Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients

Size: px
Start display at page:

Download "Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients"

Transcription

1 DOI: /auom An. Şt. Univ. Ovidius Constanţa Vol. 221),2014, Irreducibility criteria for compositions and multiplicative convolutions of polynomials with integer coefficients Anca Iuliana Bonciocat, Nicolae Ciprian Bonciocat and Mihai Cipu Dedicated to Professor Mirela Ştefănescu Abstract We provide irreducibility criteria for multiplicative convolutions of polynomials with integer coefficients, that is, for polynomials of the form h deg f fg/h), where f, g, h are polynomials with integer coefficients, and g and h are relatively prime. The irreducibility conditions are expressed in terms of the prime factorization of the leading coefficient of the polynomial h deg f fg/h), the degrees of f, g, h, and the absolute values of their coefficients. In particular, by letting h = 1 we obtain irreducibility conditions for compositions of polynomials with integer coefficients. 1 Introduction To decide whether the sum of two relatively prime polynomials is an irreducible polynomial, or in general, if a linear combination of two relatively prime polynomials is irreducible, is by no means an easy problem, and no general answer in this respect seems to be available. This problem may be raised for various classes of polynomials, like for instance polynomials with coefficients in an arbitrary unique factorization domain, or for multivariate Key Words: multiplicative convolution of polynomials, resultants, irreducible polynomials Mathematics Subject Classification: Primary 11R09; Secondary 11C08. Received: 3 August, Accepted: 28 August,

2 74 A.I. Bonciocat, N.C. Bonciocat and M. Cipu polynomials over an arbitrary field. However, for some particular classes of such linear combinations of polynomials of the form n 1 f + n 2 g some progress was recorded by using some information on the canonical decomposition of n 1 and n 2, or on the canonical decomposition of the coefficients of f and g, or on their absolute values. Inspired by the work of Fried [8] and Langmann [9] in connection with Hilbert s irreducibility theorem, Cavachi [6] investigated the problem of the irreducibility of polynomials of the form fx) + pgx), with p prime, fx), gx) relatively prime polynomials with rational coefficients, and deg f < deg g. Given two relatively prime polynomials fx), gx) Q[X] with deg f < deg g, an explicit bound p 0 was provided in [7] such that for all prime numbers p > p 0, the polynomial fx) + pgx) is irreducible over Q. In [4], explicit upper bounds have been derived for the number of factors over Q of a linear combination n 1 fx) + n 2 gx), covering also the case deg f = deg g. In [5] the same methods along with a Newton polygon argument have been used to find irreducibility conditions for linear combinations of the form fx) + p k gx). In [2] similar methods have been employed to study the irreducibility of some classes of compositions of polynomials, while in [3] the study focused on the irreducibility of some classes of multiplicative convolutions of polynomials, which offer considerably more flexibility to such irreducibility results, as they include linear combinations and compositions of polynomials as well. Given two polynomials gx) = b 0 + b 1 X + + b n X n, hx) = c 0 + c 1 X + + c l X l Z[X], b n c l 0, by a multiplicative convolution of g and h we understand any polynomial of the form m a i gx) i hx) m i, with a 0, a 1,..., a m Z, m 1, a 0 a m 0. If we associate to a 0, a 1,..., a m the polynomial fx) = a 0 + a 1 X + + a m X m, and assume that h 0, then m ) gx) a i gx) i hx) m i = hx) m f. hx) The aim of this paper is to complement some of the results in [3] and [2], by providing similar irreducibility conditions for the case when a m is divisible by a sufficiently large prime power. The irreducibility results that we will obtain for this kind of convolutions will be expressed in terms of the prime factorization of the leading coefficient of the polynomial h deg f fg/h), the degrees of f, g, h, and the absolute value of their coefficients. We use the same notation that was used in [3]. Given a polynomial fx) = a 0 + +a m X m Z[X] of degree m 0, we let

