Physics 201 Homework 8


 Roderick Copeland
 2 years ago
 Views:
Transcription
1 Physics 201 Homework 8 Feb 27, A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the angular acceleration of the blades? We have τ = Iα (Newton s second law). Thus, τ α = I = = A bicycle wheel has a radius of m and a rim whose mass is 1.20 kg. The (a) kgm 2 wheel has 50 spokes, each with a mass of kg. (a) Calculate the moment of (b) kgm 2 (c) kgm inertia of the rim about the axle. (b) Determine the moment of inertia of any one 2 spoke, assuming it to be a long, thin rod that can rotate about one end. (c) Find the total moment of inertia of the wheel, including the rim and all 50 spokes. (a) The rim is in the shape of a ring, so I = MR 2. Thus, I rim = (1.20)(0.330) 2 = (b) The spoke is in the shape of a rod, rotating at one end, so I = 1 3 MR2. Thus, I spoke = 1 3 (0.010)(0.330)2 = (c) The moment of inertia of the composite is the sum of the individual moments of inertia. Thus, I total = I rim + 50I spoke = A flywheel is a solid disk that rotates about an axis that is perpendicular rev/min to the disk at its center. Rotating flywheels provide a means for storing energy in the form of rotational kinetic energy and are being considered as a possible alternative to batteries in electric cars. The gasoline burned in a 300 mile trip in a typical midsize car produces about J of energy. How fast would a 13 kg flywheel with a radius of 0.30 m have to rotate to store this much energy? Give your answer in rev/min. The formula for the rotational kinetic energy is KE r = 1 2 Iω2 where I is the moment of inertia and ω is the angular speed. We are given KE r, if we knew I, we could solve for ω. The moment of inertia depends on the shape of the object, its distribution of mass, and the axis through which it rotates. Since this requires some calculus to derive from scratch, we must merely look up the moment of inertia for our objects. For a solid disk rotating through its center, the moment of inertia is I = 1 2 MR2 where M is the mass of the disk and R is its radius. In our case: I = 1 2 (13)(0.30)2 = Plugging that into the definition above we get: ( ) = 1 2 (0.585)(ω)2 = ω = rad/s 1
2 But we are asked to quote the answer in rev/min. Since there are $2p radians in one revolution, we need to covert the units as: ω = rad 1 s 60 s 1 min 1 rev = π rad 4. A uniform board is leaning against a smooth vertical wall. The board is at 37.6 an angle θ above the horizontal ground. The coefficient of static friction between the ground and the lower end of the board is Find the smallest value for the angle θ, such that the lower end of the board does not slide along the ground. This is an equilibrium problem. Let s begin by cataloging the forces involved. ˆ The weight of the ladder, pointing down from the center of the block ˆ The support force from the wall, pointing left from the top of the block ˆ The support force from the floor, pointing up from the bottom of the block ˆ The friction from the floor, pointing right from the bottom of the block There is no friction from the wall because it is smooth. The lever arm of all of these forces will depend on the angle θ. Also on our choice of rotational axis. We should consider analyzing the torques from one of the places the forces are applied. It might at first seem good to use the point at the floor since you eliminate two forces immediately, but notice that we are not given any information about the weight or mass of the board. This suggests that we should consider using the center of the ladder as the rotational axis for analysis. The lever arms are: ˆ l 1 = 0, by design ˆ l 2 = (r/2) sin θ ˆ l 3 = (r/2) sin(90 θ) = (r/2) cos θ ˆ l 4 = (r/2) sin θ And the corresponding torques are: ˆ τ 1 = 0, by design ˆ τ 2 = +(F 2 )(r/2) sin θ ˆ τ 3 = (F 3 )(r/2) cos θ ˆ τ 4 = +(F 4 )(r/2) sin θ where F 4 is the friction force, so F 4 = (0.650)(F 3 ). Setting the sum of these four torques to zero yields (F 2 )(r/2) sin θ (F 3 )(r/2) cos θ + (0.650)(F 3 )(r/2) sin θ = 0 Notice that the (r/2) cancels out. Unfortuantely, we have two equations with two unknowns. We need another equation. We don t know the weight, but we do know that all the forces cancel out including the horizontal ones. In other words, F 2 = F 4 = (0.650)(F 3 ) 2
