbits, and Gravity. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Chapter 6 Circular Motion, Orbits, and Gravity PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 6 Circular Motion, Orbits, and Gravity Slide 6-2 Slide 6-3 Slide 6-4 Slide 6-5

More information

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.

FORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer. FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

More information

1 of 9 10/27/2009 7:46 PM

1 of 9 10/27/2009 7:46 PM 1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]

More information