Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43


 Lily Nichols
 1 years ago
 Views:
Transcription
1 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
2 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state of an object describes its position and its motion. motion requires energy: flying a plane requires energy (from the fuel) a thrown ball gets its energy from the thrower
3 One definition of energy is the capacity to do work. This chapter covers kinetic energy, which is just one form of energy, and then work. The workenergy theorem relates the two quantities. SI unit of energy is the Joule 1 J = 1 kg m 2 /s 2 another unit of energy is the calorie
4 Kinetic energy energy associated with motion. Anything that moves has kinetic energy. kinetic energy: K = ½ mv 2 Kinetic energy is related to the mass and the velocity. Eample. A 1 kg ball is thrown with v = 20 m/s K = ½ (1kg)(20m/s) 2 = 200 J
5 Work When you apply a force to an object, you can either accelerate or decelerate the object. Since the velocity changes, the kinetic energy changes. Work is the transfer of energy via a force. Symbol for work is W. Easily confused with weight. Work is a scalar. The unit of work is also the Joule.
6 Relation of work and kinetic energy: Let a force act in the direction on a particle with 1D motion: F =ma Multiply equation by ½ m: v 2 v 2 0 2a d substituting 1 2 mv 2 F ma 1 2 mv 2 0 ma d Yields: 1 2 mv mv 2 0 F d F d is the work
7 Work W = F d Work depends on displacement If there is no displacement, there is no work.  If you are holding a book still in the air, you are doing no work  If you are sitting still in a chair, gravity is doing no work.  If you lean on a wall and the wall does not move, you are doing no work.
8 Only components of forces parallel to the displacement do work. F sin F d F cos W = (F cos ) d W = F d cos The vertical component does no work.
9 Only the component of the force that is along the direction of the displacement, does any work. W = F d cos Work is the dot product between the force and the displacement. W F In this definition: W = F d cos F and d are magnitudes, are always positive d The work will be positive or negative based on the cos.
10 Work kinetic energy theorem W = K or K f = K i + W Positive work increases the kinetic energy. Speed up the object Negative work decreases the kinetic energy. Slows down the object
11 Work done by gravitational force The gravitational force is never turned off, so whenever an object has a change in elevation, there is work done by the gravitational force.. W g = mg d cos Since F g is always down, whenever the object is lowered, F g does positive work. When the object is raised, F g does negative work.
12 W g = mg d cos Since F g is always down, whenever the object is lowered vertically, d is down and = 0 0. F g does positive work. When the object is raised straight up, d is up and = F g does negative work.
13 When raising or lowering an object you have to consider the work done by the applied force and the work done by gravity. K = W a + W g If the initial and final velocities of the object being moved are equal then: W a = W g It does not matter if the K f and K i are zero or not, as long as they are equal. You can lift something at constant velocity, or you can pick up a stationary object and then hold it still.
14 If you have a nonconstant force that picked up an object, calculating your work directly may be tricky. However you can calculate the work done by gravity and then take the opposite of W g. Eample of Olympic snatch. The lift requires two separate pulls requiring different muscle groups. Instead of trying to determine how much force each pull eerted and over what distance, you can instead find the work done by gravity and then take: W a = W g.
15 Eample You lower a bucket down a well, with constant velocity a distance of 8 meters. You eert a constant force of 19.6 N. The bucket has a mass of 2 kg. Find the work done by you, and the work done by gravity. W = mg W = (2kg) g W = 19.6 N 19.6 N W
16 The displacement is down the well. W = (F cos ) Your work: Work by gravity: W y = (19.6 N cos 180) 8m W y = J W g = (19.6 N cos 0) 8m W g = J Notice that the work done by gravity was mgh, where h is the change in height. The net work is zero, the bucket is lowered at a constant velocity.