3 After subsutition, this makes our torque equation solvable. (0.650)(F 3 )(r/2) sin θ (F 3 )(r/2) cos θ + (0.650)(F 3 )(r/2) sin θ = 0 We cancel the (F 3 )(r/2) and are left with: (1.300) sin θ cos θ = 0 = (1.300) sin θ = cos θ = tan θ = 1/1.300 = = θ = Figure 1 shows a uniform horizontal beam attached to a vertical wall by a P = 270 newtons. H = 210 newtons. V = 170 newtons frictionless hinge and supported from below at an angle θ = 39 by a brace that is attached to a pin. The beam has a weight of 340 newtons. Three additional forces keep the beam in equilibrium. The brace applies a force P to the right end of the beam that is directed upward at the angle θ with respect to the horizontal. The hinge applies a force to the left end of the beam that has a horizontal component H and a vertical component V. Find the magnitudes of these three forces. Figure 1: Problem 9.21 (a) Okay. There are four forces here: ˆ The weight of the beam, located in the center of the beam, pointing down. ˆ The support force from the brace, located at the end of the beam, pointing up at 39. ˆ The horizontal component of the support from the hinge, located at the start of the beam, pointing left. ˆ The vertical component of the support from the hinge, located at the start of the beam, pointing up. Now we must choose a axis of rotation for the analysis. If we choose the point where the hinge is, then the last two forces will have no lever arm. This means that we won t need to know the magnitude of these forces to calculate the torques. Now we need to determine the lever arms of these forces to get to the torques: ˆ The lever arm of the beam s weight is half the length of the beam, l 1 = L/2. ˆ The lever arm of the brace s support is l 2 = L sin 39. ˆ The lever arm of the hinge s horizontal support is zero, l 3 = 0. ˆ The lever arm of the hinge s vertical support is also zero., l 4 = 0. The only tricky one is l 2. The line of action for the brace s support is along the support, so the lever arm is perpendicular to this line. There is a right triangle here: the hypoteneus is the length of the beam, the adjecent side is along the brace, and the opposite side is the lever arm itself. So sin θ = l/l. The next step is to calculate the torques. We use τ = F l, but remember that the sign of the torque is determined by the direction of the line of force. If the line of force will generate positive rotation, the torque is positive. Thus, 3
4 ˆ τ 1 = (340)(L/2). ˆ τ 2 = +(P )( )(L). ˆ τ 3 = (H)(0) = 0. ˆ τ 4 = (V )(0) = 0. The sum of these torques must be zero because the system is not moving. Thus, (340)(L/2) + (P )( )(L) = 0 = P = (b) To get the hinge s horizontal support H, we can use fact that the forces must balance (otherwise the system would move). The horizontal forces are: H, the horizontal support from the hinge and P x, the horizontal support from the brace. Thus, H + P cos θ = 0 = H + (270.13)( ) = 0 = H = The negative sign indicates the force H is pointing left. (c) To get the hinge s vertical support V, we use similar logic. The vertical forces are: V, W, and P y. Thus, V W + P sin θ = 0 = V (340) + (270.13)( ) = 0 = V = Figure 2 shows a person (weight = 584 newtons) doing pushups. Find the 96 newtons from each foot and 196 newtons normal force exerted by the floor on each hand and each foot, assuming that the from each hand person holds this position. Figure 2: Problem 9.72 There are three forces here. The support force from the hands, the feet, and the person s weight. We need to choose an axis of rotation. Any axis will work because the system is at rest, in equilibrium. There are three natural places to consider: each place where there is a force. Whichever point we choose will eliminate that force from the torque calculation. Suppose we choose the center of gravity. Then the lever arm of the feet is meters and the lever arm of the hands is meters. Both supports point up, but the direction of the torques are different. The torque from the hands cause positive rotation and the torque from the feet cause negative rotation. Let s agree to call the support force from the hands H and the support force from feet F. The sum of the torques is therefore, (H)(0.410) (F )(0.840) = 0 4
5 In order to move forward we need another equation. This will come from the linear equilibrium of the system. In this case, H + F 584 = 0 Two equations, two unknowns. We can use the first to get: H = (2.0488)(F ) And we can plug this into the second equation to yield: And, (2.0488)(F ) + F 584 = 0 = F = H = (2.0488)(191.55) = However, we are asked for the force from each foot and hand. So, divide both of these numbers by two. 7. A person exerts a horizontal force of 190 newtons in the test apparatus shown 1200 newtons in Figure 3. Find the magnitude of the horizontal force M that his flexor muscle exerts on his forearm. Figure 3: Problem 9.15 This is an equilibrium problem and there are two forces acting on the forearm: the apparatus is pulling with 190 newtons of force and the bicep muscle is pulling with the unknown force. The total torque must be zero but in this simple case that simply means that the two torques are equal and opposite. The torque from the apparatus is: Similarly, the torque from the muscle is: τ = F l = (190)(0.34) = 64.6 τ = F l = 64.6 = (M)(0.054) = M = Figure 4 shows a bicycle wheel resting against a small step whose height is 29 newtons meters. The weight and radius of the wheel are 25.0 newtons and meters, respectively. A horizontal force F is applied to the axle of the wheel. As the magnitude of F increases, there comes a time when the wheel just begins to rise up and loses contact with the ground. What is the magnitude of the force when this happens? 5
