9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J


 Robyn Dalton
 8 months ago
 Views:
Transcription
1 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9 and 10 on the diagram below which shows a 20newton force pulling an object up a hill at a constant rate of 2 meters per second. 2. If the kinetic energy of a 10kilogram object is 2,000 joules, its velocity is (1) 10 meters/sec. (3) 100 meters/sec. (2) 20 meters/sec. (4) 400 meters/sec. Base your answers to questions 3 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 3. What is the change in the kinetic energy of the mass as it moves from point M to point N? (1) 24 J (3) 6 J (2) 18 J (4) 0 J 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 10. The work done against gravity in moving the object from point A to point B is approximately (1) 100 J (3) 500 J (2) 200 J (4) 600 J 11. Which cart shown below has the greatest kinetic energy? 4. If the 3.0kilogram mass were raised 4 meters from the surface, its gravitational potential energy would increase by approximately (1) 120 J (3) 30 J (2) 40 J (4) 12 J 5. If energy is supplied at the rate of 10 watts, how much work is done during 2 seconds? (1) 20 J (3) 10 J (2) 15 J (4) 5 J (1) (3) 6. If the velocity of a moving object is doubled, the object's kinetic energy is (1) unchanged (3) doubled (2) halved (4) quadrupled 7. When the speed of an object is halved, its kinetic energy is (1) quartered (3) the same (2) halved (4) doubled 8. The kinetic energy of a 980kilogram race car traveling at 90. meters per second is approximately (1) J (2) J (3) J (4) J (2) 12. A 1.0kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy of the ball before it hits the wall, the kinetic energy of the ball after it bounces off the wall is (1) onefourth as great (3) the same (2) onehalf as great (4) four times as great 13. As a bullet shot vertically upward rises, the kinetic energy of the bullet 14. As a ball falls freely toward the earth, its kinetic energy (4)
2 15. Which graph best represents the relationship between the kinetic energy, KE, and the velocity of an object accelerating in a straight line? 20. Base your answer to the following question on the diagram below which represents a flat racetrack as viewed from above, with the radii of its two curves indicated. A car with a mass of 1,000 kilograms moves counterclockwise around the track at a constant speed of 20 meters per second. (1) (3) (2) Base your answers to questions 16 and 17 on the diagram below that shows an object at A that moves over a frictionless surface from A to E. The object has a mass of M. (4) Compared to the kinetic energy of the car while moving from A to D, the kinetic energy of the car while moving from D to C is (1) less (3) the same (2) greater 21. The diagram below shows block A, having mass 2m and speed v, and block B having mass m and speed 2v. 16. The object's kinetic energy at point C is less than its kinetic energy at point (1) A (3) D (2) B (4) E Compared to the kinetic energy of block A, the kinetic energy of block B is (1) the same (3) onehalf as great (2) twice as great (4) four times as great 22. In the accompanying diagram, a 1.0kilogram sphere at point A has a potential energy of 5.0 joules. 17. As the object moves from point A to point D, the sum of its gravitational potential and kinetic energies (1) decreases, only (2) decreases and then increases (3) increases and then decreases (4) remains the same 18. As an object moves upward at a constant speed, its kinetic energy 19. If the direction of a moving car changes and its speed remains constant, which quantity must remain the same? (1) velocity (3) displacement (2) momentum (4) kinetic energy What is the potential energy of the sphere at point B, halfway down the incline? (1) 0.0 J (3) 3.0 J (2) 2.5 J (4) 5.0 J 23. A 20.newton block falls freely from rest from a point 3.0 meters above the surface of the Earth. With respect to the surface of the Earth, what is the gravitational potential energy of the blockearth system after the block has fallen 1.5 meters? (1) 20. J (3) 60. J (2) 30. J (4) 120 J
3 Base your answers to questions 24 and 25 on the diagram below which shows a cart held motionless by an external force F on a frictionless incline. Base your answers to questions 29 and 30 on the diagram below which represents a simple pendulum with a 2.0kilogram bob and a length of 10. meters. The pendulum is released from rest at position 1 and swings without friction through position 4. At position 3, its lowest point, the speed of the bob is 6.0 meters per second. 24. If the gravitational potential energy of the cart at point A is zero, the gravitational potential energy of the cart at point C is (1) 4.9 J (3) 49 J (2) 10 J (4) 98 J 25. If the cart were allowed to move from point C to point A, the gravitational potential energy of the cart would (1) decrease (3) remain the same (2) increase 26. Which mass has the greatest potential energy with respect to the floor? (1) 50kg mass resting on the floor (2) 2kg mass 10 meters above the floor (3) 10kg mass 2 meters above the floor (4) 6kg mass 5 meters above the floor 27. Which graph best represents the relationship between potential energy (PE) and height above ground (h) for a freely falling object released from rest? 29. What is the potential energy of the bob at position 1 in relation to position 3? (1) 18 J (3) 72 J (2) 36 J (4) 180 J 30. At which position does the bob have its maximum kinetic energy? (1) 1 (3) 3 (2) 2 (4) The diagram below represents a cart traveling from left to right along a frictionless surface with an initial speed of v. At which point is the gravitational potential energy of the cart least? (1) (3) (1) A (3) C (2) B (4) D (2) (4) 28. The work done in raising an object must result in an increase in the object's (1) internal energy (2) kinetic energy (3) gravitational potential energy (4) heat energy 32. A cart weighing 10 Newtons is pushed 10 meters on a level surface by a force of 5 Newtons. What is the increase in its potential energy? (1) 1 joule (3) 100 joules (2) 50 joules (4) 0 joules 33. As a spring is stretched, its elastic potential energy