3 IRREDUCIBILITY CRITERIA 75 and if m > 0 we let Hf) = max{ a 0,..., a m } and Lf) = H 1 f) = max{ a 0,..., a m 1 } and L 1 f) = Our main results refer to the case deg h < deg g: m a i, m 1 a i. Theorem 1.1. Let fx) = a 0 + a 1 X + + a m X m, gx) = b 0 + b 1 X + + b n X n and hx) = c 0 + c 1 X + + c l X l Z[X] be polynomials of degree m, n and l respectively, with m 1, n > l, a 0 0, and g, h relatively prime. Put d = max{ i : i < m and a i 0} and β = 1 + [H 1 g) + Hh)]/ b n. Assume that a m = p k q with p a prime number, q a non-zero integer, p qa d b n c l and k is a positive integer prime to m d)n l). If a m > d a i [ q n b n mn LhβX))] m i, then the polynomial h m fg/h) is irreducible over Q. The same conclusion holds in the wider range a m > d a i [ q n m bn n LhβX))] m i, provided that f is irreducible over Q. We also obtain the following irreducibility criterion, by replacing the hypothesis f irreducible by a simple numerical condition. Corollary 1.2. Let fx) = a 0 + a 1 X + + a m X m, gx) = b 0 + b 1 X + + b n X n and hx) = c 0 + c 1 X + + c l X l Z[X] be polynomials of degree m, n and l respectively, with m 1, n > l, a 0 0, and g, h relatively prime. Put d = max{ i : i < m and a i 0} and β = 1 + [H 1 g) + Hh)]/ b n.

4 76 A.I. Bonciocat, N.C. Bonciocat and M. Cipu Assume that a m = p k q with p a prime number, q a non-zero integer, p qa d b n c l and k is a positive integer prime to m d)n l). If { d } d a m > max a i q m i, a i [ q n m bn n LhβX))] m i, then the polynomial h m fg/h) is irreducible over Q. One of the corollaries of the main result in [2] is the following irreducibility criterion for compositions of polynomials with integer coefficients. Corollary 1.3. [2, Corollary 4]) Let fx) = m a ix i and gx) = n b ix i in Z[X] be non-constant polynomials of degree m and n respectively, with a 0 0. If a m = p q with p a prime satisfying )) X p > max { q m 1 L 1 f, q n 1 b n mn L 1 f q then the polynomial f g is irreducible over Q. ))} X, q n/m b n n By taking hx) = 1 in Corollary 1.2 we obtain the following irreducibility criterion for compositions of polynomials, that complements Corollary 4 in [2]. Corollary 1.4. Let fx) = a 0 +a 1 X + +a m X m and gx) = b 0 +b 1 X + + b n X n Z[X] be polynomials of degree m 1 and n 1 respectively, a 0 0. Put d = max{ i : i < m and a i 0} and assume that a m = p k q with p a prime number, q a non-zero integer, p qa d b n and k is a positive integer prime to m d)n. If { d } d a m > max a i q m i, a i [ q n m bn n ] m i, then the polynomial f g is irreducible over Q. Perhaps a comparison with [3] is in place. For the sake of convenience, we quote a similar irreducibility criterion derived from the main result of [3]. Corollary 1.5. [3, Corollary 1]) Let fx) = a 0 + a 1 X + + a m X m, gx) = b 0 + b 1 X + + b n X n and hx) = c 0 + c 1 X + + c l X l Z[X] be polynomials of degree m, n and l respectively, with m 1, n > l, a 0 0, f

5 IRREDUCIBILITY CRITERIA 77 irreducible over Q, and g, h relatively prime. Let β = 1 + [H 1 g) + Hh)]/ b n. If a m = pq with p a prime satisfying a m > m 1 a i [ q n b n mn LhβX))] m i, then the polynomial h m fg/h) is irreducible over Q. It is apparent that in Corollary 1.5 the hypothesis is less restrictive with regard to p, the requirement p qa d b n c l being added in Theorem 1.1. The condition that k is coprime to m d)n l) is automatically satisfied when k = 1, which is the case dealt with in Corollary 1 from [3]. However, as the cofactor q can be much bigger when applying Corollary 1.5 than when using Theorem 1.1, the latter result is applicable to polynomials f having the leading coefficient a m somewhat smaller. 2 Proof of the main results For the proof of Theorem 1.1 we need the following lemma from [1], which extends Capelli s Theorem to multiplicative convolutions of polynomials. Lemma 2.1. Let K be a field, f, g, h K[X], f irreducible over K, g and h relatively prime, and fα) = 0. If then r g αh can = const φ i X) ei, Kα) h deg f fg/h) can = K const i=1 r N Kα)/K φ i X) ei. In particular, the degree of every irreducible factor of h deg f fg/h) must be a multiple of deg f. Here F can = K const r i=1 i=1 φ i X) ei means that the φ i s are irreducible over K and prime to each other. For a proof of this result in the case when chark) = 0, which is relevant here, we refer the reader to [3]. Another result that will be needed in the proof of Theorem 1.1 is the following lemma in [5], whose proof relies on Newton s polygon method.