6 Figure 4: Problem 9.24 There are two ways to solve this problem. In the first approach we consider the point of contact between the wheel and the stair as the axis of rotation as the wheel just begins to lift off the ground. Before the wheel lifts there are three forces: the pulling force, the weight of the wheel and the support force from the ground. But as the wheel lifts, there is no longer any support to consider. So there are only two forces to worry about in this problem. So we will have to calculate two torques and therefore two leverarms. For this a drawing might help: θ = This shows all the key distances and angles in the problem. We know the vertical height of the triangle because it is the radius of the wheel minus the height of the step. The angle can be obtained using the cosine against these two lengths and the horizontal side of the triangle you can get from either the Pythagorean theorem or using the sine of the angle we just calculated. Okay back to calculating lever arms. Fortunately we have already done the work. The lever arm of the pulling force is the vertical side of the triangle (0.220 meters) and the lever arm of the weight is the horizontal side ( meters). Right as the wheel lifts these two torque are in equilibrium: they are equal and opposite. Well, we know the torque from the weight around this pivot: τ = F l = (25.0)( ) =
7 Since the magnitude of the torque from the pulling force must be the same: τ = F l = = (F )(0.220) = F = I said earlier there was a second way to do this problem. You don t even need to consider torque (though you still need to do that trig). The net force is the combination of the weight and the pulling force. The wheel will lift when that net force pulls the wheel above and over the pivot. The angle of this net force is: ( ) θ = tan 1 Fy Fx But in this case F y is just the weight and F x is just the pulling force. The only remaining trick is to remember to use the canonical angle. In this case that is 270 plus the angle in the triangle. Thus, tan( ) = F = F = A stationary bicycle is raised off the ground, and its front wheel (mass = newtons kilograms) is rotating at an angular velocity of 13.1 rad/s (see Figure 5). The front brake is then applied for 3.0 seconds, and the wheel slows down to 3.7 rad/s. Assume that all the mass of the wheel is concentrated in the rim, the radius of which is 0.33 meters. The coefficient of kinetic friction between the brake pad and the rim is µ k = What is the magnitude of the normal force that each brake pad applies to the rim? Figure 5: Problem 9.45 The friction from the brake pads provides the torque to decelerate the wheel. We know that the friction force is given by F = µ k N. So by determining this force we can answer the question. On the other hand, clearly we can determine the angular acceleration from the data given: ω 0 = 13.1 t = 3.0 ω = 3.7 α =? 7
8 We can use ω = ω 0 + αt... (3.7) = (13.1) + (α)(3.0) = α = The torque required to produce this deceleration is given by tau = Iα. For a ring, the moment of inertia is simply mr 2. In this case: So the torque needed is I = (1.3)(0.33) 2 = τ = ( )(3.1333) = I ve dropped the sign because the direction doesn t matter in this question. Well, the torque comes from the friction force. But since there are two brake pads, there are two forces applied. The lever arm is simply the radius of the wheel. So we can plug all this into the definition of torque to yield: τ = F l = = (2)(0.85)(N)(0.33) = N = A bowling ball encounters a meter vertical rise on the way back to 1.3 m/s the ball rack, as Figure 6 illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 3.50 m/s at the bottom of the rise. Find the translational speed at the top. Figure 6: Problem 9.57 Hopefully this looks a lot like those inclined plane problems. Like those problems, we can use energy to solve this one. In that case we need to catalog our energy before and after the slope. Before, the height is zero and so is the potential energy. The linear kinetic energy is simply 1 2 mv2. We are not given the mass, but we are used to that cancelling out in these energy problems. The only difficulty is the rotational kinetic energy 1 2 Iω2. Assuming that the ball is rolling (we must or we can t solve this problem), we can say v = rω, but we don t know the radius of the ball. This also is an issue in calculating the moment of inertia I = 2 5 mr2. But notice that we don t really need them individually. In fact, the radius cancels out: KE rot = 1 2 Iω2 = ( 1 2 )( 2 5 mr2 )(v/r) 2 = 1 5 mv2 8
