Physics 41 HW Set 1 Chapter 15


 Kristopher Welch
 7 years ago
 Views:
Transcription
1 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 P4 In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x = (5.00 cm) cos(t + /6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, its velocity, and (c) its acceleration. (d) Find the period and amplitude of the motion. (a) x 5.00 cm cos t 6 t, x At cm cos 4. cm 6 dx 0.0 cm s sin t dt 6 v dv (c) a (d) 0.0 cm s cos t dt 6 A 5.00 cm and At t 0, v 5.00 cm s At t 0, a 7. cm s T.4 s
2 P 5 The position of a particle is given by the expression x = (4.00 m) cos(.00 t + ), where x is in meters and t is in seconds. Determine (a) the frequency and period of the motion, the amplitude of the motion, (c) the phase constant, and (d) the position of the particle at t = 0.50 s. x 4.00 m cos.00 t Compare this with x A cos t to find (a) f.00 or f.50 H z T f s (c) A 4.00 m rad (d) xt 0.50 s 4.00 m cos.75.8 m P8. A simple harmonic oscillator takes.0 s to undergo five complete vibrations. Find (a) the period of its motion, the frequency in hertz, and (c) the angular frequency in radians per second. (a).0 s T 5.40 s f T Hz (c) f rad s P8. A 00g block is attached to a horizontal spring and executes simple harmonic motion with a period of 0.50 s. If the total energy of the system is.00 J, find (a) the force constant of the spring and the amplitude of the motion. m 00 g, T 0.50 s, E.00 J; 5. rad s T 0.50 (a) k m 0.00 kg 5. rad s 6 N m ka E E A.00 k m
3 P0. A.00kg object is attached to a spring and placed on a horizontal, smooth surface. A horizontal force of 0.0 N is required to hold the object at rest when it is pulled 0.00 m from its equilibrium position (the origin of the x axis). The object is now released from rest with an initial position of xi = 0.00 m, and it subsequently undergoes simple harmonic oscillations. Find (a) the force constant of the spring, the frequency of the oscillations, and (c) the maximum speed of the object. Where does this maximum speed occur? (d) Find the maximum acceleration of the object. Where does it occur? (e) Find the total energy of the oscillating system. Find (f) the speed and (g) the acceleration of the object when its position is equal to one third of the maximum value. F 0.0 N (a) k 00 N m x 0.00 m k 50.0 rad s so f. H z m (c) v A m ax m s at x 0 (d) a A m ax m s at x A E ka J (e) 8 (f) (g) v A x m s a x m s P9 A physical pendulum in the form of a planar body moves in simple harmonic motion with a frequency of Hz. If the pendulum has a mass of.0 kg and the pivot is located 0.50 m from the center of mass, determine the moment of inertia of the pendulum about the pivot point. T ; f f H z, d 0.50 m, and m.0 kg I T ; m gd T 4 I m gd m gd m gd kg m I T 4 f s FIG. P5.5
4 P A simple pendulum has a mass of 0.50 kg and a length of.00 m. It is displaced through an angle of 5.0 and then released. What are (a) the maximum speed, the maximum angular acceleration, and (c) the maximum restoring force? What If? Solve this problem by using the simple harmonic motion model for the motion of the pendulum, and then solve the problem more precisely by using more general principles. Using the simple harmonic motion model: A r m m 80 g 9.8 m s. rad s L m FIG. P5. (a) vm ax A 0.6 m. s 0.80 m s am ax A 0.6 m. s.57 m s (c) atan r atan.57 m s r m F m a 0.5 kg.57 m s 0.64 N.57 rad s More precisely, (a) m gh m v and hl cos vm ax gl cos 0.87 m s I m gl sin m gl sin g sin i ml L m ax.54 rad s (c) Fm ax m gsin i sin N
5 4. A very light rigid rod with a length of m extends straight out from one end of a meter stick. The stick is suspended from a pivot at the far end of the rod and is set into oscillation. (a) Determine the period of oscillation. Suggestion: Use the parallelaxis theorem from Section 0.5. By what percentage does the period differ from the period of a simple pendulum.00 m long? 4. A.00kg object attached to a spring moves without friction and is driven by an external force F = (.00 N) sin( t). If the force constant of the spring is 0.0 N/m, determine (a) the period and the amplitude of the motion.