6 78 A.I. Bonciocat, N.C. Bonciocat and M. Cipu Lemma 2.2. Let u, v Z[X] be two polynomials with deg v = n and deg u = n d, d 1. Let also p be a prime number that divides none of the leading coefficients of u and v, and let k be any positive integer prime to d. If ux) + p k vx) may be written as a product of two non-constant polynomials with integer coefficients, say f 1 and f 2, then one of the leading coefficients of f 1 and f 2 must be divisible by p k. We will also use the following basic lemma. Lemma 2.3. Let fx) = a 0 + a 1 X + + a n X n C[X] be a polynomial of degree n. If for a positive real δ we have )) a n X δ n > L 1 f, δ then all the roots of f lie in the disk z < 1 δ. Proof: Assume that f has a root θ C with θ 1 δ. Then we have 0 = fθ) θ n a n a n 1 θ a 0 θ n a n a n 1 δ a 0 δ n. 1) On the other hand, according to our hypothesis, we have an δ > L n 1 f X )) δ, so in fact we have a n > a n 1 δ + + a 0 δ n, which contradicts 1). We will now proceed with the proof of Theorem 1.1. Proof of Theorem 1.1 Let fx), gx) and hx) be as in the statement of the theorem. Let us assume to the contrary that h m fg/h) factors as h m fg/h) = F 1 F 2, with F 1, F 2 Z[X], and deg F 1 1, deg F 2 1. Let t 1, t 2 Z be the leading coefficients of F 1 and F 2, respectively. By comparing the leading coefficients in the equality one finds that h m fg/h) = a 0 h m + + a d g d h m d + a m g m = F 1 F 2 p k qb m n = t 1 t 2. 2) By Lemma 2.2 with a 0 hx) m + + a d gx) d hx) m d instead of ux), and qgx) m instead of vx), since p qa d b n c l and k is prime to m d)n l), we deduce that one of the leading coefficients of F 1 and F 2, say that of F 2, will be divisible by p k. Then, in view of 2), it follows that t 1 will divide qb m n. In particular we have t 1 q b n m. 3)

7 IRREDUCIBILITY CRITERIA 79 Let now f = h m fg/h) a m g m. Then h m fg/h) = f + a m g m, and since a 0 0, the polynomials f and g m are algebraically relatively prime. Next, we will estimate the resultant Rg m, F 1 ). Since g m and F 1 are also algebraically relatively prime, Rg m, F 1 ) must be a non-zero integer number, so in particular we must have Rg m, F 1 ) 1. 4) Let r = deg F 1 1, and consider the decomposition of F 1, say with θ 1,..., θ r C. Then F 1 X) = t 1 X θ 1 ) X θ r ), Rg m, F 1 ) = t 1 mn 1 j r Since each root θ j of F 1 is also a root of h m fg/h), we have g m θ j ). 5) g m θ j ) = fθ j) a m 6) and moreover, since f and g m are relatively prime, fθ j ) 0 and g m θ j ) 0 for any j {1,..., r}. Combining 5) and 6) we obtain Rg m, F 1 ) = t 1 mn a m r 1 j r fθ j ). 7) We now proceed to find an upper bound for fθ j ). In order to do this, we have to find an upper bound for the moduli of the roots of f. To this end, we first fix a positive real number δ such that a m /δ m > L 1 fx/δ)). Later on we shall specify how to choose a convenient value of δ. By Lemma 2.3 we see that all the roots λ i of f will verify λ i < 1 δ. 8) Let now θ 1,..., θ mn be the roots of h m fg/h). Since g and h are relatively prime, one has hθ j ) 0 and fgθ j )/hθ j )) = 0 for j = 1,..., mn. Thus, for a given θ j, there exists i j {1,..., m} such that gθ j )/hθ j ) = λ ij, a root of f. By 8) we then have gθ j ) hθ j ) < 1 δ. 9)

