# Motion of Level Sets by Mean Curvature IV

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 The Journal of Geometric Analysis Volume 5, Number 1, 1995 Motion of Level Sets by Mean Curvature IV By Lawrence C. Evans and Joel Spruck ABSTRACT. We continue our investigation of the "level-set" technique for describing the generalized evolution of hypersurfaces moving according to their mean curvature. The principal assertion of this paper is a kind of reconciliation with the geometric measure theoretic approach pioneered by K. Brakke: we prove that almost every level set of the solution to the mean curvature evolution PDE is in fact a unit-density varifold moving according to its mean curvature. In particular, a.e. level set is endowed with a kind of "geometric structure." The proof utilizes compensated compactness methods to pass to limits in various geometric expressions. I. Introduction In several earlier papers we, Chen et al. [3, 4], and others have studied a new notion of generalized mean curvature motion of hypersurfaces in IR n, defined as follows. Given, say, a smooth, bounded (n - l)-dimensional surface F0 C R n, choose a smooth function g : IR ~ --+ R whose zero set is F0; that is, r 0 = {X C ]I~ n ] g(x) = 01. (1.1) We consider next the mean curvature evolution PDE U t = 8ij IAxixj in IR" x (0, OC) u=g inr" x {t =0}. (1.2) As explained in [8], [3], etc., this PDE asserts each level set of u is evolving by mean curvature motion, at least in regions where u is smooth and I Dul ~ O. We and Chen et al. [3, 4] have shown (1.2) has a unique, weak solution u (see [8], [3] for definitions), and consequently we can define F t to be the zero-set of u at time t: F, = {x ~ 1~" I u(x, t) = 0}. (1.3) Math Subject Classification Primary 58G20, 32M99. Secondary 53B35, 32M15, 22E30. Key Words and Phrases Mean curvature motion, compensated compactness. L.C.E. supported in part by NSF Grant DMS J.S. supported in part by NSF Grant DMS and DOE Grant DE-FG02-86ER (g) 1995 The Journal of Geometric Analysis ISSN

2 78 Lawrence C. Evans and Joel Spruck The collection of sets {Ft}t_>0 comprise the (level-set method) generalized mean curvature motion, starting from the initial surface F0. (Chen et al. [3] in fact study more general geometric laws of motion.) The intention of this endeavor is the construction of a reasonable and useful global interpretation for mean curvature flow, which allows for developing singularities, changes of topological type, and so forth. We and other authors have consequently devoted considerable effort to studying the evolution F0 ~ Ft (t > 0), to ascertain if indeed the level-set construction above is natural geometrically. For instance, see [8, w for a proof that { Ft }t>_o agrees with the smooth, classical motion by mean curvature starting from F0, until the time t, of the onset of singularities in the classical motion. For later times t > t,, the generalized motion Ft is still defined, and so the real question is whether the definition (1.3) is thereafter geometrically reasonable or not. This question is particularly pressing since others have proposed different constructions for generalized mean curvature motions. The most notable alternative approach is due to K. Brakke, whose pioneering monograph [2] sets forth an entirely different interpretation of generalized surfaces, called varifolds, moving by curvature. Brakke's important accomplishments were first to construct a family { Vt }t_>0 of evolving varifolds and second to establish partial regularity for any unit-density varifold moving via mean curvature. His methods, which build on Allard's fundamental paper [1], avoid certain of the pathologies associated with our level set approach: see [8, w for a preliminary discussion. The principal result of this current paper is a kind of reconciliation between the level-set and varifold approaches, at least generically. We will in effect prove, under certain assumptions on the initial function g, that almost every level set of u is a unit-density varifold evolving by mean curvature in Brakke's sense. This assertion, the exact meaning of which will be set forth in Section 7, is useful on several counts. First, even though for a given initial set F {x E ]l~ n [ g(x) -~- 0} the level-set flow and varifold flows may differ substantially, for "most" initial sets I'~ = {x E]K n ] g(x) = y} the evolutions are compatible. Second, since the typical level set is a unit-density varifold, the partial i'egularity theory from Brakke [2, Chap. 6] applies. This is of interest since Brakke's own construction [2, Chap. 4] is apparently not known to yield unit-density moving varifoids. Finally, and more generally, our results demonstrate that a.e. level set of the solution of (1.2) is naturally endowed with a kind of geometric structure. The key to our proof is a new estimate for the approximate problems introduced in [8]: l'i t : ~ij IDu'~I2+E2 Uxix i U ~ ~g / in ]1~ n X (0, (X)) [ inr n {t=0}. / (1.4~) In light of [8, w we know u E ~ u locally uniformly in IK n x [0, cx~), u being the unique weak solution of (1.2). Set Du ~ ) H ~ = div \(idu,12 + e2)1/2, a quantity which we will see can be interpreted as the approximate mean curvature of the level sets

