Modeling Mechanical Systems


 Annabel Wells
 2 years ago
 Views:
Transcription
1 chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584
2 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab Simulation Example Active learning: Pairshare exercises, case study
3 chp3 3 Idealized Modeling Elements
4 chp3 4 Inductive storage Electrical inductance Translational spring Rotational spring Fluid inertia
5 chp3 5 Capacitive Storage Electrical capacitance Translational mass Rotational mass
6 chp3 6 Energy dissipators Electrical resistance Translational damper Rotational damper
7 chp3 7 Springs  Stiffness Element  Stores potential energy x
8 chp3 8 Actual Spring Behavior
9 chp3 9 Spring Connections Spring in series: K EQ =K 1 K 2 /(K 1 +K 2 ) Spring in parallel: K EQ =K 1 +K 2
10 chp3 10 Dampers and Mass
11 chp3 11 Dampers Connections Dampers in series: B EQ =B 1 B 2 /(B 1 +B 2 ) Dampers in parallel: B EQ =B 1 +B 2
12 chp3 12 Modeling Mechanical Systems
13 chp3 13 Modeling Methods State assumptions and their rationales Establish inertial coordinate system Identify and isolate discrete system elements (springs, dampers, masses) Determine the minimum number of variables needed to uniquely define the configuration of system (subtract constraints from number of equations) Free body diagram for each element Write equations relating loading to deformation in system elements Apply Newton s 2 nd Law: F = ma for translation motion T = Iα for rotational motion
14 chp3 14 Example 1: Automobile Shock Absorber Springmassdamper Freebody diagram M 2 d y( t) 2 dt b dy( t) dt ky( t) r( t)
15 chp3 15 Example 2: Mechanical System Draw a free body diagram, showing all forces and their directions Write equation of motion and derive transfer function of response x to input u
16 chp3 16 Example 2: Mechanical System
17 chp3 17 Example 3: TwoMass System Derive the equation of motion for x 2 as a function of F a. The indicated damping is viscous.
18 chp3 Example 3: TwoMass System 18
19 chp3 19 Example 4: ThreeMass System Draw the freebodydiagram for each mass and write the differential equations describing the system
20 chp3 20 Example 4: ThreeMass System
21 chp3 21 Example 5: PairShare Exercise All springs are identical with constant K Spring forces are zero when x 1 =x 2 =x 3 =0 Draw FBDs and write equations of motion Determine the constant elongation of each spring caused by gravitational forces when the masses are stationary in a position of static equilibrium and when f a (t) = 0.
22 chp3 22 Example 5: PairShare Exercise:
23 chp3 23 Example 5: PairShare Exercise:
24 chp3 24 Example 6: PairShare Exercise Assume that the pulley is ideal No mass and no friction No slippage between cable and surface of cylinder (i.e., both move with same velocity) Cable is in tension but does not stretch Draw FBDs and write equations of motion If pulley is not ideal, discuss modeling modifications
25 chp3 25 Example 6: PairShare Exercise Pulley is not ideal Add rotation mass and friction Model the slippage behaviors Add spring to model cable
26 chp3 26 Example 7: Electric Motor An electric motor is attached to a load inertia through a flexible shaft as shown. Develop a model and associated differential equations (in classical and state space forms) describing the motion of the two disks J1 and J2. Torsional stiffness is given in Appendix B
27 chp3 27 Example 7: Electric Motor
28 chp3 28 Example 7: Electric Motor
29 chp3 29 Example 7: Electric Motor
30 chp3 30 Example 8: PairShare Exercise: Copy Machine The device from a copying machine is shown. It moves in a horizontal plane. Develop the dynamic model, assuming that mass of bar is negligible compared to attached mass m 2 and angular motions are small. The mass is subjected to a step input F, find an expression for the displacement of point B after the transient motions have died out.
31 chp3 31 Example 8: PairShare Exercise: Copy Machine
32 chp3 32 Example 9: MassPulley System A mechanical system with a rotating wheel of mass m w (uniform mass distribution). Springs and dampers are connected to wheel using a flexible cable without skip on wheel. Write all the modeling equations for translational and rotational motion, and derive the translational motion of x as a function of input motion u Find expression for natural frequency and damping ratio
33 chp3 33 Example 9: MassPulley System
34 chp3 34 Example 9: MassPulley System
35 chp3 35 Example 9: MassPulley System
36 chp3 36 Example 10: PairShare Exercise: Double Pendulum The disk shown in the figure rolls without slipping on a horizontal plane. Attached to the disk through a frictionless hinge is a massless pendulum of length L that carries another disk. The disk at the bottom of the pendulum cannot rotation relative to the pendulum arm. Draw freebody diagrams and derive equations of motion for this system.