17 Eample A 500 N force directed 30 degrees above the horizontal is used to pull a 50 kg sled across the ground. The coefficient of friction between the sled and the ground is 0.3. The sled is pulled 5 meters. a) What is the work done by the pulling force b) work done by friction. c) work done by the normal force d) work done by gravity
18 P = 500 N, = 30 0 m = 50 kg = 0.3 = 5 m F f W = mg = 490 N F N W F N + P y = W F N = W P y = mg 500 N (sin 30) F N = (50 kg)g 250 N = 240 N P F f = F N = 0.3*240 N = 72 N
19 W = (F cos ) Work by pulling force: W p = (500 N cos 30) 5 m = 2165 J Work by friction: W f = (72 N cos 180) 5 m = J Work by normal force: W N = (240 N cos 90) 5 m = 0 J Work by gravity: W g = (490 N cos 270) 5 m = 0 J Net work is then 2165 J 360 J = 1805
20 Work by a general variable force When the force is variable we cannot use: W = (F cos ). This is because the work done over each interval, is different. Instead we have to integrate the force over the total displacement to find the work. W i f F( ) d The area under the Force vs. displacement cure is equal to the work. (see fig. 713)
21 Let: and F dr F iˆ diˆ Variable force in 3D F y ˆj dyj ˆ Fzkˆ dzkˆ (the small change in position) The amount of work produced by the force over the small displacement interval dr is: dw F dr F d F dy F dz The work over the total displacement is: rf rf W dw F dr W r i i f F d y r i y y i f z Fydy z z i f Fzdz
22 WorkKinetic Energy Theorem with a variable force The work of a variable force is: W i f F( ) d Using Newton s 2 nd law we rewrite as: ma d = dv m d dt W i f ( ma) d Using the chain rule we have: W W i f dv dt dv d d dt dv d v f 2 2 ( ma) d m vdv mv f mvi v K i 1 2 v 1 2
23 Spring A spring force is a particular type of variable force. Spring forces are important because many forces behave mathematically like spring forces. Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion.
24 Springs Ideal, or linear springs follow a rule called: Hooke s Law: Fs =  k Also an ideal spring will have negligible mass. k is called the spring constant. This determines how stiff the spring is. is the distance the spring is deformed (stretched or compressed) from the equilibrium length. The minus sign tells us that this is a restoring force.
25 Restoring force means that the force the spring eerts, is in the opposite direction of the force that deforms the spring. If I pull the bo to the right (stretch the spring), the spring will eert a force to the left. If I push the bo to the left (compress the spring), the spring will eert a force to the right.
26 Spring constant The spring constant, (k), determines how stiff a spring is.  High spring constant Stiff or strong, Hard to stretch or compress  Low spring constant Limp or weak, Easy to stretch or compress  Units for spring constant are force per length: N/m
27 Simple spring eample A spring with a spring constant of 250 N/m has a length of 0.5 meters when un stretched. What magnitude of force is needed to stretch the spring so that is 0.75 meters long? F s =  k F s = (250 N/m)(0.75m 0.5m) = 62.5 N I got rid of the minus sign to show the magnitude. Note that it would take the same amount of force to compress the spring by 0.25 meters.
28 W = (F cos ) assumes a constant amount of force. So this will not work for a spring. The force needed to deform (stretch/compress) a spring increases as the deformation increases. W W W s s s i i f f 1 2 F d kd k ( k)( f i ) ki kf i f d If i =0, the work of a spring force, where is the deformation of the spring: W s =  ½ k 2
29 When a spring is deformed: The work done by the spring will be positive if the spring ends up closer to its relaed length. W s will be negative if the spring ends up further away from its relaed length. W s is zero if the difference of the spring s length to the relaed length is unchanged.
30 Similar to the case of an applied force acting against gravity. We can find the work of an applied force acting against a spring using: K = W a + W s If the ends of the spring are stationary before and after the displacement. then: W a = W s
31 Power Definition of power is the work done per time. W P ave t SI unit of power is the watt (W). 1 watt = 1 J/s (Don t confuse the W for watt with the W for work) Instantaneous power: P dw dt
32 U.S. unit of power is horsepower 1 hp = 746 W For electric power generation/usage, use the kilowatthour. This is the energy transferred in 1hr at the rate of 1kW (1000 J/s). 1kWh = (1000J/s)(3600s) = J
33 General form for power: P P P dw dt Fv cos F v F(cos dt ) d F cos d dt Power is the dot product of the force and velocity vectors. Only components of forces that are parallel to the velocity do work. The power from forces that are perpendicular to the motion is zero.