3 of u ". Our primary new estimate is the L 1 bound Motion of Level Sets by Mean Curvature IV 79 sup sup f IH'ldx < oo, (1.5) 0<~<1 t>_o JR" proved in Section 2. To understand the utility of this bound, let us contrast it with the easier inequality sup [H~]2(IDu~ ) 1/2 dx dt < o~ (1.6) 0<E < 1 " for T > 0. Now (1.6) has a direct geometric interpretation. Indeed, let us for heuristic purposes set E = 0 and suppose our solution u of (1.2) is really smooth, with I Dul # O. Then each level surface F v, = {x E ~" [ u(x, t) = y} moves by mean curvature, whence classical differential geometry (cf. Huisken [ 14]) provides the calculation d,l [ ~H - (F,) = - Jr H'2dnn-l' (1.7) H "-I denoting (n - H = div (Du/lDu[), as v = (1.7) implies l)-dimensional Hausdorff measure and H the mean curvature of F~. Note Du/lDu[ is a unit normal vector field to the level set F, Y. Now Hn-I(FT v) + H2dH ~-1 dt = H~-I(F~). (1.8) Integrate this equality with respect to y and employ the Coarea Formula to deduce In particular, +f0 L for ~ H2lDuldxdt < 00. it (1.9) Estimate (1.5) is quite different in character, corresponding to the formal estimate on u: supfr,>0,, IHIdx < oo. (1.10) Since the integrand does not contain the term I Du l, we cannot invoke the Coarea Formula to prove this from the corresponding law of motion of each level set taken separately. In other words, the formal estimate (1. I 0) presumably depends on more than just the fact that each level set moves independently by curvature motion. Indeed, (1.10) seems somehow to be an analytic consequence of the fitting together of the level sets to foliate space. We loosely interpret this as a kind of dynamic "stability" condition on the level sets Ftr. In crude geometric terms, it is presumably this "stability" of the level sets that accounts for the fairly strong conclusion that generically they are unit-density varifolds

4 80 Lawrence C. Evans and Joel Spruck moving by mean curvature. (For our time-dependent problem there is no obvious "minimization" principle; "stability," however ill-defined, seems to be the best we can hope for.) The analytic consequences of (1.10), or more precisely (1.5), are interesting. As we will prove in Section 3, (1.5) implies IDu'l ~ [Dul weakly * in L~ ") (1.11) for each time t > 0, and in particular, fbi Du'I dx --+ f8 [Dul dx (1.12) for each bounded Borel set B. This is a powerful statement, much stronger than the usual lower semicontinuity assertion L IDu[ dx < f lim inf 1 I Du'l dx. ~o JR From (1.12) and the coarea formula we see in particular that "generically" the level sets of u" do not "lose area" as they converge to the level sets of u. The informal idea is that almost every level set does not "fold over" or "double up" in the limit, and so the limits are unit density. Our proof of (1.11) from estimate (1.5) employs the method of compensated compactness, which for the case at hand amounts to a PDE/level-set version of geometric varifold techniques. Details appear in Section 3. In Sections 4 and 5 we pass to limits as e ~ 0 in various nonlinear expressions involving u '. We deduce for the limit u level-set versions of the first variation formula for area and the inequality for motion by mean curvature. Then in Section 6 we "decompose" these formulas into corresponding statements for a.e. level set at a.e. time. Finally in Section 7 we rapidly recall the standard terminology for varifolds and moving varifolds, and we reinterpret the conclusions of Section 6 in this language. Here we very closely follow Brakke [2]. The level-set method for studying evolution of surfaces by mean-curvature flow seems to have originated in the physics literature, in the paper by Ohta et al. [17]. Sethian [19],[20] and Osher and Sethian [ 18] independently introduced this idea as a computational tool. Some recent theoretical analyses and applications of the level-set approach include Soner [22], Giga et al. [12], Chen et al. [4], Giga et al. [ 13], Ilmanen [ 15], and others. Ilmanen [ 16] has introduced a new "approximate" variational principle within the geometric measure theoretic approach and in particular has constructed a family of unit-density varifolds flowing by mean curvature. The paper by Evans et al. [7] proves the level-set generalized motion governs the asymptotic limiting behavior of the standard Allen-Cahn equation, a simple model for certain phase transitions. This provides further confirmation of the physical and geometric reasonableness of our model.

5 Motion of Level Sets by Mean Curvature IV An L 1 estimate on H E We first turn our attention to the approximate problem ( "") U t '= 6ij to--~t~+e2 x,,j Ux, E x~ in N n x (0, oo) u' =g onlr ~ x {t=o} (2.1E) foro <~ < 1. Here Du ~ = Dxu E = (u~... u~) is the gradient with respect to x. As explained in [8, w this PDE has a unique, smooth solution u ', and additionally the maximum principle provides the bounds sup Ilu', Ou', UTI]L~CR,, oo)) < Cllgllc"(R~ (2.2) 0<E<I The functions {u' },>0 are thus uniformly bounded and Lipschitz in R n x (0, oo). In addition, we proved in [8, w that u' ~ u locally uniformly on IR n x [0, oo), (2.3) u denoting the unique weak solution of the mean curvature evolution PDE lgt = (~ij ~ Ux, xj in R" X (0, OO) (2.4) u=g onr n x {t=0}. Observe in particular that (2.3) asserts the full limit exists as e ~ 0. Assume hereafter that F0 is a smooth connected hypersurface, the / boundary of a bounded open set U C R n.! We next choose the initial function g to vanish on F0 and be particularly well behaved. Recall from [8, w that the evolution of any initial level set depends only on that set and not on the choice of other level sets. As we are interested in proving an L 1 bound on H E = div \(IDuEI2 +6:2) 1/2,], we first need to show we can select the initial function g so that at least at time 0, H E is bounded in L I.