6 9. An 0.6kg object oscillates at the end of a vertical spring which has a spring constant of N/m. The effect of air resistance is represented by the damping coefficient b =.00 N s/m. (a) Calculate the frequency of the damped oscillation. By what percentage does the amplitude of the oscillation decrease in each cycle? (c) Find the time interval that elapses while the energy of the system drops to 5.00% of its initial value.
7 P 5A small ball of mass M is attached to the end of a uniform rod of equal mass M and length L that is pivoted at the top (Fig. P5.5). (a) Determine the tensions in the rod at the pivot and at the point P when the system is stationary. Calculate the period of oscillation for small displacements from equilibrium, and determine this period for L =.00 m. (Suggestions: Model the object at the end of the rod as a particle and use Eq. 5.8.) Let F represent the tension in the rod. (a) At the pivot, F M g M g M g y A fraction of the rod s weight Mg L as well as the weight of the ball pulls down on point P. Thus, the tension in the rod at point P is y y F M g M g M g L L. 4 Relative to the pivot, I Irod Iball M L M L M L pivot P L y M FIG. P5.5 I For the physical pendulum, T where m M and d is the distance from the pivot m gd to the center of mass of the rod and ball combination. Therefore, For L.00 m, L M M L 4 L ML 4 L d and T. M M 4 L M g g 4.00 m T.68 s m s 4
8
9 Discussion Problems:, 57, 59, 67, 74. Consider the physical pendulum of Figure 5.8. (a) If its moment of inertia about an axis passing through its center of mass and parallel to the axis passing through its pivot point is T I CM md mgd ICM, show that its period is where d is the distance between the pivot point and center of mass. Show that the period has a minimum value when d satisfies md = ICM.
10 5.57 A horizontal plank of mass m and length L is pivoted at one end. The plank s other end is supported by a spring of force constant k. The plank is displaced by a small angle from its horizontal equilibrium position and released. (a) Show that it moves with simple harmonic motion with an angular frequency = k/m. Evaluate the frequency if the mass is 5.00 kg and the spring has a force constant of 00 N/m. P5.57 (a) The problem tells us that the plank and spring are at equilibrium when the plank is horizontal. Then: L mg 0 mg kx0l x0 k where x 0 is the equilibrium compression distance from the unstretched spring. The plank is then displaced upwards by a small angle, a distance: Lsin above equilibrium. The system will oscillate about the equilibrium position with an amplitude: x Lsin x0. Both the plank and the spring produce clockwise and negative torques: L L mg cos cos cos sin 0 cos kxl mg k L x L L mg mg cos k Lsin Lcos k L L mg cos mg cos kl sin cos k L mg where we substituted x0 and used the small angle approximations cos, sin. k Using the parallel axis thm for the plank rotated about the pivot we get: Combining we derive: Rearranging: d I ml k L. dt d k. dt m I ml,. The angular acceleration is opposite in direction and proportional to the displacement, so we have simple harmonic motion with make sense? k m. Notice how the torque due to the plank canceled out!! Why does this k 00 N m f m 5.00 kg. H z
11 59.Review problem. A particle of mass 4.00 kg is attached to a spring with a force constant of 00 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of.00 m. A 6.00kg object is dropped vertically on top of the 4.00kg object as it passes through its equilibrium point. The two objects stick together. (a) By how much does the amplitude of the vibrating system change as a result of the collision? By how much does the period change? (c) By how much does the energy change? (d) Account for the change in energy. As it passes through equilibrium, the 4kg object has speed k 00 N m vm ax A A m 0.0 m s. m 4 kg In the completely inelastic collision momentum of the twoobject system is conserved. So the new 0kg object starts its oscillation with speed given by m ax vm ax 4 kg 0 m s 6 kg 0 0 kg v 4.00 m s (a) The new amplitude is given by m v m ax ka 0 kg 4 m s 00 N m A.6 m A Thus the amplitude has decreased by.00 m.6 m 0.75 m The old period was The new period is m 4 kg T.6 s k 00 N m 0 T s.99 s 00 The period has increased by.99 m.6 m 0.70 s mv 4 kg 0 m s 00 J m ax (c) The old energy was 0 kg 4 m s 80 J The new mechanical energy is The energy has decreased by 0 J. (d) The missing mechanical energy has turned into internal energy in the completely inelastic collision.