4 34. As the pendulum swings freely from A to B as shown in the diagram to the right, the gravitational potential energy of the ball 35. Three people of equal mass climb a mountain using paths A, B, and C shown in the diagram below. 38. A girl rides an escalator that moves her upward at constant speed. As the girl rises, how do her gravitational potential energy and kinetic energy change? (1) Gravitational potential energy decreases and kinetic energy decreases. (2) Gravitational potential energy decreases and kinetic energy remains the same. (3) Gravitational potential energy increases and kinetic energy decreases. (4) Gravitational potential energy increases and kinetic energy remains the same. 39. A 1.0kilogram book resting on the ground is moved 1.0 meter at various angles relative to the horizontal. In which direction does the 1.0meter displacement produce the greatest increase in the book s gravitational potential energy? (1) (2) Along which path(s) does a person gain the greatest amount of gravitational potential energy from start to finish? (1) A, only (2) B, only (3) C, only (4) The gain is the same along all paths. 36. Base your answer to the following question on the diagram below which shows a 1kilogram mass and a 2kilogram mass being dropped from a building 100 meters high. (3) (4) The potential energy at the top of the building is (1) greater for the 1kilogram mass (2) greater for the 2kilogram mass (3) the same for both masses 37. What is the spring constant of a spring of negligible mass which gained 8 joules of potential energy as a result of being compressed 0.4 meter? (1) 100 N/m (3) 0.3 N/m (2) 50 N/m (4) 40 N/m 40. Two students of equal weight go from the first floor to the second floor. The first student uses an elevator and the second student walks up a flight of stairs. Compared to the gravitational potential energy gained by the first student, the gravitational potential energy gained by the second student is (1) less (3) the same (2) greater 41. A force of 0.2 Newton is needed to compress a spring a distance of 0.02 meter. The potential energy stored in this compressed spring is (1) J (2) J (3) J (4) J
5 42. A pendulum is pulled to the side and released from rest. Which graph best represents the relationship between the gravitational potential energy of the pendulum and its displacement from its point of release? 46. Below is a graph representing the elongation of a spring as different forces are added to it. (1) (3) What is the value of the spring constant? (1) 0.1 m/n (3) 10 m/n (2) 0.1 N/m (4) 10 N/m 47. Which graph best represents the relationship between the elongation of a spring whose elastic limit has not been reached and the force applied to it? (2) (4) 43. The graph below represents the relationship between the force applied to a spring and the elongation of the spring. (1) (3) (2) (4) 48. Graphs A and B below represent the results of applying an increasing force to stretch a spring which did not exceed its elastic limit. What is the spring constant? (1) 20 N/m (3) 0.80 Nm (2) 9.8 N/kg (4) m/n 44. Spring A has a spring constant of 140 Newtons per meter, and spring B has a spring constant of 280 Newtons per meter. Both springs are stretched the same distance. Compared to the potential energy stored in spring A, the potential energy stored in spring B is (1) the same (3) half as great (2) twice as great (4) four times as great 45. A 5newton force causes a spring to stretch 0.2 meter. What is the potential energy stored in the stretched spring? (1) 1 J (3) 0.2 J (2) 0.5 J (4) 0.1 J The spring constant can be represented by the (1) slope of graph A (2) slope of graph B (3) reciprocal of the slope of graph A (4) reciprocal of the slope of graph B 49. How much work is needed to lift a 15newton block 3.0 meters vertically? (1) 5.0 J (3) 45 J (2) 12 J (4) 150 J
6 50. A 20.newton weight is attached to a spring, causing it to stretch, as shown in the diagram below. 54. The graph below represents the relationship between the force applied to a spring and the compression (displacement) of the spring. What is the spring constant of this spring? (1) N/m (3) 20. N/m (2) 0.25 N/m (4) 40. N/m 51. The unstretched spring in the diagram below has a length of 0.40 meter and spring constant k. A weight is hung from the spring, causing it to stretch to a length of 0.60 meter. What is the spring constant for this spring? (1) 1.0 N/m (3) 0.20 N/m (2) 2.5 N/m (4) 0.40 N/m 55. In the diagram below, a student compresses the spring in a popup toy meter. How many joules of elastic potential energy are stored in this stretched spring? (1) k (3) 0.18 k (2) k (4) 2.0 k 52. A spring has a spring constant of 25 Newtons per meter. The minimum force required to stretch the spring 0.25 meter from its equilibrium position is approximately (1) N (2) 0.78 N (3) 6.3 N (4) N 53. When a mass is placed on a spring with a spring constant of 15 newtons per meter, the spring is compressed 0.25 meter. How much elastic potential energy is stored in the spring? (1) 0.47 J (3) 1.9 J (2) 0.94 J (4) 3.8 J If the spring has a spring constant of 340 newtons per meter, how much energy is being stored in the spring? (1) J (3) 3.4 J (2) 0.14 J (4) 6.8 J 56. The work done on a slingshot is 40.0 joules to pull back a 0.10kilogram stone. If the slingshot projects the stone straight up in the air, what is the maximum height to which the stone will rise? [Neglect friction.] (1) 0.41 m (3) 410 m (2) 41 m (4) 4.1 m
7 57. The graph below represents the elongation of a spring as a function of the applied force. 61. The graph below represents the relationship between the force applied to a spring and spring elongation for four different springs. How much work must be done to stretch the spring 0.40 meter? (1) 4.8 J (3) 9.8 J (2) 6.0 J (4) 24 J 58. Base your answer to the following question on the information and graph below. The graph represents the relationship between the force applied to each of two springs, A and B, and their elongations. Which spring has the greatest spring constant? (1) A (3) C (2) B (4) D 62. Work is being done when a force (1) acts vertically on a cart that can only move horizontally (2) is exerted by one team in a tug of war when there is no movement (3) is exerted while pulling a wagon up a hill (4) of gravitational attraction acts on a person standing on the surface of the Earth 63. The graph below shows the force exerted on a block as a function of the block's displacement in the direction of the force. What physical quantity is represented by the slope of each line? 59. As the time required to lift a 60kg. object 6 meters increases, the work required to lift the body 60. How much work is done by a force of 8 Newtons acting through a distance or 6 meters? (1) 0 J (3) 48 J (2) 12 J (4) 192 J How much work did the force do in displacing the block 5.0 meters? (1) 0 J (3) 0.80 J (2) 20. J (4) 4.0 J 64. A constant force of 2.0 Newtons is used to push a 3.0 kilogram mass 4.0 meters across the floor. How much work is done on the mass? (1) 6.0 J (3) 12 J (2) 8.0 J (4) 24 J