6 - (4,) 82 Lawrence C. Evans and Joel Spruck Lernma 2.1. There exists a C3 function g " R ~ ~ R such that (i) --l_<g< 1, (ii) Fo={X 9 n Ig(x)=0}, (iii) (iv) g(x) = l forlarge Ixl, Dg supo<e_< 1 fr, div ((idgl~--~+~2)l/2) dx < oo. Proof. 1. Let d(x) [ --dist(x, ro) x 9 0 I dist(x, Fo) x E N n -- (7/ denote the signed distance function to I'o. Choose 6o so small d is smooth within the region R = {x 9 A" I dist(x, 1-'o) < So}. Note I Ddl = 1 and consequently 1 dx,~jdx, dxj = -Dd. D([Odl 2) = 0 in R. 2 (2.5) Choose a smooth function 4, 9 N --+ A satisfying 4,(-z) = -4,(z) (z 9 ~), 4,(z) = -1 #(z) > o, 4,"(z) o ifz < --So if --So <z <0. (2.6) 2. Let g(x) = 4,(d(x)) (x 9 An). (2.7) Clearly (i)-(iii) obtain, and so we must verify (iv). For this, take x 9 R and compute Dg ) 1 div (IDgl ~ 7 ~2)1/2 = (idgl2 + ~2)3/2 ((]Dgl2 + ~:2)SiJ - gx, gxj)gx, xj 1 (((4,,')2 4- E2)Sij, 2, t, ((4,I)2 + E2)3/2 ax, ax,)(4, dx, x, + 4, dx, dx,) ((4,') 2 + d)3n [(4,,)2 + e2)(4,,ad 4-4,") -- 4,"(4,')21 by (2.5) 4,; E2~ ;' = Ad + ((4,t)2..]_ t52)1/2 ((4,t)2 _}_ E2)3/2

7 Motion of Level Sets by Mean Curvature IV 83 Consequently, f~,, div ((,Dgl~-~62),/a) dx < s ~2(~,,) (((]),')2 + ~2)3/2 dx ( f0 ) < C 1 -{- E o (r 2 "a t- E2) 3/2 ds, (2.8) where we used the Coarea Formula. But E 2 i o.s for ) 8o (((~"~-EE2) 3/2 = 8o ((~b,')2._{_ ~2)1/2 ds q~'(o) <1. (4,'(0) 2 + E2)~/2 - This calculation and (2.8) complete the proof. [] Notation. We henceforth write Du E v E = (2.9) (IDuEIZat-E2)I/2 and Du E ) H ~ = div(v E) = div \(]DuE-~- ~ 62)1/2'. (2.10) We think of v E as being the approximate normal vector field, and H E as being the approximate mean curvature, for the level sets of u E. (In view of [8, w v E and H E are actually the normal to and mean curvature of the level sets of v E ---- u E -- exn+l in ]I~ nq-i.) [] Theorem 2.2. We have the estimate sup f~ I H E(x, t) l dx < oo. 0<~<1 n t>_0 (2.11) Remark. In fact, we show t w-~ f~. IH'(x, t)l dx is nonincreasing. []

8 ( 84 LawmnceC. Evans andjoelspruck Proof. 1. Utilizing the notation above, we rewrite the PDE (2.1), to read u~ = (IDu~l )1/2H E = (IDu~l ) 1/2 div(v'). (2.12) 2. Let us now compute E U xit via = (IDu~I2 + 62) 1/2 U'x,U'x, u' = 1 - (iou, )3/2 ~jt (idu, i 2 _.1_ 62)l/2a,~U~xjt (2.13) for xi bl xj aij =-- 3ij -- (IOu--~ + 6 2) (i, j = 1... n). Consequently, (vi,,)~, (, ) = (idu, i )'/2ai~ut~j ~, 1 62)l/2a,l((lOu,12 +62)l/2H,)xj ) - (iou, i 2~_...~" (2.14) 4. Let r/ : R ~ ~ be smooth, convex, Lipschitz, with 1/(0) = 0. Then, utilizing Lemma 2.3 below, we compute dl -~ ~ 77(H ~)dx =. rf(h*)ht dx =.0'(H') (iou, i 2 + E2)l/2ai~((IDu" + Ez)1/2H')xj dx Xi = -. r/"(n')(iou, ihx'+ E2)l/2a,~((IOu'l 2 + Ez)l/Zn')xj dx = - fr.~ t! (n)%nxnx, E E E E dx --,, + Ez)l/2aij(I Du I + ~ a E As r/is convex and the matrix ((ij)) is positive definite, the first integral in the last expression is

9 Motion of Level Sets by Mean Curvature IV 85 nonnegative. Discarding this term and integrating in time we deduce f~,~l(h~(x,t))dx < L,~(H~(x,O))dx +c, fot fr, o"(h')lh'l ldh'ldxds (2.15) for C, ~ CllD((lDu'12+ ~2)1/2)11L~. 5. Since we have absolutely no control over C, as e --+ 0, we must select 0 so that the term involving C, in fact vanishes. For each 6 > 0, choose a smooth convex function 0~ : R ~ ~ such that Set r/= r/~ in (2.15): Oa(0) = 0, r/6(z) ~ Izl uniformly on R, r/a > 0, / (2.16) It C y! 0 < r/a < 7' spt r/~ C (-6, 6). /,, rl~(h'(x, t))dx <,, o~(h'(x, 0))dx + T,'1<_~1 Sending and noting fr,, IDH'I dx < ~ L according to Lemma 2.3, we deduce l'f, IH'(x,t)ldx < IH'(x,O)ldx +C, IDH'ldxdt.... I H' I=0} = f~,, IH'(x,O)ldx, since DH ~ = 0 a,e. on the set {H' = 0}. But Dg H'(x, O) = div ( (ldgl2 + e2),/2 ) and consequently according to Lemma 2.1(iv). [] sup f~ I H '(x, 0) 1 dx < O<E_<I '~ Lemma 2.3. For each 6 > 0 there exist positive constants At, at such that In'l, [DH'I <_ A,e -a,lxl2 for all x E ~n, O < t < T.