12 P.67 A block of mass m is connected to two springs of force constants k and k as shown In each case, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T m k k k k T m k k When the mass is displaced a distance x from equilibrium, spring is stretched a distance x and spring is stretched a distance x. By Newton s third law, we expect kx kx. When this is combined with the requirement that x x x, we find The force on either spring is given by where a is the acceleration of the mass m. k x x k k kk F x ma k k This is in the form and F keff x ma m m k k T k k k eff In this case each spring is distorted by the distance x which the mass is displaced. Therefore, the restoring force is F k k x and keff k k so that T m k k
13 74. Review problem. Imagine that a hole is drilled through the center of the Earth to the other side. An object of mass m at a distance r from the center of the Earth is pulled toward the center of the Earth only by the mass within the sphere of radius r. (a) Write Newton's law of gravitation for an object at the distance r from the center of the Earth, and show that the force on it is of Hooke's law form, F = kr, where the effective force constant is k = (4/) Gm. Here is the density of the Earth, assumed uniform, and G is the gravitational constant. Show that a sack of mail dropped into the hole will execute simple harmonic motion if it moves without friction. When will it arrive at the other side of the Earth? (a) Newton s law of universal gravitation is Thus, Which is of Hooke s law form with GM m Gm 4 F r r r 4 F Gm r 4 k Gm The sack of mail moves without friction according to 4 Gm rm a 4 a Gr r Since acceleration is a negative constant times excursion from equilibrium, it executes SHM with 4G and period T G The time for a oneway trip through the earth is We have also T 4G e e e Re GM G 4 R 4 g GR R e so 4G g and Re R e 6 T m.5 0 s 4. m in. g 9.8 m s Recall from physics 40 Chapter that the period of an object in orbit around the Earth at the surface is twice this 84 minutes and the orbital velocity is 7.9 km/s.
AP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationSimple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationPh\sics 2210 Fall 2012  Novcmbcr 21 David Ailion
Ph\sics 2210 Fall 2012  Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationHOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
More informationNotice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
More informationPhysics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationHOOKE S LAW AND OSCILLATIONS
9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a springmass oscillator. INTRODUCTION The force which restores a spring to its equilibrium
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationTorque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
More informationSTUDY PACKAGE. Available Online : www.mathsbysuhag.com
fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth
More informationProblem Set #13 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.0L: Physics I January 3, 06 Prof. Alan Guth Problem Set #3 Solutions Due by :00 am on Friday, January in the bins at the intersection of Buildings
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More informationUnit  6 Vibrations of Two Degree of Freedom Systems
Unit  6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
More informationTOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:
RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of
More informationUnit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
More information1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.
practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationboth double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
More informationProblem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani
Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITSPilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationSOLUTIONS TO CONCEPTS CHAPTER 15
SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative xaxis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationCambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More information(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)
Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following
More informationProblem Set 5 Work and Kinetic Energy Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationProblem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationELASTIC FORCES and HOOKE S LAW
PHYS101 LAB03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationSo if ω 0 increases 3fold, the stopping angle increases 3 2 = 9fold.
Name: MULTIPLE CHOICE: Questions 111 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,
More informationKinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.
1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationAnswer, Key { Homework 6 { Rubin H Landau 1 This printout should have 24 questions. Check that it is complete before leaving the printer. Also, multiplechoice questions may continue on the next column
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationExercises on Oscillations and Waves
Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationNewton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationSolution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
More informationExperiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationOscillations: Mass on a Spring and Pendulums
Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationRotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationChapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.
Chapter 9 9.2 Figure 937 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationChapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationSlide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More information