8 65. Which graph best represents the elastic potential energy stored in a spring (PE s ) as a function of its elongation, x? (1) (2) (3) (4) 66. The graph below shows elongation as a function of the applied force for two springs, A and B. Compared to the spring constant for spring A, the spring constant for spring B is (1) smaller (2) larger (3) the same 67. Which action would require no work to be done on an object? (1) lifting the object from the floor to the ceiling (2) pushing the object along a horizontal floor against a frictional force (3) decreasing the speed of the object until it comes to rest (4) holding the object stationary above the ground 68. A force of 10. Newtons is used to pull a chest weighing 50. Newtons at uniform speed a distance of 5.0 meters. The work done is (1) 10. joules (3) 250 joules (2) 50. joules (4) 2,500 joules 69. Power can be measured in (1) kilocalories (3) joules (2) watts (4) Newtonmeters 70. The amount of work done against friction to slide a box in a straight line across a uniform, horizontal floor depends most on the (1) time taken to move the box (2) distance the box is moved (3) speed of the box (4) direction of the box s motion 71. A student does 60. joules of work pushing a 3.0kilogram box up the full length of a ramp that is 5.0 meters long. What is the magnitude of the force applied to the box to do this work? (1) 20. N (3) 12 N (2) 15 N (4) 4.0 N 72. The rate at which work is done is measured in (1) Newtons (3) calories (2) joules (4) watts
9 73. As shown in the diagram below, a 0.50meterlong spring is stretched from its equilibrium position to a length of 1.00 meter by a weight. If 15 joules of energy are stored in the stretched spring, what is the value of the spring constant? (1) 30. N/m (2) 60. N/m (3) 120 N/m (4) 240 N/m 74. Two weightlifters, one 1.5 meters tall and one 2.0 meters tall, raise identical 50.kilogram masses above their heads. Compared to the work done by the weightlifter who is 1.5 meters tall, the work done by the weightlifter who is 2.0 meters tall is (1) less (3) the same (2) greater 75. Through what vertical distance is a 50.newton object moved if 250 joules of work is done against the gravitational field of Earth? (1) 2.5 m (3) 9.8 m (2) 5.0 m (4) 25 m 76. As shown in the diagram below, a child applies a constant 20.newton force along the handle of a wagon which makes a 25 angle with the horizontal. 77. A student applies a 20.newton force to move a crate at a constant speed of 4.0 meters per second across a rough floor. How much work is done by the student on the crate in 6.0 seconds? (1) 80. J (3) 240 J (2) 120 J (4) 480 J 78. A box is dragged up an incline a distance of 8 meters with a force of 50 Newtons. If the increase in potential energy of the box is 300 joules, the work done against friction is (1) 100 J (3) 300 J (2) 200 J (4) 400 J 79. A student pulls a block 3.0 meters along a horizontal surface at constant velocity. The diagram below shows the components of the force exerted on the block by the student. How much work does the child do in moving the wagon a horizontal distance of 4.0 meters? (1) 5.0 J (3) 73 J (2) 34 J (4) 80. J How much work is done against friction? (1) 18 J (3) 30. J (2) 24 J (4) 42 J
10 80. Work energy is completely converted to heat energy when all of the work done on an object is used to overcome (1) momentum (3) inertia (2) gravity (4) friction 81. The diagram below shows a 5.0kilogram mass sliding 9.0 meters down an incline from a height of 2.0 meters in 3.0 seconds. The object gains 90. joules of kinetic energy while sliding. 87. One elevator lifts a mass a given height in 10 seconds and a second elevator does the same work in 5 seconds. Compared to the power developed by the first elevator, the power developed by the second elevator is (1) onehalf as great (3) the same (2) twice as great (4) four times as great 88. A motor has an output of 1,000 watts. When the motor is working at full capacity, how much time will it require to lift a 50newton weight 100 meters? (1) 5 s (3) 50 s (2) 10 s (4) 100 s 89. If 20. joules of work is done in 4.0 seconds, the power developed is (1) 0.20 watt (3) 16 watts (2) 5.0 watts (4) 80. watts How much work is done against friction as the mass slides the 9.0 meters? (1) 0 J (3) 45 J (2) 8 J (4) 90. J 82. A block weighing 15 Newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. 90. If the time required for a student to swim 500 meters is doubled, the power developed by the student will be (1) halved (3) quartered (2) doubled (4) quadrupled 91. The graph below represents the relationship between the work done by a student running up a flight of stairs and the time of ascent. If 4.0 joules of work are needed to pull the block the full length of the incline, how much work is done against friction? (1) 1.0 J (3) 3.0 J (2) 0.0 J (4) 7.0 J 83. Which is unit of power? (1) kilogrammeter/second (2) Newtonmeter 2 /second (3) joule/second (4) joule 84. As the power of a machine is increased, the time required to move an object a fixed distance 85. As the time required to do a given quantity of work decreases, the power developed 86. As an object falls freely, the kinetic energy of the object What does the slope of this graph represent? (1) impulse (3) speed (2) momentum (4) power 92. Student A lifts a 50.newton box from the floor to a height of 0.40 meter in 2.0 seconds. Student B lifts a 40.newton box from the floor to a height of 0.50 meter in 1.0 second. Compared to student A, student B does (1) the same work but develops more power (2) the same work but develops less power (3) more work but develops less power (4) less work but develops more power
11 93. A force of 10 Newtons is required to move an object at a constant speed of 5 meters per second. The power used is (1) 0.5 W (3) 5 W (2) 2 W (4) 50 W 94. A force of 70 Newtons must be exerted to keep a car moving with a constant speed of 10 meters per second. What is the rate at which energy must be supplied? (1) 1/7 W (3) 700 W (2) 7.0 W (4) 7,000 W 95. Car A and car B of equal mass travel up a hill. Car A moves up the hill at a constant speed that is twice the constant speed of car B. Compared to the power developed by car B, the power developed by car A is (1) the same (3) half as much (2) twice as much (4) four times as much 96. A motor having a maximum power rating of watts is used to operate an elevator with a weight of Newtons. What is the maximum weight this motor can lift at an average speed of 3.0 meters per second? (1) N (2) N (3) N (4) N 97. A machine does work at the rate of 600 watts. How much weight will be lifted 10 meters in 10 seconds? (1) 6 N (3) 600 N (2) 60 N (4) 6,000 N 98. A crane raises a 200newton weight to a height of 50 meters in 5 seconds. The crane does work at the rate of (1) W (2) W (3) W (4) W 102. A 10.newton force is required to move a 3.0 kilogram box at constant speed. How much power is required to move the box 8.0 meters in 2.0 seconds? (1) 40. W (3) 15 W (2) 20. W (4) 12 W 103. A motor used 120. watts of power to raise a 15newton object in 5.0 seconds. Through what vertical distance was the object raised? (1) 1.6 m (3) 40. m (2) 8.0 m (4) 360 m 104. A 110kilogram bodybuilder and his 55kilogram friend run up identical flights of stairs. The bodybuilder reaches the top in 4.0 seconds while his friend takes 2.0 seconds. Compared to the power developed by the bodybuilder while running up the stairs, the power developed by his friend is (1) the same (3) half as much (2) twice as much (4) four times as much 105. An object is lifted at constant speed a distance h above the