10 86 Lawrence C. Evans and Joel Spruck Proos 1. Set w ~ = 1 -- u ~. Then w ~ is smooth, bounded, nonnegative, and (2.1)~ states E E ~ 11) t = aijwxixj in N ~ x (0, o~) (2.17) for U'x,U'x ai~ -- (~ij - (]Du, I 2 + Ez ) Since I Du'l is bounded, the coefficients ((aiej)) are uniformly elliptic. Since u ~ (x, 0) = g(x) = 1 for, say, Ixl _> R, we have w'(x,o) = 0iflxl > R. (2.18) From (2.17), (2.18) we deduce Iwr ~ Br -b'l~12 (2.19) for constants B,, b, > Write C(x, r) = B(x, r) x [0, T]. Then since u ' and thus the coefficients ai~ are smooth, we deduce from (2.17), (2.18) the local bounds fork = 1, 2... and Ixl > R + 2. In particular, (2.18) implies ID2u" (x, t)[, [D3 u" (x, t)l _< C,e -c'lxlz (2.20) for Ix l > R + 2, 0 < t < T, and appropriate constants C,, c, > 0. Since and In'l < CIO2u'l E IDH'I ~ CID3u' I, estimate (2.10) follows from (2.20). [] Remark. There is a somewhat more elegant technique which avoids the need for estimates on u ~, H ~, etc. as [x l -+ oo. First we fix a cube Q so large that g =-- 1 in I~ ~ -- Q. We then redefine g in R ~ -- Q so that g is Q-periodic in ]~. Then, by uniqueness, u ~ and thus u are Q-periodic,

11 Motion of Level Sets by Mean Curvature lv 87 and we can replace the integral over R ~ with an integral over the finite region Q. The level sets of u within the cube Q will be unaffected. [] 3. Compensated compactness; applications of L l estimate on H ~ In this and subsequent sections we make use of estimate (2.11) to justify the passage to limits of various quantities as e ~ 0. For our present purposes we may as well ignore the time variable t, and suppose we are given a collection {u E }0<, < 1 of smooth, bounded, Lipschitz functions on j~n, with the uniform estimate sup Ilu ', DU~IIL~(R.) < ~. (3.1) O<E<I Let us suppose also that UE ---~ U Ou t ~ Ou locally uniformly on Ii{ n / weakly 9 in L~(R~; R") I (3.2) as e ~ 0, for some bounded, Lipschitz function u. Also as before, we write Du ~ v ' = ([Du'l 2 + e2)l/2 ' (3.3) Du ~ ) H ~ ~ div(v ~) = div \(IDuEt2 + 2)1/2 " (3.4) We assume in addition to (3.1) that we have the estimate sup IIH'IIL,<~.) < o0. (3.5) O<E_<I Theorem 3.1. Under the above hypotheses, IDu'l ~ IDul weakly * in L~(]l{n). (3.6) Proof. 1. We apply the machinery of compensated compactness: see, e.g., Tartar [23], Da- corogna [5], Evans [6], etc., for more details.

12 88 Lawrence C. Evans and Joel Spruck First, in view of(3.2) there exists a subsequence ek ~ measure Vx on R n such that 0 and for a.e. x E It{" a Borel probability F(Du ~) --~ F weakly * in L~(IR n) (3.7) for each continuous function F " R n --+ R, where /~(x) ----=[ F(X)dvx(~,) (a.e. x c/rn). (3.8) JR n The collection {vx (')}a.e. x~r,, comprises the Young measures associated with the weak convergence Du ~ ~ Du. 2. Since ]v~[ assume < 1, passing to a further subsequence as necessary and reindexing, we may v ~ ~ v weakly * in L~(Rn; IR n) (3.9) for Ivl S l in R n. (3.10) Utilizing estimate (3.5) we may additionally suppose that there exists a signed Radon measure/1, on IR" such that H "~ ~ /z weakly as measures on R n. (3.11) Thus s n wh `k dx --+ f~ wdlz n for each continuous function w with compact support. If, in particular, w is Lipschitz and has compact support, we have s wdlz=lim[ wh'kdx n,inn = -- lim [ Dw.v ~'dx = --s176 Dw 9 vdx. (3.12) 3. Now we claim Du `k 9 v ~ ~ Du. v weakly 9 in L~(IRn). (3.13)

13 Motion of Level Sets by Mean Curvature IV 89 This is a variant of the Div-Curl Lemma (cf. [23],[5], etc.). Indeed, letting r E Cc ~ (I/{ n) we discover lim f Du ~'.v~'r = -lim ~ u~*h~r ~'.DCdx k--+~x~ JN" k---~,, = ~,, Du 9 vr dx. Hence Du ~ 9 v ~ converges to Du 9 v in the distribution sense. But { Du ~ 9 v ~ /k=l L~(R ~) and so converges weakly 9 in L~(R ~) as well. This verifies claim (3.13). is bounded in 4. Next note the elementary inequality IPl - Ip12 (IPl 2 -F E2) 1/2 IPl 12 E2)1/2 (iplzq_e2),/2 I(IP + -IPll < Eforallp~R ". Thus IIDu~l- Du ~. v'l = IDu'l - IDu'l 2 (idu, 12 q_ ff2)1/2 < ~forallx EIR ". Consequently (3.13) implies IDu'~l ~ Du 9 v weakly 9 in L~(N"). (3.14) 5. On the other hand, according to (3.7) and (3.8), IDu'~l ~ f dr n Ikldvx(&) (3.15) and Du = f~,, X dvx(x) for a.e. x E R". Therefore (3.14) implies L,, IXl dvx(x) = fr,, X dvx(x) 9 v(x) (3.16)