9 This is the formula for the rotational kinetic energy of a rolling sphere. Now we can proceed with our catalog: PE = 0 KE lin = ( 1 2 )(m)(3.50)2 = (6.125)(m) KE rot = ( 1 5 )(m)(3.5)2 = (2.450)(m) This yields a total initial energy of (8.575)(m) joules. Since we ignore frictional losses, the final energy is the same. But what do we know about the final energy? PE = mgh = (m)(9.8)(0.760) = (7.448)(m) KE lin = ( 1 2 )(m)(v)2 = (0.500)(m)(v) 2 KE rot = ( 1 5 )(m)(v)2 = (0.200)(m)(v) 2 Adding these up must give us the total final energy: (8.575)(m) = (7.448)(m) + (0.700)(m)(v) 2 = v 2 = 1.61 = v =
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationSolution Derivations for Capa #10
Solution Derivations for Capa #10 1) The flywheel of a steam engine runs with a constant angular speed of 172 rev/min. When steam is shut off, the friction of the bearings and the air brings the wheel
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 10, 2013
PHYSICS 111 HOMEWORK SOLUTION #10 April 10, 013 0.1 Given M = 4 i + j 3 k and N = i j 5 k, calculate the vector product M N. By simply following the rules of the cross product: i i = j j = k k = 0 i j
More informationCh.8 Rotational Equilibrium and Rotational Dynamics.
Ch.8 Rotational Equilibrium and Rotational Dynamics. Conceptual question # 1, 2, 9 Problems# 1, 3, 7, 9, 11, 13, 17, 19, 25, 28, 33, 39, 43, 47, 51, 55, 61, 79 83 Torque Force causes acceleration. Torque
More informationRotational Dynamics. Luis Anchordoqui
Rotational Dynamics Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation ( O ). The radius of the circle is r. All points on a straight line
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More information3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationPHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
More informationLecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson:
Lecture 15 Torque Center of Gravity Rotational Equilibrium Cutnell+Johnson: 9.19.3 Last time we saw that describing circular motion and linear motion is very similar. For linear motion, we have position
More informationSOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.
SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the
More informationChapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.
Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationPhys101 Third Major Exam Term 142
Phys0 Third Major Exam Term 4 Q. The angular position of a point on the rim of a rotating wheel of radius R is given by: θ (t) = 6.0 t + 3.0 t.0 t 3, where θ is in radians and t is in seconds. What is
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationRotation, Rolling, Torque, Angular Momentum
Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 101 Rotational Variables! The motion of rotation! The same
More information9 ROTATIONAL DYNAMICS
CHAPTER 9 ROTATIONAL DYNAMICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The magnitude of the torque produced by a force F is given by τ = Fl, where l is the lever arm. When a long pipe is slipped
More informationRotation, Angular Momentum
This test covers rotational motion, rotational kinematics, rotational energy, moments of inertia, torque, crossproducts, angular momentum and conservation of angular momentum, with some problems requiring
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationphysics 111N rotational motion
physics 111N rotational motion rotations of a rigid body! suppose we have a body which rotates about some axis! we can define its orientation at any moment by an angle, θ (any point P will do) θ P physics
More informations r or equivalently sr linear velocity vr Rotation its description and what causes it? Consider a disk rotating at constant angular velocity.
Rotation its description and what causes it? Consider a disk rotating at constant angular velocity. Rotation involves turning. Turning implies change of angle. Turning is about an axis of rotation. All
More informationLecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More information9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration
Ch 9 Rotation 9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Q: What is angular velocity? Angular speed? What symbols are used to denote each? What units are used? Q: What is linear
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationChapter 12 Rotational Motion
Chapter 12 Rotational Motion 1) 1 radian = angle subtended by an arc (l) whose length is equal to the radius (r) A bird can only see objects that subtend an angle of 3 X 104 rad. How many degrees is that?