surface of the Earth in a time t. The total potential energy gained by the object is equal to the (1) average force applied to the object (2) total weight of the object (3) total work done on the object (4) total momentum gained by the object 106. A person does 100 joules of work in pulling back the string of a bow. What will be the initial speed of a 0.5kilogram arrow when it is fired from the bow? (1) 20 m/s (3) 200 m/s (2) 50 m/s (4) 400 m/s 107. As shown in the diagram below, pulling a 9.8newton cart a distance of 0.50 meter along a plane inclined at 15º requires 1.3 joules of work. 99. A 4.0 x watt motor applies a force of 8.0 x 10 2 Newtons to move a boat at constant speed. How far does the boat move in 16 seconds? (1) 3.2 m (3) 32 m (2) 5.0 m (4) 80. m 100. A weightlifter lifts a 2,000newton weight a vertical distance of 0.5 meter in 0.1 second. What is the power output? (1) W (2) W (3) W (4) W 101. A girl weighing 500. newtons takes 50. seconds to climb a flight of stairs 18 meters high. Her power output vertically is (1) 9,000 W (3) 1,400 W (2) 4,000 W (4) 180 W If the cart were raised 0.50 meter vertically instead of being pulled along the inclined plane, the amount of work done would be (1) less (3) the same (2) greater
12 108. A 3.0kilogram block is initially at rest on a frictionless, horizontal surface. The block is moved 8.0 meters in 2.0 seconds by the application of a 12newton horizontal force, as shown in the diagram below. What is the average power developed while moving the block? (1) 24 W (2) 32 W (3) 48 W (4) 96 W 109. A force is applied to a block, causing it to accelerate along a horizontal, frictionless surface. The energy gained by the block is equal to the (1) work done on the block (2) power applied to the block (3) impulse applied to the block (4) momentum given to the block 110. A 10.kilogram mass falls freely a distance of 6.0 meters near the Earth's surface. The total kinetic energy gained by the mass as it falls is approximately (1) 60. J (3) 720 J (2) 590 J (4) 1,200 J 114. The spring of a toy car is wound by pushing the car backward with an average force of 15 Newtons through a distance of 0.50 meter. How much elastic potential energy is stored in the car s spring during this process? (1) 1.9 J (3) 30. J (2) 7.5 J (4) 56 J 115. As a pendulum swings from position A to position B as shown in the diagram, its total mechanical energy (neglecting friction) 111. In the diagram below, an average force of 20. Newtons is used to pull back the string of a bow 0.60 meter. As the arrow, leaves the bow, its kinetic energy is (1) 3.4 J (3) 12 J (2) 6.0 J (4) 33 J 112. A 0.10kilogram ball dropped vertically from a height of l.00 meter above the floor bounces back to a height of 0.80 meter. The mechanical energy lost by the ball as it bounces is (1) J (3) 0.30 J (2) 0.20 J (4) 0.78 J 113. A 2.0newton book falls from a table 1.0 meter high. After falling 0.5 meter, the book's kinetic energy is (1) 1.0 J (3) 10 J (2) 2.0 J (4) 20 J 116. At what point in its fall does the kinetic energy of a freely falling object equal its potential energy? (1) at the start of the fall (2) halfway between the start and the end (3) at the end of the fall (4) at all points during the fall 117. The diagram below shows a moving, 5.00kilogram cart at the foot of a hill 10.0 meters high. For the cart to reach the top of the hill, what is the minimum kinetic energy of the cart in the position shown? [Neglect energy loss due to friction.] (1) 4.91 J (3) 250. J (2) 50.0 J (4) 491 J
13 Base your answers to questions 118 through 120 on the diagram below. Which represents a 2.0kilogram mass placed on a frictionless track at point A and released from rest. Assume the gravitational potential energy of the system to be zero at point E The diagram below shows a cart at four positions as it moves along a frictionless track. At which positions is the sum of the potential energy and kinetic energy of the cart the same? 118. As the mass travels along the track, the maximum height it will reach above point E will be closest to (1) 10. m (3) 30. m (2) 20. m (4) 40. m 119. Compared to the kinetic energy of the mass at point B, the kinetic energy of the mass at point E is (1) as great (3) the same (2) twice as great (4) 4 times greater (1) A and B, only (2) B and C, only (3) C and D, only (4) all positions, A through D 124. The diagram below shows three positions, A, B, and C, in the swing of a pendulum, released from rest at point A. [Neglect friction.] 120. If the mass were released from rest at point B, its speed at point C would be (1) 0. m/s (3) 10. m/s (2) 0.50 m/s (4) 14 m/s 121. As the pendulum swings from position A to position B as shown in the diagram above, what is the relationship of kinetic energy to potential energy? [Neglect friction.] (1) The kinetic energy decrease is more than the potential energy increase. (2) The kinetic energy increase is more than the potential energy decrease. (3) The kinetic energy decrease is equal to the potential energy increase. (4) The kinetic energy increase is equal to the potential energy decrease A 2.0kilogram mass falls freely for 10. meters near the surface of the Earth. The total kinetic energy gained by the object during its free fall is approximately (1) 400 J (3) 100 J (2) 200 J (4) 50 J Which statement is true about this swinging pendulum? (1) The potential energy at A equals the kinetic energy at C. (2) The speed of the pendulum at A equals the speed of the pendulum at B. (3) The potential energy at B equals the potential energy at C. (4) The potential energy at A equals the kinetic energy at B An object 10 meters above the ground has Z joules of potential energy. If the object falls freely, how many joules of kinetic energy will it have gained when it is 5 meters above the ground? (1) Z (3) Z/2 (2) 2Z (4) As an object falls freely near the Earth's surface, the loss in gravitational potential energy of the object is equal to its (1) loss of height (3) gain in velocity (2) loss of mass (4) gain in kinetic energy 127. A ball is thrown vertically upward. As the ball rises, its total energy (neglecting friction)