8 80 A.I. Bonciocat, N.C. Bonciocat and M. Cipu Recall that f = a 0 h m + a 1 gh m a d g d h m d. Using 9), we derive that fθj ) d = a i gθ j ) i hθ j ) m i hθ j ) m L 1 fx/δ)). 10) Combining now 7), 10) and 3) we deduce the following upper bound for Rg m, F 1 ) : [ Rg m, F 1 ) q mn b n m2n hθj ) m ] r L 1 fx/δ)). 11) a m The inequality 9) allows us to find also an upper bound for hθ j ), as follows. We rewrite 9) as which further gives δ b 0 + b 1 θ j + + b n θ n j < c 0 + c 1 θ j + + c l θ l j, δ b n θ j n < c 0 + δ b 0 ) + c 1 + δ b 1 ) θ j + + c l + δ b l ) θ j l Hence, for θ j > 1 we obtain +δ b l+1 θ j l δ b n 1 θ j n 1 < Hh) + δh 1 g)) 1 + θ j + + θ j n 1 ). δ b n θ j n < Hh) + δh 1 g)) θ j n 1 θ j 1 < Hh) + δh θ j n 1g)) θ j 1, that is θ j < 1 + Hh) + δh 1g). 12) δ b n Note that this inequality is trivially satisfied when θ j 1. Denoting by γ the right-hand side of 12), we find that for any root θ j of h m fg/h) it holds which combined with 11) yields hθ j ) < LhγX)), [ LhγX)) Rg m, F 1 ) q mn b n m2n m ] r L 1 fx/δ)). 13) a m The next step is to choose δ so that inequalities 4) and 13) contradict each other. Since deg F 1 = r 1, all it remains to prove is that our assumption

9 IRREDUCIBILITY CRITERIA 81 on the size of a m will imply on the one hand a m > δ m L 1 fx/δ)) for a suitable δ > 0, and on the other hand will force or equivalently q mn b n m2n LhγX))m L 1 fx/δ)) a m < 1, a m > q mn b n m2n LhγX)) m L 1 fx/δ)). It will be therefore sufficient to have a m > δ m L 1 fx/δ)) for a δ > 0 as small as possible satisfying δ m q mn b n m2n LhγX)) m, that is δ q n b n mn LhγX)). Recalling the definition of γ, the last inequality reads δ q n b n mn A suitable candidate for δ is because δ 0 = q n b n mn l l 1 + H 1g) + Hh) b n c i 1 + H 1g) + Hh) ) i. b n δ b n c i 1 + H ) i 1g) + Hh) 1, b n 1 + H 1g) b n + Hh) b n δ 0. By the definition of β, the positive real number δ 0 just found coincides with q n b n mn LhβX)), which proves that for a m > )) [ q n b n mn LhβX))] m X L 1 f q n b n mn LhβX)) d = a i [ q n b n mn LhβX))] m i we actually have Rg m, F 1 ) < 1, a contradiction. Therefore h m fg/h) must be irreducible over Q, and this proves the first part of the theorem. Assuming now that f is irreducible over Q, the proof goes as in the first part, except that according to Lemma 2.1, the degree of every irreducible factor of h m fg/h) must be a multiple of m, so in particular we must have degf 1 ) = r m. In this case we need to prove that our assumption on the size of p k implies again a m > δ m L 1 fx/δ)) for a suitable δ > 0, and at the same time it forces the inequality q n b n mn LhγX))m L 1 fx/δ)) a m < 1,

10 82 A.I. Bonciocat, N.C. Bonciocat and M. Cipu or equivalently a m > q n b n mn LhγX)) m L 1 fx/δ)), which in view of 13) will contradict 4). It will be therefore sufficient to find a δ > 0 such that δ m q n b n mn LhγX)) m, that is δ q n/m b n n LhγX)), which, recalling the definition of γ, reads δ q n m bn n l A suitable candidate for δ in this case is δ 1 = q n m bn n l c i 1 + H 1g) + Hh) ) i. b n δ b n c i 1 + H ) i 1g) + Hh) = q n m bn n LhβX)) 1, b n so the contradiction Rg m, F 1 ) < 1 follows now if a m > )) [ q n m bn n LhβX))] m X L 1 f q n m b n n LhβX)) d = a i [ q n m bn n LhβX))] m i. This completes the proof of the theorem. Proof of Corollary 1.2 We apply Theorem 1.1 twice. On taking gx) = X and hx) = 1, we first note that if fx) = a 0 + a 1 X + + a m X m Z[X] is a polynomial of degree m 1, with a 0 0, and a m = p k q with p a prime, q a non-zero integer, p qa d, and k is a positive integer prime to m d and such that p k > q m 1 L 1 fx/ q )), then f is irreducible over Q. Now by the second part of Theorem 1.1, the polynomial h m fg/h) must be irreducible over Q. So, if p satisfies the hypothesis of Corollary 1.2, then both polynomials f and h m fg/h) will be irreducible over Q. Acknowledgements This research was partially supported by a grant of the Romanian Ministry of Education, CNCS-UEFISCDI, project PN-II-RU- PD The publication of this paper was supported by the grants of the Romanian Ministry of Education, CNCS-UEFISCDI, projects no. PN- II-ID-WE and PN-II-ID-WE

