ENGINEERING COUNCIL CERTIFICATE LEVEL

Save this PDF as:

Size: px
Start display at page:

Transcription

1 ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent for marking at a cost (see home page). On completion of this tutorial you should be able to do the following. Define direct stress and strain. Define shear stress and strain. Define the modulus of elasticity and rigidity. Solve basic problems involving stress, strain and modulus. It is assumed that the student is already familiar with the concepts of ORCE. D.J.DUNN freestudy.co.uk 1

2 1. DIRECT STRESS σ When a force is applied to an elastic body, the body deforms. The way in which the body deforms depends upon the type of force applied to it. A compression force makes the body shorter. igure 1 A tensile force makes the body longer. igure Tensile and compressive forces are called DIRECT ORCES. Stress is the force per unit area upon which it acts. Stress = σ = orce/area N/m or Pascals. The symbol σ is called SIGMA NOTE ON UNITS The fundamental unit of stress is 1 N/m and this is called a Pascal. This is a small quantity in most fields of engineering so we use the multiples kpa, MPa and GPa. Areas may be calculated in mm and units of stress in N/mm are quite acceptable. Since 1 N/mm converts to N/m then it follows that the N/mm is the same as a MPa D.J.DUNN freestudy.co.uk

3 . DIRECT STRAIN ε In each case, a force produces a deformation x. In engineering we usually change this force into stress and the deformation into strain and we define these as follows. Strain is the deformation per unit of the original length Strain = ε = x/l The symbol ε is called EPSILON Strain has no units since it is a ratio of length to length. Most engineering materials do not stretch very much before they become damaged so strain values are very small figures. It is quite normal to change small numbers in to the exponent for of Engineers use the abbreviation µε (micro strain) to denote this multiple. or example a strain of could be written as 68 x 10-6 but engineers would write 68 µε. Note that when conducting a British Standard tensile test the symbols for original area are S o and for Length is L o. WORKED EXAMPLE No.1 A metal wire is.5 mm diameter and m long. A force of 1 N is applied to it and it stretches 0.3 mm. Assume the material is elastic. Determine the following. i. The stress in the wire σ. ii. The strain in the wire ε. πd A = 4 σ = = A π x.5 = = mm =.44 N/mm Answer (i) is hence.44 MPa x 0.3 mm ε = = = or 150 µε L 000 D.J.DUNN freestudy.co.uk 3

4 SEL ASSESSMENT EXERCISE No.1 1. A steel bar is 10 mm diameter and m long. It is stretched with a force of 0 kn and extends by 0. mm. Calculate the stress and strain. (Answers 54.6 MPa and 100 µε). A rod is 0.5 m long and 5 mm diameter. It is stretched 0.06 mm by a force of 3 kn. Calculate the stress and strain. (Answers 15.8 MPa and 10µε) 3. MODULUS O ELASTICITY E Elastic materials always spring back into shape when released. They also obey HOOKE'S LAW. This is the law of a spring which states that deformation is directly proportional to the force. /x = stiffness = k N/m 3 igure The stiffness is different for different materials and different sizes of the material. We may eliminate the size by using stress and strain instead of force and deformation as follows. If and x refer to direct stress and strain then = σa x = εl hence x = σa εl L and Ax σ = ε The stiffness is now in terms of stress and strain only and this constant is called the MODULUS of ELASTICITY and it has a symbol E. L σ E = = Ax ε A graph of stress against strain will be a straight line with a gradient of E. The units of E are the same as the units of stress. D.J.DUNN freestudy.co.uk 4

5 4. ULTIMATE TENSILE STRESS If a material is stretched until it breaks, the tensile stress has reached the absolute limit and this stress level is called the ultimate tensile stress. Values for different materials may be found in various sources such as the web site Matweb. WORKED EXAMPLE No. A steel tensile test specimen has a cross sectional area of 100 mm and a gauge length of 50 mm, the gradient of the elastic section is 410 x 10 3 N/mm. Determine the modulus of elasticity. The gradient gives the ratio /A = and this may be used to find E. σ L 3 50 E = = x = 410 x 10 x = N/mm or MPa or 05 GPa ε x A 100 WORKED EXAMPLE No.3 A Steel column is 3 m long and 0.4 m diameter. It carries a load of 50 MN. Given that the modulus of elasticity is 00 GPa, calculate the compressive stress and strain and determine how much the column is compressed. πd π x 0.4 A = = = 0.16 m x10 6 σ = = = x10 Pa A σ σ x10 E = so ε = = = ε E 00 x10 x ε = so x = ε L = x 3000 mm = 5.97 mm L D.J.DUNN freestudy.co.uk 5