14 128. Base your answer to the following question on the diagram below which represents an object M suspended by a string from point P. When object M is swung to a height of h and released, it passes through the rest position at a speed of 10 meters per second Base your answer to the following question on the diagram below. The diagram represents a 1.00 kilogram object being held at rest on a frictionless incline. The height h from which the object was released is approximately (1) 8 m (3) 5.0 m (2) 7 m (4) 2.5 m 129. Base your answer to the following question on the diagram below which represents a block with initial velocity v 1 sliding along a frictionless track from point A through point E. The object is released and slides the length of the incline. When it reaches the bottom of the incline, the object's kinetic energy will be closest to (1) 19.6 J (3) 9.81 J (2) 2.00 J (4) 4.00 J 132. Base your answer to the following question on the diagram below which shows a 1kilogram stone being dropped from a bridge 100 meters above a gorge. The kinetic energy of the block will be greatest when it reaches point (1) A (3) C (2) B (4) D 130. The diagram below which represents a swinging pendulum. As the stone falls, the gravitational potential energy of the stone 133. The work done in accelerating an object along a frictionless horizontal surface is equal to the object's change in (1) momentum (3) potential energy (2) velocity (4) kinetic energy The potential energy that an ideal pendulum has at point x equals the value of its kinetic energy at point (1) A (3) C (2) B (4) D 134. Energy is measured in the same units as (1) force (3) work (2) momentum (4) power
15 135. The wrecking crane shown below is moving toward a brick wall which is to be torn down As an object falls freely in a vacuum, its total energy 137. A block weighing 40. newtons is released from rest on an incline 8.0 meters above the horizontal, as shown in the diagram below. At what point in the swing of the wrecking ball should the ball make contact with the wall to make a collision with the greatest kinetic energy? (1) 1 (3) 3 (2) 2 (4) 4 If 50. joules of heat is generated as the block slides down the incline, the maximum kinetic energy of the block at the bottom of the incline is (1) 50. J (3) 320 J (2) 270 J (4) 3100 J
16 Answer Key [New Exam] the slope of each line is the spring constant
17 Answer Key [New Exam]
AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.
1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the actionreaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationThe Big Idea. Key Concepts
The Big Idea Acceleration is caused by force. All forces come in pairs because they arise in the interaction of two objects you can t hit without being hit back! The more force applied, the greater the
More informationA) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT161 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
More information6 WORK and ENERGY. 6.0 Introduction. 6.1 Work and kinetic energy. Objectives
6 WORK and ENERGY Chapter 6 Work and Energy Objectives After studying this chapter you should be able to calculate work done by a force; be able to calculate kinetic energy; be able to calculate power;
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 13, 2012 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 13, 2012 1:15 to 4:15 p.m., only Answer all questions in all parts of this
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationExplore 3: Crash Test Dummies
Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first
More informationHow Rockets Work Newton s Laws of Motion
How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means
More information2 ONE DIMENSIONAL MOTION
2 ONE DIMENSIONAL MOTION Chapter 2 OneDimensional Motion Objectives After studying this chapter you should be able to derive and use formulae involving constant acceleration; be able to understand the
More information( ) where W is work, f(x) is force as a function of distance, and x is distance.
Work by Integration 1. Finding the work required to stretch a spring 2. Finding the work required to wind a wire around a drum 3. Finding the work required to pump liquid from a tank 4. Finding the work
More informationA) N > W B) N = W C) N < W. speed v. Answer: N = W
CTN12. Consider a person standing in an elevator that is moving upward at constant speed. The magnitude of the upward normal force, N, exerted by the elevator floor on the person's feet is (larger than/same
More informationAS COMPETITION PAPER 2007 SOLUTIONS
AS COMPETITION PAPER 2007 Total Mark/50 SOLUTIONS Section A: Multiple Choice 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C 1 Section B: Written Answer Question 9. A mass M is attached to the end of a horizontal
More information4 Impulse and Impact. Table of contents:
4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration
More informationSHOULDER REHABILITATION EXERCISE PROGRAM. Phase I
Franklin Orthopedics 7400 W Rawson Ave, Suite 225 Franklin, WI 53132 4144258232 SHOULDER REHABILITATION EXERCISE PROGRAM Phase I PENDULUM EXERCISES: Bending over at the waist and balancing with the good
More informationGLENCOE PHYSICS. Principles and Problems. Problems and Solutions Manual
GLENCOE PHYSICS Principles and Problems Problems and Solutions Manual GLENCOE PHYSICS Principles and Problems Student Edition Teacher Wraparound Edition Teacher Classroom Resources Transparency Package
More information2.5 Physicallybased Animation
2.5 Physicallybased Animation 320491: Advanced Graphics  Chapter 2 74 Physicallybased animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
More informationBankart Repair For Shoulder Instability Rehabilitation Guidelines
Bankart Repair For Shoulder Instability Rehabilitation Guidelines Phase I: The first week after surgery. Goals:!! 1. Control pain and swelling! 2. Protect the repair! 3. Begin early shoulder motion Activities:
More informationExercises on Oscillations and Waves
Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium
More informationStair Workouts Get in Shape: Step up
Stair Workouts Get in Shape: Step up Warning: If you feel any knee pain, refrain from continuing that particular exercise. Avoid the no pain, no gain motto and modify with regular walking or any activity
More informationMaximum Range Explained range Figure 1 Figure 1: Trajectory Plot for AngledLaunched Projectiles Table 1
Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally
More informationM1. (a) (i) 4.5 allow 1 mark for correct substitution i.e. 9 2 2
M. (a) (i) 4.5 allow mark for correct substitution i.e. 9 (ii) m/s accept answer given in (a)(i) if not contradicted here (iii) (iv) speed straight line from the origin passing through (s, 9m/s) allow
More informationProblem Set 1 Solutions
Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which
More informationRotator Cuff and Shoulder Conditioning Program. Purpose of Program
Prepared for: Prepared by: OrthoInfo Purpose of Program After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle.
More informationW = F d. rule for calculating work (simplest version) The work done by a force can be calculated as. W = F d,
In example c, the tractor s force on the trailer accelerates it, increasing its kinetic energy. If frictional forces on the trailer are negligible, then the increase in the trailer s kinetic energy can
More informationSue Schuerman, PT, GCS, PhD UNLVPT
Sue Schuerman, PT, GCS, PhD UNLVPT Exercise & Physical Activity (Your Everyday Guide from the National Institute on Aging) Go4Life Retain our physical and mental health Continue to do the things we enjoy
More informationAPPENDIX A. Sets = the completion of one consecutive grouping of repetitions of an exercise.