11 IRREDUCIBILITY CRITERIA 83 References [1] A.I. Bonciocat, N.C. Bonciocat, A Capelli type theorem for multiplicative convolutions of polynomials, Math. Nachr ), no. 9, [2] A.I. Bonciocat, A. Zaharescu, Irreducibility results for compositions of polynomials with integer coefficients, Monatsh Math ), no. 1, [3] A.I. Bonciocat, N.C. Bonciocat, A. Zaharescu, On the number of factors of convolutions of polynomials with integer coefficients, Rocky Mountain J. Math ), no. 2, [4] N.C. Bonciocat, Upper bounds for the number of factors for a class of polynomials with rational coefficients, Acta Arith ), [5] N.C. Bonciocat, Y. Bugeaud, M. Cipu, M. Mignotte, Irreducibility criteria for sums of two relatively prime polynomials, Int. J. Number Theory ), no. 6, [6] M. Cavachi, On a special case of Hilbert s irreducibility theorem, J. Number Theory ), no. 1, [7] M. Cavachi, M. Vâjâitu, A. Zaharescu, A class of irreducible polynomials, J. Ramanujan Math. Soc ), no. 3, [8] M. Fried, On Hilbert s irreducibility theorem, J. Number Theory ), [9] K. Langmann, Der Hilbertsche Irreduzibilitätssatz und Primzahlfragen, J. Reine Angew. Math ), [10] A. Schinzel, Polynomials with Special Regard to Reducibility, in Encyclopedia of Mathematics and its Applications, Cambridge University Press 2000). Anca Iuliana Bonciocat, Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 2, P.O. Box 1-764, Bucharest , Romania Anca.Bonciocat@imar.ro Nicolae Ciprian Bonciocat, Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5, P.O. Box 1-764, Bucharest , Romania Nicolae.Bonciocat@imar.ro

12 84 A.I. Bonciocat, N.C. Bonciocat and M. Cipu Mihai Cipu, Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5, P.O. Box 1-764, Bucharest , Romania

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field

Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field Math 345-60 Abstract Algebra I Questions for Section 23: Factoring Polynomials over a Field 1. Throughout this section, F is a field and F [x] is the ring of polynomials with coefficients in F. We will

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression

On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression On the irreducibility of certain polynomials with coefficients as products of terms in an arithmetic progression Carrie E. Finch and N. Saradha Abstract We prove the irreducibility of ceratin polynomials

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

7. Some irreducible polynomials

7. Some irreducible polynomials 7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl)

How To Know If A Domain Is Unique In An Octempo (Euclidean) Or Not (Ecl) Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

Die ganzen zahlen hat Gott gemacht

Die ganzen zahlen hat Gott gemacht Die ganzen zahlen hat Gott gemacht Polynomials with integer values B.Sury A quote attributed to the famous mathematician L.Kronecker is Die Ganzen Zahlen hat Gott gemacht, alles andere ist Menschenwerk.

