AP Physics C. Oscillations/SHM Review Packet
|
|
- Augusta Blankenship
- 1 years ago
- Views:
Transcription
1 AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete oscillation. b. The spring constant. c. The maximum speed of the mass. d. The maximum force on the mass. e. The position, speed, acceleration of the mass at time t = 1s. 2. An object undergoes SHM with a period 2 s and amplitude 0.1 m. At time t = 0 the object is instantaneously at rest at x = 0.1 m. a. Write the equation for the position of the object as a function of time. b. Find the maximum speed and acceleration of the object. c. Write the equations giving the velocity and acceleration of the object as a function of time. d. Sketch the following graphs: x(t), v(t), a(t). 3. A small block of mass 0.2 kg is attached to a horizontal spring with a spring constant k = 200 N/m and placed on a horizontal frictionless table. The other end of the spring is fixed to a wall. When the block is 0.01 m from its equilibrium, it is observed to have a speed of 0.4 m/s. a. Find the total energy of the object. b. Find the maximum displacement of the object from its equilibrium position. c. Find the maximum speed attain by the object during its oscillation. d. Find the location of the object where its kinetic energy equals potential energy.
2 4. A 1.2 kg block is dropped from a height of 0.5 m above an uncompressed spring. The spring has a spring constant k = 160 N/m and negligible mass. The block strikes the top end of the spring and sticks to it. a. Find the speed of the block when it strikes the top end of the spring. b. Find the period of oscillations of the block. c. Find the compression of the spring when the speed of the block reaches its maximum value. d. Find the maximum compression of the spring. e. Find the amplitude of oscillations of the block.
3 5. A 6 kg block is fastened to a vertical spring with a spring constant of 900 N/m. A 4 kg block is at rest on the top of a 6 kg block, and they are both placed on top of the spring. a. Determine the compression of the spring when two blocks are at rest. The blocks are slightly pushed down and released. They begin to oscillate. b. Determine the frequency of oscillations. c. Determine the magnitude of the maximum acceleration that the blocks can attain and still remain in contact at all times. d. Determine the maximum compression of the spring beyond the compression found in part (a) without causing the blocks to exceed the acceleration in part (c). e. Determine the maximum speed of the blocks if the spring is compressed to the distance found in part (d)
4 6. A small block of mass m 1 rests on but is not attached to a larger block of mass m 2. Block m 2 is placed on a horizontal frictionless surface. The maximum friction force between the blocks is f. A spring with a spring constant k is attached to the large block m 2 and to the wall. a. Determine the maximum horizontal acceleration of block m 2 where m 1 doesn t slip on the surface of m 2. b. Determine the maximum amplitude for simple harmonic motion of two blocks if they are to move together. c. The two blocks are pulled to the right to the maximum amplitude found in part (b) and released. Describe the friction force between the blocks during first half of the period of oscillations. d. The two blocks are pulled to the right a distance greater than the maximum amplitude and then released. i. Determine the acceleration of m 1 at the instant when the blocks are released. ii. Determine the acceleration of m 2 at the instant when the blocks are released.
5 7. A group of students conducted an experiment to determine the spring constant of an elastic spring. In the experiment they were using the mass-spring oscillating system shown above. A disk of mass m is attached to a horizontal spring. The disk has a small hole that is used to place it on a frictionless horizontal rod. When the disk is displaced from its equilibrium point and released it undergoes SHM. The students were able to vary the mass by exchanging the disks with different masses and in each trial they measured the time for ten complete oscillations. The data is shown below. M (kg) T 10 (s) T (s) T 2 (s 2 ) a. For each trial, calculate the period and the square of the period. Use a reasonable number of significant figures. Enter these results in the table above. b. On the axes below, plot the square of the period versus mass using an appropriate x and y scale. Draw the best fit line for this data. c. A disk with an unknown mass is set to SHM. The time for ten oscillations is 7 s. From the graph, find the mass of the disk. Write your answer with a reasonable number of significant figures. d. From the graph, find the spring constant. e. Is it possible to use this device to measure mass aboard satellite orbiting Earth?
6 8. An experiment to measure the acceleration due to gravity g was conducted in a physics lab. Students were using a simple pendulum, meter stick, and stopwatch. The pendulum consisted of a ball of mass m at the end of a string of length L. During the experiment, the students were changing the length of the string and recording the time for ten complete oscillations. The data is shown below. L (m) t 10 (s) T (s) T 2 (s 2 ) a. Calculate the period and the square of the period for each trial and enter these results in the table above. Use a reasonable number of significant figures. b. On the graph below, plot the period squared versus length using an appropriate x and y scale. Draw the best fit line for this data. c. Assuming that the pendulum undergoes SHM according to your best-fit line, determine the value of the acceleration due to gravity. Explain your answer. d. If the experiment was performed in the accelerating upward elevator, how would it change the answer to part (c)? Explain.