Exercise Instruction Sheet Instructions: APPENDIX A Exercises are to be performed 3 times per week. Allow one rest day between each exercise day. You may divide the exercises into groups and perform them
More informationEXERCISE INSTRUCTIONS 1
EXERCISE INSTRUCTIONS 1 Contents ANKLE TOUCHES... 4 BACK EXTENSIONS... 4 BACK REVERSE FLYES... 4 BALL ROLL... 4 BASKETBALL SQUATS... 4 BEAR CRAWL... 4 BICEP CURL (Resistance Band)... 4 BOXING JABS... 5
More informationThere is no such thing as heat energy
There is no such thing as heat energy We have used heat only for the energy transferred between the objects at different temperatures, and thermal energy to describe the energy content of the objects.
More informationLearning Objectives for AP Physics
Learning Objectives for AP Physics These course objectives are intended to elaborate on the content outline for Physics B and Physics C found in the AP Physics Course Description. In addition to the five
More informationPrecision Miniature Load Cell. Models 8431, 8432 with Overload Protection
w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force
More informationTOTAL KNEE REPLACEMENT
PENN ORTHOPAEDICS TOTAL KNEE REPLACEMENT Home Exercise Program PENN ORTHOPAEDICS TOTAL KNEE REPLACEMENT HOME EXERCISE PROGRAM To get the best results from your surgery, it is important that you do your
More informationSAMPLE WORKOUT Full Body
SAMPLE WORKOUT Full Body Perform each exercise: 30 secs each x 2 rounds or 23 sets of 812 reps Monday & Wednesday or Tuesday & Thursday Standing Squat Muscles: glutes (butt), quadriceps (thigh) Stand
More informationKnee Conditioning Program. Purpose of Program
Prepared for: Prepared by: OrthoInfo Purpose of Program After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle.
More informationFALL FACTORS: Understanding & Preventing Slips, Trips & Falls
FALL FACTORS: Understanding & Preventing Slips, Trips & Falls This easytouse Leader s Guide is provided to assist in conducting a successful presentation. Featured are: INTRODUCTION: A brief description
More informationRehabilitation Exercises for Shoulder Injuries Pendulum Exercise: Wal Walk: Back Scratcher:
Rehabilitation Exercises for Shoulder Injuries Begin these exercises when your pain has decreased about 25% from the time when your injury was most painful. Pendulum Exercise: Lean over with your uninjured
More informationExercises for older people
Exercise for older people Exercises for older people Sitting Getting started If you ve not done much physical activity for a while, you may want to get the allclear from a GP before starting. For the
More informationMOON SHOULDER GROUP. Rotator Cuff Home Exercise Program. MOON Shoulder Group
MOON Shoulder Group For information regarding the MOON Shoulder Group, talk to your doctor or contact: Rosemary Sanders 1215 21 st Avenue South 6100 Medical Center East Vanderbilt University Medical Center
More informationMFF 3a: Charged Particle and a Straight CurrentCarrying Wire... 2
MFF 3a: Charged Particle and a Straight CurrentCarrying Wire... 2 MFF3a RT1: Charged Particle and a Straight CurrentCarrying Wire... 3 MFF3a RT2: Charged Particle and a Straight CurrentCarrying Wire...
More informationRotator Cuff Home Exercise Program MOON SHOULDER GROUP
Rotator Cuff Home Exercise Program MOON SHOULDER GROUP Introduction The MOON Shoulder group is a Multicenter Orthopaedic Outcomes Network. In other words, it is a group of doctors from around the country
More informationStanding with legs slightly apart, inhale and expand chest and shoulders; exhale and draw in chest and shoulders.
ILLUSTRATED EXERCISE #4 PAGE 1 2012 Bringing the Body to the Stage and Screen and Beyond by Annette Lust 1 Standing with legs slightly apart, inhale and expand chest and shoulders; exhale and draw in chest
More informationChronos  Circuit Training Bodyweight
Outline Chronos  Circuit Training Bodyweight 1. Mountain climbers doubles x 10 2. Mountain climbers singles x 10 each leg 3. Mountain climbers singles out x 10 each leg 4. Mountain Climbers Doubles out
More informationGeneral Guidelines. Neck Stretch: Side. Neck Stretch: Forward. Shoulder Rolls. Side Stretch
Stretching Exercises General Guidelines Perform stretching exercises at least 2 3 days per week and preferably more Hold each stretch for 15 20 seconds Relax and breathe normally Stretching is most effective
More informationAnterior Cruciate Ligament Reconstruction Rehabilitation Protocol
The First Two Weeks After Surgery You will go home with crutches and be advised to use ice. Goals 1. Protect reconstruction 2. Ensure wound healing 3. Maintain full knee extension 4. Gain knee flexion
More informationARCHITECTURE. Asst. Prof. Meltem VATAN KAPTAN meltemvatan@aydin.edu.tr
STRUCTURES IN ARCHITECTURE Asst. Prof. Meltem VATAN KAPTAN meltemvatan@aydin.edu.tr Istanbul Aydin University, Faculty of Engineering and Architecture ISTANBUL, TURKEY December 15, 2011  GAZIANTEP If
More informationMINNESOTA DEPARTMENT OF PUBLIC SAFETY State Fire Marshal Division STATEMENT OF POLICY. State Fire Marshal
MINNESOTA DEPARTMENT OF PUBLIC SAFETY State Fire Marshal Division STATEMENT OF POLICY Policy #: Subject of Policy: INS04 (2007) Escape Windows Revised and Approved By: Title: Jerry Rosendahl State Fire
More informationOtago Exercise Program Activity Booklet
Head Movements Stand up tall and look ahead. Slowly turn your head as far as you can to the right. Slowly turn your head as far as you can to the left. Repeat five times to each side. 44 Neck Movements
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationFoundation Experts, LLC Specializes in Foundation Repair and Waterproofing
1 Most basements show some signs of leaking and cracking. Through the years, problems with water, poor soils, grading, drainage and possible settling affect the integrity of a basement. Being able to recognize
More informationExercise Module. A New Leaf. Choices for Healthy Living
Exercise Module A New Leaf Choices for Healthy Living University of North Carolina at Chapel Hill 2007 Center for Health Promotion and Disease Prevention Physical Activity Exercises for Keeping Active
More informationChief Executive Office Risk Management Division P.O. Box 1723, Modesto, CA 95354 Phone (209) 5255710 Fax (209) 5255779