6 SEL ASSESSMENT EXERCISE No. 1. A bar is 500 mm long and is stretched to 505 mm with a force of 50 kn. The bar is 10 mm diameter. Calculate the stress and strain. The material has remained within the elastic limit. Determine the modulus of elasticity. (Answers MPa, 0.01 and GPa.. A steel bar is stressed to 80 MPa. The modulus of elasticity is 05 GPa. The bar is 80 mm diameter and 40 mm long. Determine the following. i. The strain. ( ) ii. The force. (1.407 MN) 3. A circular metal column is to support a load of 500 Tonne and it must not compress more than 0.1 mm. The modulus of elasticity is 10 GPa. the column is m long. Calculate the cross sectional area and the diameter. (0.467 m and m) Note 1 Tonne is 1000 kg. D.J.DUNN freestudy.co.uk 6

7 5. SHEAR STRESS τ Shear force is a force applied sideways on to the material (transversely loaded). This occurs typically: when a pair of shears cuts a material when a material is punched igure 4 igure 5 when a beam has a transverse load. when a pin carries a load. igure 6 igure 7 Shear stress is the force per unit area carrying the load. This means the cross sectional area of the material being cut, the beam and pin respectively. Shear stress τ = /A The symbol τ is called Tau D.J.DUNN freestudy.co.uk 7

8 The sign convention for shear force and stress is based on how it shears the materials and this is shown below. igure 8 In order to understand the basic theory of shearing, consider a block of material being deformed sideways as shown. 6. SHEAR STRAIN γ igure 9 The force causes the material to deform as shown. The shear strain is defined as the ratio of the distance deformed to the height x/l. The end face rotates through an angle γ. Since this is a very small angle, it is accurate to say the distance x is the length of an arc of radius L and angle γ so that γ = x/l It follows that γ is the shear strain. The symbol γ is called Gamma. D.J.DUNN freestudy.co.uk 8

9 7. MODULUS O RIGIDITY G If we were to conduct an experiment and measure x for various values of, we would find that if the material is elastic, it behave like a spring and so long as we do not damage the material by using too big a force, the graph of and x is a straight line as shown. The gradient of the graph is constant so /x = constant and this is the spring stiffness of the block in N/m. If we divide by the area A and x by the height L, the relationship is still a constant and we get A x L = L Ax = constant igure 10 x L τ But /A = τ and x/l = γ so = = = constant A L Ax γ This constant will have a special value for each elastic material and is called the Modulus of Rigidity with symbol G. 8. ULTIMATE SHEAR STRESS τ = γ If a material is sheared beyond a certain limit it becomes permanently distorted and does not spring all the way back to its original shape. The elastic limit has been exceeded. If the material is stressed to the limit so that it parts into two(e.g. a guillotine or punch), the ultimate limit has been reached. The ultimate shear stress is τ u and this value is used to calculate the force needed by shears and punches. G WORKED EXAMPLE No.4 Calculate the force needed to guillotine a sheet of metal 5 mm thick and 0.8 m wide given that the ultimate shear stress is 50 MPa. The area to be cut is a rectangle800 mm x 5 mm A = 800 x 5 = 4000 mm τ = A so The ultimate shear stress is 50 N/mm = τ x A = 50 x 4000 = N or 00 kn D.J.DUNN freestudy.co.uk 9