7 9. An elastic spring with is placed on a horizontal platform. A pan of mass M is attached to the top end of the spring, compressing it a distance d. A piece of clay is dropped from a height h onto the pan. The piece of clay strikes the pan and sticks to it. a. What is the speed of the clay just before it hits the pan? b. What is the speed of the pan just after the clay strikes it? c. What is the period of oscillation? d. How much is the spring stretched at the moment when the speed of the pan is a maximum? e. If a smaller in diameter spring is placed inside the first one so two springs can support the pan, how would it change the period of oscillations?
8 10. A baseball bat of mass M and length L is pivoted at point P. The center of mass of the bat is located at a distance d from the pivot. When the bat is displaced from equilibrium by a small angle θ and released it undergoes SHM. Physics students are asked to determine the moment of inertia of the bat with respect to the pivot point P. a. Write the appropriate differential equation for the angle θ that can be used to describe motion of the bat. b. Using the analogy to a mass oscillating on a spring, determine the period of the bat s motion. c. Describe an experiment that you would perform to measure the moment of inertia of the bat. Include the list of additional materials and write a detail procedure on how you would obtain them. d. If the center of mass of the bat is not given in the problem, how would you set up an additional experiment to measure the center of mass?
9 SHM Review packet Answers 1. a. 2s b N m c m s d N e. x = 0.8 m, v = 0 m s, a = 7.9 m s 2 2. a. x = 0.1 cos(πt) b. v max = 0.31 m s, a max = 0.97 m s 2 c. v = 0.31 sin(πt), a = 0.97 cos(πt) d. x v a t t t 3. a J b m c m s d m
10 4. a m s b s c m d m e m 5. a m (using g=10 m/s/s) b. 1.5 Hz c. g d m e m s 6. a. f m 1 b. (m 1+m 2 )f km 1 c. The friction force is directly proportional to the sinusoidal acceleration. d. i. f m 1 = a 1 ii. ka f m 2 = a 2
11 7. a. M (kg) T 10 (s) T (s) T 2 (s 2 ) b. 1.0 T m c kg d N m e. Yes, as the period does not depend on gravity
12 8. a. L (m) t 10 (s) T (s) T 2 (s 2 ) b. 4.0 T L c m. For a pendulum, T = 2π l. This equation can be rearranged to g = s 2 g 4π 2 l T 2 and since slope = T2 L 4π2, g =. slope d. The answer to c would be higher. This is because g will be affected by the upwards acceleration, as given by the equation F N mg = ma. 9. a. 2gh b. m 2gh m+m c. 2π (M+m)d Mg d. (M+m)d M e. It would increase the period. This is because k becomes larger.
13 mgd sin θ 10. a. = d2 θ I dt 2 b. 2π I mgd c. Rotate the bat by a small angle θ and release the bat. Time ten complete oscillations using a stopwatch. Divide the final time by 10 to get the period (T) of the bat. Use the equation T = 2π I to algebraically solve for I (I = T2 mgd ). mgd 4π 2 d. Grab a fulcrum and slowly move the bat along it. When the bat balances out on the fulcrum, the point that the fulcrum is touching is the center of mass.
Practice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
Chapter 13, example problems: x (cm) 10.0
Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
Simple Harmonic Motion
Simple Harmonic Motion Restating Hooke s law The equation of motion Phase, frequency, amplitude Simple Pendulum Damped and Forced oscillations Resonance Harmonic Motion A lot of motion in the real world
Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
Physics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
Oscillations: Mass on a Spring and Pendulums
Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that
THE NOT SO SIMPLE PENDULUM
INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,
both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
AP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
Simple Harmonic Motion Concepts
Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called
PHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
= mg [down] =!mg [up]; F! x
Section 4.6: Elastic Potential Energy and Simple Harmonic Motion Mini Investigation: Spring Force, page 193 Answers may vary. Sample answers: A. The relationship between F g and x is linear. B. The slope
Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
Chapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
Advanced Higher Physics: MECHANICS. Simple Harmonic Motion
Advanced Higher Physics: MECHANICS Simple Harmonic Motion At the end of this section, you should be able to: Describe examples of simple harmonic motion (SHM). State that in SHM the unbalanced force is
Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
AP Physics - Chapter 8 Practice Test
AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
LABORATORY 9. Simple Harmonic Motion
LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we
1 of 10 11/23/2009 6:37 PM
hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction
SIMPLE HARMONIC MOTION
SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion
Type: Double Date: Simple Harmonic Motion III. Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10
Type: Double Date: Objective: Simple Harmonic Motion II Simple Harmonic Motion III Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10 AP Physics B Mr. Mirro Simple Harmonic Motion
Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1
Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2 We know
Simple Harmonic Motion
Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,
PHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
HOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
Physics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Simple Harmonic Motion
Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the
8 SIMPLE HARMONIC MOTION
8 SIMPLE HARMONIC MOTION Chapter 8 Simple Harmonic Motion Objectives After studying this chapter you should be able to model oscillations; be able to derive laws to describe oscillations; be able to use
Simple Harmonic Motion Experiment. 1 f
Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring
Lab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square
PSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
Center of Mass/Momentum
Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped
Hooke s Law and Simple Harmonic Motion
Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and
charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring
People s Physics book 3e Ch 25-1
The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate
Simple Harmonic Motion
Simple Harmonic Motion Objective: In this exercise you will investigate the simple harmonic motion of mass suspended from a helical (coiled) spring. Apparatus: Spring 1 Table Post 1 Short Rod 1 Right-angled
Simple Pendulum 10/10
Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,
1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
AP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
Physics 201 Fall 2009 Exam 2 October 27, 2009
Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is
Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
Response to Harmonic Excitation
Response to Harmonic Excitation Part 1 : Undamped Systems Harmonic excitation refers to a sinusoidal external force of a certain frequency applied to a system. The response of a system to harmonic excitation
1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!