More informationChapter 7 Homework solutions
Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationChapter 8 Rotational Motion
Chapter 8 Rotational Motion Textbook (Giancoli, 6 th edition): Assignment 9 Due on Thursday, November 26. 1. On page 131 of Giancoli, problem 18. 2. On page 220 of Giancoli, problem 24. 3. On page 221
More informationLinear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A
1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser
More informationChapter 7  Rotational Motion w./ QuickCheck Questions
Chapter 7  Rotational Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico October 1, 2015 Review of Last Time Uniform
More informationChapter 8: Rotational Motion of Solid Objects
Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationAngular velocity. Angular velocity measures how quickly the object is rotating. Average angular velocity. Instantaneous angular velocity
Angular velocity Angular velocity measures how quickly the object is rotating. Average angular velocity Instantaneous angular velocity Two coins rotate on a turntable. Coin B is twice as far from the axis
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationLecture Presentation Chapter 7 Rotational Motion
Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class
More informationCircular Motion. Physics 1425 Lecture 18. Michael Fowler, UVa
Circular Motion Physics 1425 Lecture 18 Michael Fowler, UVa How Far is it Around a Circle? A regular hexagon (6 sides) can be made by putting together 6 equilateral triangles (all sides equal). The radius
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationVersion PREVIEW Practice 8 carroll (11108) 1
Version PREVIEW Practice 8 carroll 11108 1 This printout should have 12 questions. Multiplechoice questions may continue on the net column or page find all choices before answering. Inertia of Solids
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationAngular Momentum Problems Challenge Problems
Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise
More informationLinear and Rotational Kinematics
Linear and Rotational Kinematics Starting from rest, a disk takes 10 revolutions to reach an angular velocity. If the angular acceleration is constant throughout, how many additional revolutions are required
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPhys 111 Fall P111 Syllabus
Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from
More informationRotation. Moment of inertia of a rotating body: w I = r 2 dm
Rotation Moment of inertia of a rotating body: w I = r 2 dm Usually reasonably easy to calculate when Body has symmetries Rotation axis goes through Center of mass Exams: All moment of inertia will be
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationRotational Kinematics and Dynamics
Rotational Kinematics and Dynamics Name : Date : Level : Physics I Teacher : Kim Angular Displacement, Velocity, and Acceleration Review  A rigid object rotating about a fixed axis through O perpendicular
More informationChapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationROLLING, TORQUE, AND ANGULAR MOMENTUM
Chapter 11: ROLLING, TORQUE, AND ANGULAR MOMENTUM 1 A wheel rolls without sliding along a horizontal road as shown The velocity of the center of the wheel is represented by! Point P is painted on the rim
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationTorque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straightforward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationAP Physics: Rotational Dynamics 2
Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane
More information1. A radian is about: A. 25 ± B. 37 ± C. 45 ± D. 57 ± E. 90 ± ans: D Section: 10{2; Di±culty: E
Chapter 10: ROTATION 1 A radian is about: A 25 ± B 37 ± C 45 ± D 57 ± E 90 ± Section: 10{2; Di±culty: E 2 One revolution is the same as: A 1 rad B 57 rad C ¼=2rad D ¼ rad E 2¼ rad Section: 10{2; Di±culty:
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationChapter 9 Rotation of Rigid Bodies
Chapter 9 Rotation of Rigid Bodies 1 Angular Velocity and Acceleration θ = s r (angular displacement) The natural units of θ is radians. Angular Velocity 1 rad = 360o 2π = 57.3o Usually we pick the zaxis
More informationENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION
ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers prerequisite material and should be skipped if you are
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationMechanics 2. Revision Notes
Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More information= Ps cos 0 = (150 N)(7.0 m) = J F N. s cos 180 = µ k
Week 5 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions o these problems, various details have been changed, so that the answers will come out dierently. The method to ind the solution
More informationPhysics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationLesson 5 Rotational and Projectile Motion
Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More informationIf something is spinning, it moves more quickly if it. d is farther from the center of rotation. For instance, θ
The Big Idea The third conservation law is conservation of angular momentum. This can be roughly understood as spin, more accurately it is rotational velocity multiplied by rotational inertia. In any closed
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationUNIT 2D. Laws of Motion
Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics the study of forces that act on bodies in motion. First Law of Motion
More informationf max s = µ s N (5.1)
Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More information1 of 9 10/27/2009 7:46 PM
1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]
More informationPhysics 6A Lab Experiment 6
Physics 6A Lab Experiment 6 Biceps Muscle Model APPARATUS Biceps model Large mass hanger with four 1kg masses Small mass hanger for hand end of forearm bar with five 100g masses Meter stick Centimeter
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More information2 rad c. π rad d. 1 rad e. 2π rad
Name: Class: Date: Exam 4PHYS 101F14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel, initially at rest, rotates with a constant acceleration
More informationEQUILIBRIUM AND ELASTICITY
Chapter 12: EQUILIBRIUM AND ELASTICITY 1 A net torque applied to a rigid object always tends to produce: A linear acceleration B rotational equilibrium C angular acceleration D rotational inertia E none
More informationHW#4b Page 1 of 6. I ll use m = 100 kg, for parts bc: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).
HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More information