10 WORKED EXAMPLE No.5 Calculate the force needed to punch a hole 30 mm diameter in a sheet of metal 3 mm thick given that the ultimate shear stress is 60 MPa. The area to be cut is the circumference x thickness = πd x t A = π x 30 x 3 = 8.7 mm τ = A so The ultimate shear stress is 60 N/mm = τ x A = 60 x 8.7 = N or kn WORKED EXAMPLE No.6 Calculate the force needed to shear a pin 8 mm diameter given that the ultimate shear stress is 60 MPa. The area to be sheared is the circular area A = π x 8 A = 4 τ = so A = 50.6mm πd 4 The ultimate shear stress is 60 N/mm = τ x A = 60 x 50.6 = 3016 N or kn D.J.DUNN freestudy.co.uk 10

11 SEL ASSESSMENT EXERCISE No.3 1. A guillotine must shear a sheet of metal 0.6 m wide and 3 mm thick. The ultimate shear stress is 45 MPa. Calculate the force required. (Answer 81 kn). A punch must cut a hole 30 mm diameter in a sheet of steel mm thick. The ultimate shear stress is 55 MPa. Calculate the force required. (Answer10.37 kn) 3. Two strips of metal are pinned together as shown with a rod 10 mm diameter. The ultimate shear stress for the rod is 60 MPa. Determine the maximum force required to break the pin. (Answer 4.71 kn) igure 11 D.J.DUNN freestudy.co.uk 11

12 9. DOUBLE SHEAR Consider a pin joint with a support on both ends as shown. This is called a CLEVIS and CLEVIS PIN. If the pin shears it will do so as shown. By balance of forces, the force in the two supports is / each. The area sheared is twice the cross section of the pin so it takes twice as much force to break the pin as for a case of single shear. Double shear arrangements doubles the maximum force allowed in the pin. igure 1 WORKED EXAMPLE No.7 A pin is used to attach a clevis to a rope. The force in the rope will be a maximum of 60 kn. The maximum shear stress allowed in the pin is 40 MPa. Calculate the diameter of a suitable pin. The pin is in double shear so the shear sress isτ = A = = τ x 40x10 πd A = 750 mm = 4 d = 4 x 750 π 6 = 30.9 mm = 750 x 10 6 m A D.J.DUNN freestudy.co.uk 1

13 SEL ASSESSMENT EXERCISE No.4 1. A clevis pin joint as shown above uses a pin 8 mm diameter. The shear stress in the pin must not exceed 40 MPa. Determine the maximum force that can be exerted. (Answer 4.0 kn). igure 13 A rope coupling device shown uses a pin 5 mm diameter to link the two parts. If the shear stress in the pin must not exceed 50 MPa, determine the maximum force allowed in the ropes. (Answer 1.96 kn) INAL NOTE Shear stress and modulus of rigidity are important in the studies of twisting of shafts and this is covered in anther tutorial. D.J.DUNN freestudy.co.uk 13

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN

MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 2 - STRESS AND STRAIN

EDEXCEL NATIONAL CERTIICATE/DIPLOMA URTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQ LEVEL 3 OUTCOME - STRESS AND STRAIN TUTORIAL 1 - SHEAR CONTENT Be able to determine the stress in structural

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

ENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3 - TORSION

ENGINEEING COUNCI CETIFICATE EVE ENGINEEING SCIENCE C10 TUTOIA - TOSION You should judge your progress by completing the self assessment exercises. These may be sent for marking or you may request copies

Chapter 13 - Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 13 - Elasticity PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Chapter 13. Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following.

Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

Chapter 12 Elasticity

If I have seen further than other men, it is because I stood on the shoulders of giants. Isaac Newton 12.1 The Atomic Nature of Elasticity Elasticity is that property of a body by which it experiences

Activity 2.3b Engineering Problem Solving Answer Key

Activity.3b Engineering roblem Solving Answer Key 1. A force of 00 lbs pushes against a rectangular plate that is 1 ft. by ft. Determine the lb lb pressure in and that the plate exerts on the ground due

CHAPTER 4 TENSILE TESTING

CHAPTER 4 TENSILE TESTING EXERCISE 28, Page 7 1. What is a tensile test? Make a sketch of a typical load/extension graph for a mild steel specimen to the point of fracture and mark on the sketch the following:

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

Torsion Testing. Objectives

Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials

Properties of Matter

Mr. Patrick J Camilleri B.Ed (Hons) M.Ed Science (Sheffield) Department of Physics JC Malta Properties of Matter Basics You Should Know Elasticity. Young modulus 1. Hooke's law. Extension α tension (force