34 Power Power is related to how fast a force can be applied. Lifting a heavy weight slowly may not require much power. Picking up the same weight quickly will require more power. Weightlifting eamples: compare the power required to perform a bench press and an Olympic snatch.
35 Assume the weights are moved at constant velocities and the applied forces are constant. Bench press: 300 lbs (1335 N), P = F v Range of motion ~ 0.5 m time to raise weight ~3 seconds = F / t = (1335 N)(0.5 m)/(3s) = W The above assumptions lead us to the power being constant, (equal to the average power).
36 Olympic snatch: 100 lbs (445 N) P = F v Range of motion ~ 1.5 m time to raise weight ~1 s = F / t = (445 N)(1.5 m)/(1s) = W Compared to the power in the bench press (222.5 W) Even though the snatch is performed with less weight, it requires more power because of the larger velocity. (Could have found the power by finding the work of the applied force, using W a =  W g. Then using power = work/time.)
37 Bucket Eample You want to lift a 20 kg bucket up a well at a constant velocity of 0.5 m/s. What power is needed to do so? Since the velocity is constant, the upward force you must pull with is equal to the weight of the bucket. P = F v = F v = (20kg)g (0.5 m/s) = 98 W
38 Another bucket eample Again you want to raise the same 20 kg bucket. It is starting from rest, and you want to pull on the bucket so that is has a velocity of 2 m/s. You want to accomplish this over a time interval of 4 seconds. Use Power and the work energy theorem. (net work equals change in kinetic energy.)
39 first find the change in the kinetic energy. K = ½ mv f2 ½ mv 02 = ½ (20kg)(2m/s) 2 K = 40 J Work = 40 J Average power = Work/time = (40 J) /(4s) = 10 W
40 Shamu eample Calculate the average power needed for the whale to speed up. The killer whale has mass of 8000 kg What power is needed to reach speed of 12m/s in a 6 second time interval? Do work energy theorem K = ½ mv f2 ½ mv 02 = ½ (8000kg)(12m/s) 2 K = J Power = ( J)/6 s = W This was neglecting drag. The power is actually higher W (1hp/746W) = 128 hp About the same as a car.
41 Power delivered by elevator motor A 1000 kg elevator carries a load of 800 kg. A constant friction force of 4000 N retards it upward motion. The retarding force behaves similar to friction. What minimum power in kilowatts and horsepower must the motor deliver to lift the fully loaded elevator at a constant speed of 3 m/s?
42 Elevator Since the speed is constant (3m/s), the acceleration and the sum of all forces equals zero. Find the force (T) the motor must pull with to achieve this motion. F = ma = 0 T F r mg = 0 T = F r + mg = 4000 N + (1800kg)g T = N mg F r T
43 Elevator Now that we know the force the motor must eert we can find the power using P = F v =F v. P = F v = ( N)(3m/s) = W 746 W = 1 hp So P = ( W) (1 hp)/(746 W) = 87 hp
44 Question 8 Problems: 10, 12, 20, 24, 30, 34, 48
Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.