Employer: Occupation: Company Contact: Analysis Provided By: Stanislaus County Nursing Assistant (Medical Assistant) Risk Management 1010 10 th Street Modesto, California 95354 (209) 5255770 Date: January
More informationStarting position: Lying with knees bent up and feet flat on floor/bed about 12" (30cms) apart
Exercise 3 Bridging Starting position: Lying with knees bent up and feet flat on floor/bed about 12" (30cms) apart Tighten your buttocks, then raise them off the floor to form a bridge, then hold. Then
More informationBasic Selection & Proper Application of Overhead Air Distribution Devices
Basic Selection & Proper Application of Overhead Air Distribution Devices GRD Selection & Application Terms Selection Throw Sound Installation Variations affect Performance Inlet Effects Basics Return
More informationwww.scifit.com 800.278.3933
Hospitals, rehabilitation centers, and therapy clinics worldwide have used SCIFIT equipment for over 24 years to meet the needs of their patients. With the most extensive line of rehabilitation equipment
More informationRocket Activity Pop Can Hero Engine
Rocket Activity Pop Can Hero Engine Objective To investigate Newton s third law of motion using thrust produced by falling water. Description Small student teams will construct waterpropelled engines out
More informationPreventing Falls. Strength and balance exercises for healthy ageing
Preventing Falls Strength and balance exercises for healthy ageing Exercise should be comfortable and fun. To get the most out of your home exercise book, join a class for older people to check your exercises
More informationCollision of a small bubble with a large falling particle
EPJ Web of Conferences 67, 212 (214) DOI: 1.11/ epjconf/ 21467212 C Owned by the authors, published by EDP Sciences, 214 Collision of a small bubble with a large falling particle Jiri Vejrazka 1,a, Martin
More informationstretches and exercises
stretches and exercises The enclosed sheets contain stretches and exercises which can be used to delay and minimise the development of contractures and deformities occurring in children with Duchenne muscular
More informationExercise 1: Knee to Chest. Exercise 2: Pelvic Tilt. Exercise 3: Hip Rolling. Starting Position: Lie on your back on a table or firm surface.
Exercise 1: Knee to Chest Starting Position: Lie on your back on a table or firm surface. Action: Clasp your hands behind the thigh and pull it towards your chest. Keep the opposite leg flat on the surface
More informationThis week. CENG 732 Computer Animation. Challenges in Human Modeling. Basic Arm Model
CENG 732 Computer Animation Spring 20062007 Week 8 Modeling and Animating Articulated Figures: Modeling the Arm, Walking, Facial Animation This week Modeling the arm Different joint structures Walking
More informationOpenFOAM Opensource and CFD
OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD
More informationHandheld Shock Control Design Guide
Handheld Shock Control Design Guide Handheld Shock Control Design Guide Cushioning in Handheld Devices: Understanding Impact The Challenge: Protecting Handheld Devices from Cracks The most devastating
More informationWorkplace Job Accommodations Solutions for Effective Return to Work
Workplace Job Accommodations Solutions for Effective Return to Work Workplace Job Accommodations Solutions for Effective Return to Work Published by 102 275 Broadway Winnipeg, MB R3C 4M6 www.mflohc.mb.ca
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationLiving Room Bodyweight Workout Week 1 March or jog in place for 1 min to increase heart rate and lubricate joints.
Warm Up Living Room Bodyweight Workout Week 1 March or jog in place for 1 min to increase heart rate and lubricate joints. Protocol All exercises will be done for 2 sets of 10 repetitions. After the
More informationFloating between two liquids. Laurence Viennot. http://education.epsdivisions.org/muse/
Floating between two liquids Laurence Viennot http://education.epsdivisions.org/muse/ Abstract The hydrostatic equilibrium of a solid floating between two liquids is analysed, first as a classical exercise,
More informationCONCREBOL 2015. 2.3 There is no restriction regarding the number of participants in each team.
12 nd CONTEST REGULATION 1/11 CONCREBOL 2015 1 OBJECTIVE 1.1 This contest intends to test the competitors ability in developing construction methods and the production of lightweight homogeneous concrete
More informationSubminiature Load Cell Model 8417
w Technical Product Information Subminiature Load Cell 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding and potential connection...
More information( ) ( ) ( ) ( ) ( ) ( )
Problem (Q1): Evaluate each of the following to three significant figures and express each answer in SI units: (a) (0.631 Mm)/(8.60 kg) 2 (b) (35 mm) 2 *(48 kg) 3 (a) 0.631 Mm / 8.60 kg 2 6 0.631 10 m
More informationCRASH PROTECTION FOR CHILDREN IN AMBULANCES Recommendations and Procedures* Marilyn J. Bull, M.D., Kathleen Weber, Judith Talty, Miriam Manary
CRASH PROTECTION FOR CHILDREN IN AMBULANCES Recommendations and Procedures* Marilyn J. Bull, M.D., Kathleen Weber, Judith Talty, Miriam Manary A joint project of the Indiana University School of Medicine
More informationAnkle Sprain. Information and Rehabilitation. Grade II. Grade I. Grade III
5144124400, ext. 23310 2300 Tupper street, C831, Montreal (Quebec) H3H 1P3 Ankle Sprain Information and Rehabilitation An ankle sprain is a stretch or a tear of the ligaments (bands of tissue that hold
More informationIs load testing during initial acceptance inspection still the contemporary method?
Is load testing during initial acceptance inspection still the contemporary method? Alfons Petry TUV Industry Service TUV South Group, Germany Key words: Safety, commissioning test, load test, ADIASYSTEM,
More informationA Road Crash Reconstruction Technique
A Road Crash Reconstruction Technique Mukherjee S, nonmember Chawla A 1, member Lalaram Patel, nonmember Abstract The purpose of reconstruction is to identify the critical factors involved in a road
More informationUnderstanding Car Crashes: It s Basic Physics!