14 90 Lawrence C. Evans and Joel Spruck for a.e. x c R". But Iv(x)l 5 1 and so IZl dvxo0 < s )~ dvx(z) >(x)l < s )~dv.()~) _< s I;qdv,(Z). (3.17) Thus R-I)~ldvx()Q = fre)~dvxo0 = IDu(x)[. (a.e. x E ]R ") (3.18) Hence (3.15) in fact says IDuEk I ---~ IDul weakly * in L~176 This assertion is valid for each subsequence Ek --+ CX~, and so (3.6) is proved. [] Remark 1. Note very carefully Theorem 3.1 does not say Du E --+ Du a.e. or in LPo~(~ ") for any 1 < p < oo. Such strong convergence may in fact fail. Consider as an example: ue(x) = x, + eg(xn/e) (x C ]I~ n, 0 < e ~ 1), where g 9 IR --+ R is smooth, l-periodic, Ig'l -< ~ < 1, and fl g(t)dt = O, fo ~ lg'(t)l dt 5~ O. Then u E --~ u = x~ and Du E = (0... l+g'(x~/6)). Since O < 1--or < l+g'(x~/e) < l+oq div (Du'/lDuEI) = o. Thus H E = div (IDuEI e2)1/2 IDuE I _ -ODuEI _ (IDuEI 2 q- e2)l/2)ou')] -- div ]-D--~-E(~-1 ] i T+- e 2-- ~ j. Since 0 < 1 - ot < I Du" I < 1 + ot and I D2u E I < C/e, we compute sup InEI < O(e)llD2uEIIL~ -- O(1) < ~. 0<E<I In particular {IHEI}0<,_< is bounded in Ll~ (Rn). But Du" 7 r Du = (0... 1) a.e. or in P n. Lloc(~, ~n). []

15 Motion of Level Sets by Mean Curvature IV 91 Remark 2. If p, q E N n, p, q 56 0, we have the identity q Ipl P q 2 [pl=lql+~-~-(p-q)+-t Ipl Iql " Assume 2 = Du(x) R n, we deduce 56 O. Setting p = ~., q = 2 :fi 0 and integrating with respect to Vx(?~) over L L I~.ldv~(~) = 121+ n IZl T ~ I~.1 2 2dv~(~) I~1 n Thus (3.18) implies I~1 ~ =~ Vx a.e., and so Vx is supported in the ray {t2 ] t > 0} C IR n. We see from the example in Remark 1 that Vx is however not necessarily a unit mass. [] Remark 3. It is perhaps of interest to compare these deductions with those resulting from different estimates on H '. Assume for instance that sup IH'I(IDu'I2 + E2) 1/2 < 0<~<1 (X), an estimate available in the full time-dependent problem, since sup0<,_< l I H~I(I Du ~ )1/2 = sup0<,_<, lu7l < oo. Consider the expressions 9 ~ ~ Uxj (IDu'l 2 -+-E2)v2a~j - U ~ U ~ ) Xi Xj (IDu,12 + d)v2 (i = 1... n). Now ( ") U~x~U ~, H ~ (idu~12 + ~2)I/2~q _ (IDu~l 2 + E2) 1/2 = _U,x, xi is bounded uniformly in e, and so the Div-Curl Lemma implies for a.e. x 9 2j(s ')~]~ij--li~----j-jdvx(~,)) 9. P,I

16 92 Lawrence C. Evans and Joel Spruck But we also note ~ = Y(IDu~[ 2 E2) 1/2 -- ]Du~l 2 i L + (IDu~[2 -'[- E2) 1/2 E UX i (?2 u E --~0. (idu, i 2 + ff2) 1/2 xi Thus X)~j dv~(x)~ = 0 Izl l (i = 1... n). Multiply by ~-i and sum on i: (~. 2) 2 s [LII2[ 2 dvxo0 = O. The integrand is nonnegative, and thus 1~ = 0--2) 2 Vx a.e. Hence Young's measure vx is supported in the line {t~. ] t ~ R}, but we cannot thereby conclude (as in Remark 2) that G is supported in the ray {t~ I t > 0}. This stronger result seems to require an estimate on H ~ like (2.11), which does not involve the term I Du~ I. [] Ek Our goal next is to characterize v, the weak * limit of the {v }~=l" Observe that since the mapping p ~-+ P/IP[ is not continuous, we cannot employ Young measures to write v(x) = f~, Ov/IXI) dvx(x) for a.e. x ~ IR n. Nevertheless, we can show: Theorem 3.2. Assume v 'k --~ v weakly * in L~(Rn; n~n). (3.19) Then On v -- a.e. on the set {IDul > 0}. (3.20) IOul Proof. 1. We extract more information from the compensated compactness methods employed in the proof of Theorem 3.1. First recall the equality (3.18), which asserts ~. I,kldv~(,k) = ~)vdvx(x) (3.21)

17 Motion of Level Sets by Mean Curvature IV 93 for a.e. x ~ R", { v~ (-)} denoting as before the Young measures corresponding to the weak convergence Du ~ --~ Ou. Fix x E 1R n for which (3.21) obtains and suppose Du(x) = ~,, )~dvx()~) =-- 2 r O. (3.22) According to (3.16) in the previous proof fr ]~.[dvx(x) = ~.. v(x). ii (3.23) But (3.24) and so we would obtain a contradiction to (3.23) were any of the inequalities in (3.24) strict. Thus v(x) is a unit vector, pointing in the same direction as ~.: X Du(x) v(x) = -_ [~.1 IDu(x)l This conclusion is valid for a.e. x ~ {[Du[ > 0}. [] Now we show v" ~ v = Du/IDu[ strongly on the set {IDul > 0}. Theorem 3.3. We have Du ~ (idu, i 2 + (:2) 1/2 Dig --~ - - strongly in L'(oc({IDu I > 0}; Rn). (3.25) IDu[ Proof. According to Theorem 3.2, On F Ek _~ IDul weakly * in {]Dul > 0}, whenever {v ~' }~=j is a weakly 9 convergent subsequence. In particular, the full limit i) ~: _...x Ou IOul weakly * in {IDul > 0}