WorkEnergy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:
More information7. Kinetic Energy and Work
Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic
More informationWork and Kinetic Energy
Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 6 To understand and calculate
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationHow to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation
Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy workenergy theorem How to calculate work done by a varying force along a curved path The meaning and calculation
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationphysics 111N work & energy
physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More information1 of 9 10/27/2009 7:46 PM
1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]
More information103 PHYS  CH7  Part2
Work due to friction If friction is involved in moving objects, work has to be done against the kinetic frictional force. This work is: W = f d = f d cos180 = f d o f k k k Physics 1 Example f n r θ F
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationGravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationChapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More informationKinetic Energy and Work
PH 13A Fall 009 Kinetic Energy and Work Lecture 1011 11 Chapter 7 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) Chapter 7 Kinetic Energy and Work In this chapter we will introduce the
More informationPHYSICS 111 HOMEWORK#6 SOLUTION. February 22, 2013
PHYSICS 111 HOMEWORK#6 SOLUTION February 22, 2013 0.1 A block of mass m = 3.20 kg is pushed a distance d = 4.60 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationcharge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the
This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2D collisions, and centerofmass, with some problems requiring
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy
More informationMomentum and Energy. Ron Robertson
Momentum and Energy Ron Robertson Momentum Momentum is inertia in motion. Momentum = mass x velocity Unit kg meters/second Momentum is changed by force. The amount of momentum change is also affected by
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More information2.2 NEWTON S LAWS OF MOTION
2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (16421727) made a systematic study of motion and extended the ideas of Galileo (15641642). He summed up Galileo s observation in his three laws of motion
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationWork. Work = Force x parallel distance (parallel component of displacement) F v
Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationWork, Energy and Power
Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed
More informationWORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS
WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that
More informationPS5.1 Explain the relationship among distance, time, direction, and the velocity of an object.
PS5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an
More informationWork and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa
Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More informationChapter 8: Conservation of Energy
Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I
More informationGeneral Physical Science
General Physical Science Chapter 4 Work and Energy Work The work done by a constant force F acting upon an object is the product of the magnitude of the force (or component of the force) and the parallel
More informationWork, Kinetic Energy and Potential Energy
Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy
More informationW i f(x i ) x. i=1. f(x i ) x = i=1
Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationMechanics 2. Revision Notes
Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationUnit 3 Practice Test: Dynamics
Unit 3 Practice Test: Dynamics Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the common formula for work? a. W = F x c. W = Fd
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationPHYSICS 149: Lecture 15
PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus
More information1206EL  Concepts in Physics. Friday, September 18th
1206EL  Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationWork and Direction. Work and Direction. Work and Direction. Work and Direction
Calculate the net gravitational force on the shaded ball. Be sure to include the magnitude and direction. Each ball has a mass of 20,000 kg. (0.79N, 22.5 o N of E) Chapter Six Work = Force X distance W
More informationName Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.
Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors
More information= Ps cos 0 = (150 N)(7.0 m) = J F N. s cos 180 = µ k
Week 5 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions o these problems, various details have been changed, so that the answers will come out dierently. The method to ind the solution
More informationProblem Set 5 Work and Kinetic Energy Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on
More informationDynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?
Dynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationHomework 4. problems: 5.61, 5.67, 6.63, 13.21
Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationUnit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures
Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationAP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.
1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach
More informationMCAT Physics Review. Grant Hart
MCAT Physics Review Grant Hart grant_hart@byu.edu Historical areas of emphasis  probably similar in the future Mechanics 25% Fluid Mechanics 20% Waves, Optics, Sound 20% Electricity & Magnetism 10% Nuclear
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationSimple Harmonic Motion Concepts
Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called
More informationphysics 111N forces & Newton s laws of motion
physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationRotation, Rolling, Torque, Angular Momentum
Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 101 Rotational Variables! The motion of rotation! The same
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationHW#4b Page 1 of 6. I ll use m = 100 kg, for parts bc: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).
HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationCh 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63
Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ
More informationObjective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (125) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)
Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (125) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationF mg (10.1 kg)(9.80 m/s ) m
Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPrinciples and Laws of Motion
2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause
More informationPhysics 2AB Notes  2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.
Physics 2AB Notes  2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.
More informationWork and Conservation of Energy
Work and Conservation of Energy Topics Covered: 1. The definition of work in physics. 2. The concept of potential energy 3. The concept of kinetic energy 4. Conservation of Energy General Remarks: Two
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationLab 5: Conservation of Energy
Lab 5: Conservation of Energy Equipment SWS, 1meter stick, 2meter stick, heavy duty bench clamp, 90cm rod, 40cm rod, 2 double clamps, brass spring, 100g mass, 500g mass with 5cm cardboard square
More information