Understanding Car Crashes: It s Basic Physics! Teacher s guide for grades 9 12 by Griff Jones, Ph.D. This teaching guide will help you to: effectively present the video in your classroom teach handson
More informationFoot and Ankle Conditioning Program. Purpose of Program
Prepared for: Prepared by: OrthoInfo Purpose of Program After an injury or surgery, an exercise conditioning program will help you return to daily activities and enjoy a more active, healthy lifestyle.
More informationWOMEN S FLAT TRACK DERBY ASSOCIATION Minimum Skills Requirements Version 4.10 Updated January 31, 2013
WOMEN S FLAT TRACK DERBY ASSOCIATION Minimum Skills Requirements Version 4.10 Updated January 31, 2013 This document was created by the WFTDA Training Committee. Questions about the MSR should be directed
More informationFact sheet Exercises for older adults undergoing rehabilitation
Fact sheet Exercises for older adults undergoing rehabilitation Flexibility refers to the amount of movement possible around a joint and is necessary for normal activities of daily living such as stretching,
More informationThe Human Balance System
PO BOX 13305 PORTLAND, OR 97213 FAX: (503) 2298064 (800) 8378428 INFO@VESTIBULAR.ORG WWW.VESTIBULAR.ORG The Human Balance System A Complex Coordination of Central and Peripheral Systems By the Vestibular
More information3. FLYING TECHNIQUES. 3.1 Speed Management. 3.2 Attitude Management. 3.3 Height Management. 3.4 Transit Flying
3. FLYING TECHNIQUES 3.1 Speed Management Maintaining an appropriate airspeed can be very challenging in mountainous terrain. Pilots need to be aware of the speed limitations from the RFM especially in
More informationtry Elise s toning exercise plan
try Elise s toning exercise plan Whether you want to start things off slow and gradually build up your fi tness, or begin with a challenge, Elise s toning exercise programme is designed for all levels.
More informationREFERENCE BOOK FOR: AREX WINDOWS GC SYSTEMS
REFERENCE BOOK FOR: AREX WINDOWS GC SYSTEMS AREX TEST SYSTEMS BV VENNESTRAAT 4B 2161 LE LISSE HOLLAND Product of: Arex Test Systems bv Vennestraat 4b 2161 LE Lisse Holland Tel: +31(0)252419151 Fax: +31(0)252420510
More informationThe Influence of Aerodynamics on the Design of HighPerformance Road Vehicles
The Influence of Aerodynamics on the Design of HighPerformance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS
More informationThe Power of Physical Representations
The Power of Physical Representations Articles Varol Akman, Paul J. W. ten Hagen Leibniz s (1984) An Introduction to a Secret Encyclopedia includes the following marginal note: Principle of Physical Certainty:
More informationForensic Engineering Determination of the Angle of Lean of a CycleRider System Negotiating a Turn
NAFE 193F/401F ANALYSIS OF BICYCLE STABILITY PAGE 1 Forensic Engineering Determination of the Angle of Lean of a CycleRider System Negotiating a Turn by James M. Green, P.E., D.E.E. (NAFE 193F) Jon O.
More informationComputers in teaching science: To simulate or not to simulate?
Computers in teaching science: To simulate or not to simulate? Richard N. Steinberg City College of New York Phys. Ed. Res. Suppl. to Am. J. Phys. 68, S37S41 (2) Do computer simulations help students
More informationInstallation information. METTLER TOLEDO MultiRange Floor scales / Pit scales
Installation information METTLER TOLEDO MultiRange Floor scales / Pit scales KC300/KCS300 KC600/KCS600 KD600/KD1500 KE1500/KE3000 KES1500/KES3000 KG3000/KG6000 KN1500 Floor scales / Pit scales Contents
More informationEXERCISE DESCRIPTIONS PHASE I Routine #1
EXERCISE DESCRIPTIONS PHASE I Routine #1 Hip Mobility Exercise: Forward OutIn Movement: Raise leg out to the side, and rotate around to the front. Keep shin/thigh angle at 90 degrees. Exercise: Backward
More informationOtago Exercise Program
Otago Exercise Program Edited Version Exercise Booklet Created by: Genesee County Coalition Supported by a grant from the Health Foundation for Western and Central New York Otago Exercise Program to Prevent
More informationPerformance Analysis Outdoor
Assistive Technology & Seating Service Vancouver Coastal Health GF Strong Rehab Centre 4255 Laurel Street Vancouver BC V5Z 2G9 Overview Consumers with a broad spectrum of abilities are using power wheelchairs.
More informationRange of Motion. A guide for you after spinal cord injury. Spinal Cord Injury Rehabilitation Program
Range of Motion A guide for you after spinal cord injury Spinal Cord Injury Rehabilitation Program This booklet has been written by the health care providers who provide care to people who have a spinal
More informationWorked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites
Worked Example 2 (Version 1) Design of concrete cantilever retaining walls to resist earthquake loading for residential sites Worked example to accompany MBIE Guidance on the seismic design of retaining
More informationACCELERATED REHABILITATION PROTOCOL FOR POST OPERATIVE POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION DR LEO PINCZEWSKI DR JUSTIN ROE
ACCELERATED REHABILITATION PROTOCOL FOR POST OPERATIVE POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION DR LEO PINCZEWSKI DR JUSTIN ROE January 2005 Rationale of Accelerated Rehabilitation Rehabilitation after
More informationPreparing for the Washington State Criminal Justice Training Commission Physical Ability Test
Preparing for the Washington State Criminal Justice Training Commission Physical Ability Test Whereas many training routines can be used to improve performance in the Physical Ability Test (PAT), participants
More informationPhysics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
More informationFloor/Field Stretches
Floor/Field Stretches 3D Hip Flexor Stretch *Start position* 1. Swing arms above head as front knee drives forward (x 510) 2. Swing arms over each shoulder as front knee drives forward 3D Groin Stretch
More informationKnee Arthroscopy Postoperative Instructions
Amon T. Ferry, MD Orthopedic Surgery Sports Medicine Knee Arthroscopy Postoperative Instructions PLEASE READ ALL OF THESE INSTRUCTIONS CAREFULLY. THEY WILL ANSWER MOST OF YOUR QUESTIONS. 1. You may walk
More informationChapter 4: The Concept of Area
Chapter 4: The Concept of Area Defining Area The area of a shape or object can be defined in everyday words as the amount of stuff needed to cover the shape. Common uses of the concept of area are finding
More information