18 94 Lawrence C. Evans and Joel Spruck exists. But ifq~ e C~(Rn), ~b > 0, and we write v -- ~ Ou on {IDul > 0}, then 4 lv" - vl2 dx = f.o.,>o} cp(iv~[2 q-ivl2-2v~ " v) dx and the term on the right converges to < 2f ~b(1-v'.v) dx; all Dul>0} 2floul>01 q~(1 - Ivl2)dx = O, since ]v] = 1. Thus v ~ ~ v = Du/]Du] strongly in LZlo~({]Du] > 0}; ~). [] Remark. As Iv '1, I vl ~ 1, the convergence above is in LlPoc as well, for 1 < p < ~. [] 4. Passage to limits, I We return now to the full time-dependent problems (2.1),, (2.4). In view of estimates (2.2), (2.1 1) and Theorems 3.1 and 3.3, we have IDu'( ", t)l ~ IDu(., t)[ weakly 9 in L~(lt~n) I for each time t > 0 / (4.1) and ([Du,(.,t)12+~2)l/2 Ou'r ~ ~ our strongly in L2oc({lDu(., t)l > 0}; ~") / for each time t >_ 0. / (4.2) Integrating in time, we deduce as well that IDu'l ~ IDul weakly * in L~(R n x (0, oo)) (4.3) and Du ~ ([Ou'l 2 + Ez) 1/2 Du --~ - - strongly in L~oc({lDul > 0]; ~n). (4.4) IOul O/~ ~ Our intention is to pass to limits in various geometric formulas involving H ', (iou,-~-g,2),/2, etc., and for this we will need an additional L 2 estimate on H ".

19 Motion of Level Sets by Mean Curvature IV 95 Theorem 4.1. For each T > 0 and each compact set K C R n,,2 sup (H~)2(IDu~ +E2)l/Zdxdt < oo. o<~_<1 (4.5) Proof. Selectq~C c ( ),0<~b< 1. Then dx (IDu, 12 + ~2)1/2 = --,, ~b2div L ((iou,~te2),/2 u7 dx ) f~ D~" Du ~ - 2,, ~b(tdu, I e + ~2)1/~u~ dx <_ dpz(h')2([du'[2 + E2)l/2 dx + 2s d~idd~iih'i(idu'i z + E2) 1/2 dx by (2.12) < --'s d~z(l-i~)2(idu~12 + ez)l/zdx - 2,, + 2 L, ]DdPl2(IDu~ 12 + e2)1/2 dx. Integrating, we deduce fot fr, ~b2(h~)2(lduel2 + ~2)'/2 dx f[f, < 4 ]DqbI2(IDu~[ 2 + E2) 1/2 dx + 2 ~b2(idgl2 + ~2)1/2 dx. (4.6) n Given a compact set K C IR n, we choose ~b = 1 on K and then recall estimate (2.2) to complete the proof. [] Consider next the quantities {H'(IDu'I 2 + ~2)1/2}0<E_< l. n According to the PDE (2.1),, U~ =([DuE[ 2 + ~2)I/2HE, and so employing estimate (2.2) we deduce H,(IDu, I2 + e2)l/2...x ut weakly * in L~176 n (0, (x))). (4.7)

20 96 Lawrence C. Evans and Joel Spruck Lemma 4.2. ut = 0 a.e. on {[Du[ = 0}. Proof. Let A be any bounded, measurable subset of { I Du [ = 0} C ]K n x (0, oo). Then A ut dx dt = lirn fa H'(IDu~[2 + ~72)1/2 dx dt < limsup (H')e(IDu'I 2 + e2)l/2dxdt E---~O (fa (fa(,du~[2 q-62)l/2dxdt) 1/2 _< Climsup ([DuEI 2 + e2)l/2dxdt, ~:---~0 (4.8) the last inequality valid owing to (4.5). Now [([Du,[2 +e2)1/2_ [Du'l[ <_ E, and so fa Ut dx dt < C lira sup (IDu'ldxdt ('---~ 0 (fa ~ I/2 = C [Duldxdt by (4.3) =0. [] Next define H-- [ ut/idu[ I 0 ifldu > 0 if I Du = O. (4.9) We reinterpret (4.7) and Lemma 3.2 to read H~(IDu~[ 2 +E2) 1/2 ---~ HIDul weakly * in L~176 x (0, oo)) (4.10) and HIDuL = 0a.e. on {IDu[ = 0}. (4.11) In addition, H IDu[ is essentially bounded in R n x (0, oo). (4.12)

21 Motion of Level Sets by Mean Curvature IV 97 We also have an L z bound on H: Lemma 4.3. For each T > 0 and each compact set K C IR n, H2lDuldxdt < oo. (4.13) Proof. Set #(A) = fa IDuldxdt for Borel sets B C ]R n x (0, oo), and suppose ~b E L~(K x (0, T)). Then fo r s rbhldul dx dt : lim fo r fx dphe(idu[ ~ q- ~2) l/2dx < lim sup (H~)2(IDu~ 12 + e2) 1/2 dx dt e--+0 (fot fkqj2(ldu~12-k-c?2)l/2dxdt) 1/2 _< C (f[f q~2 d#),~1/2, dt ) as in the proof of Lemma 4.2. Hence for fkcbhdlz <_C(foT fkqb2dl..z) 1/2 for each q~ ~ L~(K x (0, T)). By approximation, the same inequality obtains if ~ E L2(K x (0, T),/z), whence r H2dg = H21Duldxdt < 00. [] f0f 5. Passage to limits, II Next we employ the terminology and convergence assertions from Section 4 to deduce for u "level-set versions" of (a) the first variation formula for area and (b) the inequality for motion by mean curvature. The idea is to interpret the function H introduced in Section 4 as mean curvature and the vector -H (Du/IDuD as the mean curvature vector, at least on the set {IDul > 0}.