37 chp3 37 Example 10: PairShare Exercise: Double Pendulum
38 chp3 38 Example 10: PairShare Exercise: Double Pendulum
39 chp3 39 Example 10: PairShare Exercise: Double Pendulum
Slide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationphysics 111N rotational motion
physics 111N rotational motion rotations of a rigid body! suppose we have a body which rotates about some axis! we can define its orientation at any moment by an angle, θ (any point P will do) θ P physics
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationPhysics 271, Sections H1 & H2 Thursday, Nov 20, 2014
Physics 271, Sections H1 & H2 Thursday, Nov 20, 2014 Problems #11 Oscillations 1) Consider a mass spring system, with mass M and spring constant k. We put a mass m on top of the mass M. The coefficient
More informationChapter 24 Physical Pendulum
Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationReavis High School Physics Honors Curriculum Snapshot
Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch
More informationAssignment 1: System Modeling
Assignment 1: System Modeling Problem 1. (10 pts.) Consider a biological control system consisting of a human reaching for an object. Below is a list of general block diagram elements (on the left, labeled
More information1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!
1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating
More informationPhysics1 Recitation7
Physics1 Recitation7 Rotation of a Rigid Object About a Fixed Axis 1. The angular position of a point on a wheel is described by. a) Determine angular position, angular speed, and angular acceleration
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics InClass Activities: of a rigid body undergoing rotational motion. Check Homework
More informationPhys 111 Fall P111 Syllabus
Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationPhysics 131: Test/Exam Problems: Rotations
Physics 131: Test/Exam Problems: Rotations 1) A uniform onemeter bar has a mass of 10 kg. One end of the bar is hinged to a building, and the other end is suspended by a cable that makes an angle of 45
More information041. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.
Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationIdeal Cable. Linear Spring  1. Cables, Springs and Pulleys
Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationEquivalent Spring Stiffness
Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent
More informationFriction and Newton s 3rd law
Lecture 4 Friction and Newton s 3rd law Prereading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationChapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationMathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.
Chapter 3 Mechanical Systems Dr. A.Aziz. Bazoune 3.1 INTRODUCTION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENTS Any mechanical
More informationPhysics1 Recitation3
Physics1 Recitation3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationEQUILIBRIUM AND ELASTICITY
Chapter 12: EQUILIBRIUM AND ELASTICITY 1 A net torque applied to a rigid object always tends to produce: A linear acceleration B rotational equilibrium C angular acceleration D rotational inertia E none
More informationLABORATORY 9. Simple Harmonic Motion
LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the massspring system and the simple pendulum. For the massspring system we
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationPhysics 101 Exam 1 NAME 2/7
Physics 101 Exam 1 NAME 2/7 1 In the situation below, a person pulls a string attached to block A, which is in turn attached to another, heavier block B via a second string (a) Which block has the larger
More informationA B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product
More informationUnit  6 Vibrations of Two Degree of Freedom Systems
Unit  6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationChapter 17 Planar Kinetics of a Rigid Body: Force and Acceleration
Chapter 17 Planar Kinetics of a Rigid Body: Force and Acceleration 17.1 Moment of Inertia I 2 2 = r dm, 單位 : kg m 或 slug m ft 2 M = Iα resistance to angular acceleration dm = ρdv I = ρ V r 2 dv 172 MOMENT
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationVirtual Work. Scissor Lift Platform
Method of Virtual Work  Previous methods (FBD, F, M) are generally employed for a body whose equilibrium position is known or specified  For problems in which bodies are composed of interconnected members
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationME 563 MECHANICAL VIBRATIONS
ME 563 MECHANICAL VIBRATIONS Fall 2010 Potter MWF 4:30 p.m.5:20 p.m. Instructor: Prof. D. E. Adams Room: ME 361 Email: deadams@purdue.edu Phone: 4966033 11 1 Introduction to Mechanical Vibrations 1.1
More informationMeEn 335: System Dynamics. Brian D. Jensen Timothy W. McLain Brigham Young University
MeEn 335: System Dynamics Brian D. Jensen Timothy W. McLain Brigham Young University ii Contents 1 Dynamic Systems and System Similarity 1 1.1 Static vs. Dynamic Systems............................. 1
More informationAP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationLesson 04: Newton s laws of motion
www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.