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

Congruence properties of binary partition functions

Congruence properties of binary partition functions Congruence properties of binary partition functions Katherine Anders, Melissa Dennison, Jennifer Weber Lansing and Bruce Reznick Abstract. Let A be a finite subset of N containing 0, and let f(n) denote

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

The cyclotomic polynomials

The cyclotomic polynomials The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =

More information

Non-unique factorization of polynomials over residue class rings of the integers

Non-unique factorization of polynomials over residue class rings of the integers Comm. Algebra 39(4) 2011, pp 1482 1490 Non-unique factorization of polynomials over residue class rings of the integers Christopher Frei and Sophie Frisch Abstract. We investigate non-unique factorization

More information

The sum of digits of polynomial values in arithmetic progressions

The sum of digits of polynomial values in arithmetic progressions The sum of digits of polynomial values in arithmetic progressions Thomas Stoll Institut de Mathématiques de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France E-mail: stoll@iml.univ-mrs.fr

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath

ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

More information

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013

International Journal of Information Technology, Modeling and Computing (IJITMC) Vol.1, No.3,August 2013 FACTORING CRYPTOSYSTEM MODULI WHEN THE CO-FACTORS DIFFERENCE IS BOUNDED Omar Akchiche 1 and Omar Khadir 2 1,2 Laboratory of Mathematics, Cryptography and Mechanics, Fstm, University of Hassan II Mohammedia-Casablanca,

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

6. Fields I. 1. Adjoining things

6. Fields I. 1. Adjoining things 6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

3 Factorisation into irreducibles

3 Factorisation into irreducibles 3 Factorisation into irreducibles Consider the factorisation of a non-zero, non-invertible integer n as a product of primes: n = p 1 p t. If you insist that primes should be positive then, since n could

More information

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Absolute Factoring of Non-holonomic Ideals in the Plane

Absolute Factoring of Non-holonomic Ideals in the Plane Absolute Factoring of Non-holonomic Ideals in the Plane D. Grigoriev CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d Ascq, France, e-mail: dmitry.grigoryev@math.univ-lille1.fr, website: http://logic.pdmi.ras.ru/

More information

Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions

Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions Tomas Recio a J Rafael Sendra b Luis Felipe Tabera a, Carlos Villarino b a Dpto de Matemáticas, Universidad de Cantabria,

More information

On the number-theoretic functions ν(n) and Ω(n)

On the number-theoretic functions ν(n) and Ω(n) ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,

More information

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

More information

DIOPHANTINE m-tuples FOR LINEAR POLYNOMIALS. II. EQUAL DEGREES

DIOPHANTINE m-tuples FOR LINEAR POLYNOMIALS. II. EQUAL DEGREES DIOPHANTINE m-tuples FOR LINEAR POLYNOMIALS. II. EQUAL DEGREES ANDREJ DUJELLA, CLEMENS FUCHS, AND GARY WALSH Abstract. In this paper we prove the best possible upper bounds for the number of elements in

More information

ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY

ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities

More information

Powers of Two in Generalized Fibonacci Sequences

Powers of Two in Generalized Fibonacci Sequences Revista Colombiana de Matemáticas Volumen 462012)1, páginas 67-79 Powers of Two in Generalized Fibonacci Sequences Potencias de dos en sucesiones generalizadas de Fibonacci Jhon J. Bravo 1,a,B, Florian

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn. Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

More information

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0, Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

More information

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

2 Polynomials over a field

2 Polynomials over a field 2 Polynomials over a field A polynomial over a field F is a sequence (a 0, a 1, a 2,, a n, ) where a i F i with a i = 0 from some point on a i is called the i th coefficient of f We define three special

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Reducibility of Second Order Differential Operators with Rational Coefficients

Reducibility of Second Order Differential Operators with Rational Coefficients Reducibility of Second Order Differential Operators with Rational Coefficients Joseph Geisbauer University of Arkansas-Fort Smith Advisor: Dr. Jill Guerra May 10, 2007 1. INTRODUCTION In this paper we

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

On the Infinitude of Prime Elements

On the Infinitude of Prime Elements Revista Colombiana de Matemáticas Volumen 47(2013)2, páginas 167-179 On the Infinitude of Prime Elements Acerca de la infinitud de elementos primos Luis F. Cáceres-Duque 1, José A. Vélez-Marulanda 2,a,

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Notes 11: List Decoding Folded Reed-Solomon Codes

Notes 11: List Decoding Folded Reed-Solomon Codes Introduction to Coding Theory CMU: Spring 2010 Notes 11: List Decoding Folded Reed-Solomon Codes April 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami At the end of the previous notes,

More information

Algebra 3: algorithms in algebra

Algebra 3: algorithms in algebra Algebra 3: algorithms in algebra Hans Sterk 2003-2004 ii Contents 1 Polynomials, Gröbner bases and Buchberger s algorithm 1 1.1 Introduction............................ 1 1.2 Polynomial rings and systems

More information