22 98 Lawrence C. Evans and Joel Spruek Theorem 5.1. For a.e. t > O, we have the identity f~n (~ij laxluxj "~ i " lax (5.1) 1 n~ for each vector field g E C c (R, Rn), g = (gl... gn). (Each integrand is interpreted as being zero on the set {IDul = 0}.) Proof. 1. Given g = (gl... g") and 0 < E < 1, we compute ft gi (iou, lz U~ x~ q_ez)l/2h ~ (ID U ~ I 2 +~2) 1/2dx f. =, g i Ux,, (idu, t ~_e2)1/2 dx xj = - f, gxj xi (idu, l z + E2)1/2 dx -, g Ux, xj (IDu'l z + Ez)l/z dx = _ f~ gi U~xiU~J f~ gi (idu~12 + E2)l/2dx. (IOu'l 2 7 I- E2)1/2 dx +. x, f~ ( u~_u~j )gi (idu, lz +E2)V2dx" Hence for each q~ E L~(0, T), g E C~ ( " ~"), we have fo r fr U~x' H~(IDu~I2 q- e2)l/zdxdt. q~gi (IDu'I 2 -t- ~72)1/2 = n(~ ~ij- (idu, 12+E2)l/2]gxj(I u ] +e2)t/2dxdt. (5.2) 2. We wish to pass to limits as e Now according to (4.3) and (4.4), xiux) i D E 2 E2)1/2 ~) ~ij-- D~-~_Ez) gxj(i u l + dxdt "nlloul>oi (I T -----~ fo f~.f~{lou,>o (~ (,ij Ux'Ux' i--~ul2) gxjl " ' J" ' 'Du' Idxdt.

23 Motion of Level Sets by Mean Curvature IV 99 On the other hand, fo s "n{ioul=0} (I C "n{ldu[=o}nspt(g) 0, according to (4.3). Uxi xj (IDu" 12 + e2) 1/2 dx dt Thus the right-hand side of (5.2) as r --~ 0 converges to s Uxiblxj--~gi louldxdt, ioul2 / x~ the integrand interpreted as being zero on the set {IDul = 0}. 3. Employing (4.4) and (4.10) we see ~gi Ux, H'(IDu'I 2 + E2) 1/2 dx dt "nlio, l>ol (IDu'I 2 -Jr- E2) 1/2 fo r s 4~g ~ HlOu' dx dt" Additionally, for s ~gi Uxi ~ E2)I/2H E (IDu E I 2 _~_ ~2) 1/2dxdt "n{io, l=0} (IDu'l z + In'l(lDu'l 2 + ez)l/2 dxdt ~_~ C f:f.n{[oui=o}nspt(g) < C (H')2(IDu" "1- E2) 1/2 dx t(g) (fo r fr,,nlldul=olnspt(g)(louel2-l-~i2)l/2dxdt) 1/2 T )1/2 (fo fr ('Ou"2 +'2)'/2dxdt C "N{IDul=O}Nspt(g) --+ 0, according to (4.3). by (4.5) Consequently the left-hand side of (5.2) converges as E ~ 0 to for s dpg~hidul dxdt, the integrand interpreted as being zero on the set {IDu I = 0}.

24 1 O0 Lawrence C. Evans and Joel Spruck 4. Thus fotfr_iux,.., T ( blxiuxj) i cpg I--~ul rtlduldxdt= do f dr fn~) ~ij IDul 2 gxjlduldxdt for all q5 c L~(0, T), g E C,(R 1 n., R~). Hence for a given vector field g E C~(N"; Nn), equality (5.1) holds for a.e. t > 0. Choosing a countable dense subset of C 1 (R~; IR n) we conclude (5.1) holds for a.e. t > 0 and each g E C~, l (R"-, R"). [] Theorem 5.2. For all 0 < tl < t2 < cx~ and (~ E C 1 (~"), dp > O, we have the inequality s qbldul dx n t t =2 + f t, s,, cblnl21dul + D4~" IDul H IDuldxdt <- fr,~lduldx t=,2' (5.3) where the integrands are interpreted as being zero on the set {IDu I = 0}. IRn Proof. 1. Fix qb E C C ( ), q~ > 0, and compute, as in the proof of Theorem 4.1, d (P(IDu'I2 -t-62)t/2 dx = fr " qs"(idu'12 Du'. -t- Du 6.2)1/2 7 dx = - f~~ dp(h')2(idu'i )1/2dx _ f~. DO. Du" (I D-U--q 2- ~2)1/2 H'(IDu" 12 + e2) 1/2 dx. Integrate in time from tl to t2: fr qs(idu' )1/2 dxlt=, 2 +. qb(h~)2(ldu, )1/2 f"s DO 9 Du" H,,,D,, )1/2 dx dt (IOuEI 2 -Jr- 6.2)1/2 I,I U I = s176. t=l I (5.4) 2. Now (4.1) implies ~ ~b(ldu'[ 2 -}-~i2)l/2dxt=t,,t frdplduldxt=t,,t 2 9 (5.5)