More informationCTSE2. A door is pushed on by two forces, a smaller force at the door knob AND a larger force nearer the hinge as shown. The door does not move.
Page 1 of 6 Static Equilibrium Concept Tests CTSE1. A mass m is hung from a clothesline stretched between two poles as shown. As a result, the clothesline sags very slightly as shown. The tension T in
More informationNewton s Laws of Motion
Newton s Laws of Motion FIZ101E Kazım Yavuz Ekşi My contact details: Name: Kazım Yavuz Ekşi Email: eksi@itu.edu.tr Notice: Only emails from your ITU account are responded. Office hour: Wednesday 10.0012.00
More informationPage 1 of 10. Answer: 1 rad = 57.3 o
Page 1 of 10 CTot1. How many degrees in 1 radian? A) 1 rad = 2 degrees B) 1 rad = 180 o C) 1 rad = 10 o D) 1 rad = 57.3 o E) adian is not a measure of angle, so the question makes no sense. Answer: 1
More informationROLLING, TORQUE, AND ANGULAR MOMENTUM
Chapter 11: ROLLING, TORQUE, AND ANGULAR MOMENTUM 1 A wheel rolls without sliding along a horizontal road as shown The velocity of the center of the wheel is represented by! Point P is painted on the rim
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationSpinning Stuff Review
Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50kg object, as shown in the figure below. When released
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More information1 of 7 10/2/2009 1:13 PM
1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationRotation, Angular Momentum
This test covers rotational motion, rotational kinematics, rotational energy, moments of inertia, torque, crossproducts, angular momentum and conservation of angular momentum, with some problems requiring
More informationRotation, Rolling, Torque, Angular Momentum
Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 101 Rotational Variables! The motion of rotation! The same
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics of a rigid body undergoing rotational motion. InClass Activities: Applications
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationLectureIII. KineticsNewton s laws of motion A recapitulation
LectureIII KineticsNewton s laws of motion A recapitulation A few definitions: Kinetics:studyofmotionofaparticleunderaforcefield. Motion: Change of relative position of a particle in space in course
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPhysics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationPeriodic Motion or Oscillations. Physics 232 Lecture 01 1
Periodic Motion or Oscillations Physics 3 Lecture 01 1 Periodic Motion Periodic Motion is motion that repeats about a point of stable equilibrium Stable Equilibrium Unstable Equilibrium A necessary requirement
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationOnline Courses for High School Students 18889726237
Online Courses for High School Students 18889726237 PHYSICS Course Description: This course provides a comprehensive survey of all key areas: physical systems, measurement, kinematics, dynamics, momentum,
More informationLinear and Rotational Kinematics
Linear and Rotational Kinematics Starting from rest, a disk takes 10 revolutions to reach an angular velocity. If the angular acceleration is constant throughout, how many additional revolutions are required
More informationHooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UWMadison 1
Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UWMadison 1 relaxed position F X = kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X =  kx < 0 x 12/9/09 Physics 201, UWMadison 2 We know
More information(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
More informationCHAPTER 3 NEWTON S LAWS OF MOTION
CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationf max s = µ s N (5.1)
Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the
More informationRELATIVE MOTION ANALYSIS: VELOCITY
RELATIVE MOTION ANALYSIS: VELOCITY Today s Objectives: Students will be able to: 1. Describe the velocity of a rigid body in terms of translation and rotation components. 2. Perform a relativemotion velocity
More informationENGR1100 Introduction to Engineering Analysis. Lecture 13
ENGR1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREEBODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a freebody
More informationUnderstanding Dancer Tension Control Systems
Understanding Dancer Tension Control Systems Presented by: Darrell Whiteside Director SalesTension Control MAGPOWR System Types Manual systems Automatic systems» Open loop» Closed loop 2 Load Cell System
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationThis page intentionally left blank
This page intentionally left blank Vibration of Mechanical Systems This is a textbook for a first course in mechanical vibrations. There are many books in this area that try to include everything, thus
More informationSprings and Dampers. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 2 Fall 2011
MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 2 Fall 2011 Spring Law : One End Fixed Ideal linear spring law: f = kx. What are the units of k? More generally: f = F(x) nonlinear
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationVersion PREVIEW Practice 8 carroll (11108) 1
Version PREVIEW Practice 8 carroll 11108 1 This printout should have 12 questions. Multiplechoice questions may continue on the net column or page find all choices before answering. Inertia of Solids
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More information