1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating
Tennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
Chapter 1. Oscillations. Oscillations
Oscillations 1. A mass m hanging on a spring with a spring constant k has simple harmonic motion with a period T. If the mass is doubled to 2m, the period of oscillation A) increases by a factor of 2.
Physics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
Prelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
Physics 1022: Chapter 14 Waves
Phys 10: Introduction, Pg 1 Physics 10: Chapter 14 Waves Anatomy of a wave Simple harmonic motion Energy and simple harmonic motion Phys 10: Introduction, Pg Page 1 1 Waves New Topic Phys 10: Introduction,
Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
Unit 3 Work and Energy Suggested Time: 25 Hours
Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense
IMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.
MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The
Physics 2305 Lab 11: Torsion Pendulum
Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation
Measurement of the Acceleration Due to Gravity
Measurement of the Acceleration Due to Gravity Phys 303 Lab Experiment 0 Justin M. Sanders January 12, 2004 Abstract Near the surface of the earth, all objects freely fall downward with the same acceleration
AP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
AP Physics B Free Response Solutions
AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible
04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.
Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that
COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion
CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object
AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 2001 APPLIED MATHEMATICS HIGHER LEVEL
M3 AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA LEAVING CERTIFICATE EXAMINATION, 00 APPLIED MATHEMATICS HIGHER LEVEL FRIDAY, JUNE AFTERNOON,.00 to 4.30 Six questions to be answered. All questions carry equal marks.
Wave topics 1. Waves - multiple choice
Wave topics 1 Waves - multiple choice When an object is oscillating in simple harmonic motion in the vertical direction, its maximum speed occurs when the object (a) is at its highest point. (b) is at
Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)
Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable
Practice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
SAMPLE PAPER 1 XI PHYSICS
SAMPLE PAPER 1 o A n XI PHYSICS Time: Three Hours Maximum Marks: 70 General Instructions (a) All questions are compulsory. (b) There are 30 questions in total. Questions 1 to 8 carry one mark each, questions
Mechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
Motion in One-Dimension
This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
Name: Lab Partner: Section:
Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in
AP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
Centripetal Force. 1. Introduction
1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude
P113 University of Rochester NAME S. Manly Fall 2013
Final Exam (December 19, 2013) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless
Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum
Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are
PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
Physics 207 Lecture 25. Lecture 25. For Thursday, read through all of Chapter 18. Angular Momentum Exercise
Lecture 5 Today Review: Exam covers Chapters 14-17 17 plus angular momentum, statics Assignment For Thursday, read through all of Chapter 18 Physics 07: Lecture 5, Pg 1 Angular Momentum Exercise A mass
The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:
Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of
ELASTIC FORCES and HOOKE S LAW
PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
Physics Midterm Review. Multiple-Choice Questions
Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
MECHANICS IV - SIMPLE HARMONIC MOTION
M-IV-p.1 A. OSCILLATIONS B. SIMPLE PENDULUM C. KINEMATICS OF SIMPLE HARMONIC MOTION D. SPRING-AND-MASS SYSTEM E. ENERGY OF SHM F. DAMPED HARMONIC MOTION G. FORCED VIBRATION A. OSCILLATIONS A to-and-fro
Sample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
SHM Simple Harmonic Motion revised June 16, 2012
SHM Simple Harmonic Motion revised June 16, 01 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from
Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy
INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for