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

Torsion Tests. Subjects of interest

Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

CHAPTER 9 :- MECHANICAL PROPERTIES OF SOLIDS ONE MARK QUESTIONS: 1. What is elasticity of a body? 2. What is plasticity? 3. Which property of a body

1 CHAPTER 9 :- MECHANICAL PROPERTIES OF SOLIDS ONE MARK QUESTIONS: 1. What is elasticity of a body? 2. What is plasticity? 3. Which property of a body is responsible for regaining original shape and size

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

Statics and Mechanics of Materials

Statics and Mechanics of Materials Chapter 4-1 Internal force, normal and shearing Stress Outlines Internal Forces - cutting plane Result of mutual attraction (or repulsion) between molecules on both

Course 1 Laboratory. Second Semester. Experiment: Young s Modulus

Course 1 Laboratory Second Semester Experiment: Young s Modulus 1 Elasticity Measurements: Young Modulus Of Brass 1 Aims of the Experiment The aim of this experiment is to measure the elastic modulus with

Welcome to the first lesson of third module which is on thin-walled pressure vessels part one which is on the application of stress and strain.

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture -15 Application of Stress by Strain Thin-walled Pressure Vessels - I Welcome

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

COMPLEX STRESS TUTORIAL 5 STRAIN ENERGY

COMPLEX STRESS TUTORIAL 5 STRAIN ENERGY This tutorial covers parts of the Engineering Council Exam D Structural Analysis and further material useful students of structural engineering. You should judge

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS Simple Method to Calculate Young s Modulus Elasticity MECN 4600 - Mechanical Measurement and Instrumentation Dr. Omar Meza Copyright 2015 MSEIP Engineering

Solution: The draft attempted in this rolling operation is

Example: 1 A 300-mm-wide strip 25 mm thick is fed through a rolling mill with two powered rolls each of radius = 250 mm. The work thickness is to be reduced to 22 mm in one pass at a roll speed of 50 rev/min.

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

Problem P5.2: A 1 Mg container hangs from a 15 mm diameter steel cable. What is the stress in the cable?

Problem P5.: A 1 Mg container hangs from a 15 mm diameter steel cable. What is the stress in the cable? Find the cross sectional area in terms of diameter using Equation (5.1). Calculate the tensile stress

Stress Strain Relationships

Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

Bending Stress in Beams

936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

Fluid Mechanics: Static s Kinematics Dynamics Fluid

Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three

Solution for Homework #1

Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

MUKAVEMET KIRILMA HİPOTEZLERİ

1 MUKAVEMET KIRILMA HİPOTEZLERİ 17. Theories of failure or yield criteria (1) Maximum shearing stress theory (2) Octahedral shearing stress theory (3) Maximum normal stress theory for brittle materials.

The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

MATERIALS SELECTION FOR SPECIFIC USE

MATERIALS SELECTION FOR SPECIFIC USE-1 Sub-topics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material

Properties of Materials

CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most

STRESS-STRAIN RELATIONS

STRSS-STRAIN RLATIONS Strain Strain is related to change in dimensions and shape of a material. The most elementar definition of strain is when the deformation is along one ais: change in length strain

TENSILE TESTING PRACTICAL

TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in

Homework 9. Problems: 12.31, 12.32, 14.4, 14.21

Homework 9 Problems: 1.31, 1.3, 14.4, 14.1 Problem 1.31 Assume that if the shear stress exceeds about 4 10 N/m steel ruptures. Determine the shearing force necessary (a) to shear a steel bolt 1.00 cm in

Question 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm

14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable

OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 1 STATIC FLUID SYSTEMS TUTORIAL 1 - HYDROSTATICS 1. Be able to determine the behavioural characteristics and parameters

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

MECHANICS OF SOLIDS - BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion

Hardened Concrete. Lecture No. 14

Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)

Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /

Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

Mechanical Properties

Mechanical Properties Hardness Hardness can be defined as resistance to deformation or indentation or resistance to scratch. Hardness Indentation Scratch Rebound Indentation hardness is of particular interest

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

Stresses in Beam (Basic Topics)

Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and

SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE

SOLID MECHANICS DYNAMICS TUTORIAL CENTRIPETAL FORCE This work coers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems C10 Engineering Science. This tutorial examines

Simple Stresses in Machine Parts

Simple Stresses in Machine Parts n 87 C H A P T E R 4 Simple Stresses in Machine Parts 1. Introduction.. Load. 3. Stress. 4. Strain. 5. Tensile Stress and Strain. 6. Compressive Stress and Strain. 7. Young's

Tensile Testing of Steel

C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

DRIVEN PIPE PILES IN DENSE SAND

DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration

Experiment 3 Modulus of Elasticity

Related topics Young s modulus, modulus of elasticity, stress, deformation, Poisson s ratio, Hooke s Law. Principle and task A flat bar is supported at two points. It is bent by the action a force acting

Structures and Stiffness

Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.1-3.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

W2L2 Problems 11, 13

W2L2 roblems 11, 13 Bulk Stress and Bulk Modulus (French pg 57-59 This considers changes in the total volume associated with a uniform stress in the form of a pressure change think of a piston pushing

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 2 BELT DRIVES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL BELT DRIVES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential pulley

MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions

MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions The Quiz questions based upon HW9 will open on Thursday, Apr. 11 and close on Wednesday, Apr 17 at 1:30 PM. References to A&J: Chapters 13,

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM This work covers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems, C05 Mechanical and

Simple stresses are expressed as the ratio of the applied force divided by the resisting. σ = Force / Area.

Simple Stresses Simple stresses are expressed as the ratio of the applied force divided by the resisting area or σ = Force / Area. It is the expression of force per unit area to structural members that

10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

A=b h= 83 in. 45ft. ft. = ft.2

The Easiest Way to Convert Units in an Algebraic Equation Physics professors teach you to convert everything into standard SI units, solve the problem, and hope the units come out right. In Chemistry and

MAE 20 Winter 2011 Assignment 5

MAE 20 Winter 2011 Assignment 5 6.7 For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the modulus of elasticity is 115 GPa (16.7 10 6 psi). (a) What is the

MECHANICS OF MATERIALS

T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

Unit 48: Structural Behaviour and Detailing for Construction. Chapter 13. Reinforced Concrete Beams

Chapter 13 Reinforced Concrete Beams Concrete is a material strong in its resistance to compression, but very weak indeed in tension. good concrete will safely take a stress upwards of 7 N/mm 2 in compression,

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 2 HYDRAULIC AND PNEUMATIC CYLINDERS The material needed for outcome 2 is very extensive

Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials. τ xy 2σ y. σ x 3. τ yz 2σ z 3. ) 2 + ( σ 3. σ 3

Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials Brittle materials are materials that display Hookean behavior (linear relationship between stress and strain) and which

ME 215 Engineering Materials I

ME 215 Engineering Materials I Chapter 3 Properties in Tension and Compression (Part III) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana True Stress and

Mechanical Principles

Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.

06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the

Mechanical properties PU steel sheet piles can be supplied in grades up to yield strength of 430 N/mm 2. Figure 11 PU Steel Sheet Piles: Dimensions

STEEL SHEET PILES 167 Steel Sheet Piles PU Steel Sheet Piles Mechanical properties PU steel sheet piles can be supplied in grades up to yield strength of 430 N/mm 2. Dimensions and sectional properties

Introduction, Method of Sections

Lecture #1 Introduction, Method of Sections Reading: 1:1-2 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

ME 343: Mechanical Design-3

ME 343: Mechanical Design-3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition CONCRETE Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 1 HYDRAULIC PUMPS The material needed for outcome 2 is very extensive so there

SHORE A DUROMETER AND ENGINEERING PROPERTIES

SHORE A DUROMETER AND ENGINEERING PROPERTIES Written by D.L. Hertz, Jr. and A.C. Farinella Presented at the Fall Technical Meeting of The New York Rubber Group Thursday, September 4, 1998 by D.L. Hertz,

General Properties. Components

General Properties Aluminium Composite Panels are aesthetic, sleek looking, smooth, modern building materials used in the design of architectural structures as delimiters of our social life. Components

Optimum proportions for the design of suspension bridge

Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to