### Fuzzy Differential Systems and the New Concept of Stability

Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

### A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

### Motion by mean curvature and level-set approach

Motion by mean curvature and level-set approach Olivier Ley Laboratoire de Mathématiques et Physique Théorique Université de Tours Parc de Grandmont, 37200 Tours, France http://www.phys.univ-tours.fr/~ley

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem")

OPTIMAL SELECTION BASED ON RELATIVE RANK* (the "Secretary Problem") BY Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS ABSTRACT n rankable persons appear sequentially in random order. At the ith

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### m = 4 m = 5 x x x t = 0 u = x 2 + 2t t < 0 t > 1 t = 0 u = x 3 + 6tx t > 1 t < 0

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 21, Number 2, Spring 1991 NODAL PROPERTIES OF SOLUTIONS OF PARABOLIC EQUATIONS SIGURD ANGENENT * 1. Introduction. In this note we review the known facts about

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### UNIVERSITETET I OSLO

NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

### An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### 1. Introduction. PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1

Publ. Mat. 45 (2001), 69 77 PROPER HOLOMORPHIC MAPPINGS BETWEEN RIGID POLYNOMIAL DOMAINS IN C n+1 Bernard Coupet and Nabil Ourimi Abstract We describe the branch locus of proper holomorphic mappings between

### The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

### BX in ( u, v) basis in two ways. On the one hand, AN = u+

1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

### B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

### A Simple Proof of Duality Theorem for Monge-Kantorovich Problem

A Simple Proof of Duality Theorem for Monge-Kantorovich Problem Toshio Mikami Hokkaido University December 14, 2004 Abstract We give a simple proof of the duality theorem for the Monge- Kantorovich problem

### Shape Optimization Problems over Classes of Convex Domains

Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY e-mail: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE. 1. Introduction

SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17) (2009), 55 62 ON A MIXED SUM-DIFFERENCE EQUATION OF VOLTERRA-FREDHOLM TYPE B.. PACHPATTE Abstract. The main objective of this paper is to study some basic properties

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### 2.2. Instantaneous Velocity

2.2. Instantaneous Velocity toc Assuming that your are not familiar with the technical aspects of this section, when you think about it, your knowledge of velocity is limited. In terms of your own mathematical

### Taylor Series and Asymptotic Expansions

Taylor Series and Asymptotic Epansions The importance of power series as a convenient representation, as an approimation tool, as a tool for solving differential equations and so on, is pretty obvious.

### BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

### Duality of linear conic problems

Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

### Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

### Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

### ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Tail inequalities for order statistics of log-concave vectors and applications

Tail inequalities for order statistics of log-concave vectors and applications Rafał Latała Based in part on a joint work with R.Adamczak, A.E.Litvak, A.Pajor and N.Tomczak-Jaegermann Banff, May 2011 Basic

### ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

### Date: April 12, 2001. Contents

2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

### Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

### t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

### Multiplicity. Chapter 6

Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are

### ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

### Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

### Introduction to the Finite Element Method

Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

### MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

### Thin Layers in Micromagnetism

Thin Layers in Micromagnetism Gilles Carbou Mathématiques Appliquées de Bordeaux, CNRS ERS 23 et Université Bordeaux, 35 cours de la libération, 33405 Talence cedex, France. Abstract - In this paper we

### Class Meeting # 1: Introduction to PDEs

MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

### Section 2-5 Quadratic Equations and Inequalities

-5 Quadratic Equations and Inequalities 5 a bi 6. (a bi)(c di) 6. c di 63. Show that i k, k a natural number. 6. Show that i k i, k a natural number. 65. Show that i and i are square roots of 3 i. 66.

### Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation M. Donatelli 1 M. Semplice S. Serra-Capizzano 1 1 Department of Science and High Technology

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

### General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

### F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

### 3 Contour integrals and Cauchy s Theorem

3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

### 2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### Local periods and binary partial words: An algorithm

Local periods and binary partial words: An algorithm F. Blanchet-Sadri and Ajay Chriscoe Department of Mathematical Sciences University of North Carolina P.O. Box 26170 Greensboro, NC 27402 6170, USA E-mail:

### CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

### Ri and. i=1. S i N. and. R R i

The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

### INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Math 5311 Gateaux differentials and Frechet derivatives

Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.

### Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

### Factorization Theorems

Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

### Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

### MATH 461: Fourier Series and Boundary Value Problems

MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter

### Lecture 3: Fourier Series: pointwise and uniform convergence.

Lecture 3: Fourier Series: pointwise and uniform convergence. 1. Introduction. At the end of the second lecture we saw that we had for each function f L ([, π]) a Fourier series f a + (a k cos kx + b k

### MATH PROBLEMS, WITH SOLUTIONS

MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These

### Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

### ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!

Math 0, Final Exam, Term 3 IANSWER KEY I I Q II MM I VI I V I V3 I V 4 I : a e b c e a b a c d! 3 a d e d c i 4 a a a e a 5 a e d e c! 6 a a d e c 7 a e c d c 8 a d d b b! 9 a c d b e 0 a c a c a : a a

### Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### 1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is:

CONVERGENCE OF FOURIER SERIES 1. Periodic Fourier series. The Fourier expansion of a 2π-periodic function f is: with coefficients given by: a n = 1 π f(x) a 0 2 + a n cos(nx) + b n sin(nx), n 1 f(x) cos(nx)dx

### Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

### VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

### Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given