# Separation Properties for Locally Convex Cones

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Journal of Convex Analysis Volume 9 (2002), No. 1, Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam Received September 12, 2001 Revised manuscript received January 14, 2002 We introduce an order relation on a locally convex cone P which implies the strict separation property for continuous linear functionals. Using this order we establish representations for P as a cone of extended real-valued functions and as a cone of convex subsets of a vector space. Keywords: Locally convex cones, separation properties, representation 1991 Mathematics Subject Classification: 46A20, 46A22 1. Introduction The theory of locally convex cones, as developed in [1], deals with ordered cones that are not necessarily embeddable in vector spaces. A topological structure is introduced using order theoretical concepts. We shall review some of the concepts and refer to [1] for details and proofs: An ordered cone is a set P endowed with an addition, a non-negative scalar multiplication and a partial order such that the following hold: The addition is associative and commutative, and there is a neutral element 0 P. For the scalar multiplication the usual associative and distributive properties hold, that is α(βa) = (αβ)a, (α + β)a = αa + βa, α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b P and α, β 0. The (partial) order is a reflexive transitive relation such that a b implies a + c b + c and αa αb for all a, b, c P and α 0. A linear functional on a cone P is a mapping µ : P R = R {+ } such that µ(a+b) = µ(a) +µ(b) and µ(αa) = αµ(a) for all a, b P and α 0. In R we consider the usual algebraic operations, in particular α + = + for all α R, α (+ ) = + for all α > 0 and 0 (+ ) = 0. Linear functionals can assume only finite values at invertible elements of P. A full locally convex cone (P, V) is an ordered cone P that contains an abstract neighborhood system V, that is a subset of positive elements which is directed downward, closed for addition and multiplication by strictly positive scalars. The elements v of V define upper resp. lower neighborhoods for the elements of P by v(a) = { b P b a + v } resp. (a)v = { b P a b + v }, creating the upper resp. lower topologies on P. Their common refinement is called the symmetric topology. All elements of P are supposed to be bounded below, that is for ISSN / \$ 2.50 c Heldermann Verlag

2 302 W. Roth / Separation Properties for Locally Convex Cones every a P and v V we have 0 a + λv for some λ 0. Finally, a locally convex cone(p, V) is a subcone of a full locally convex cone not necessarily containing the abstract neighborhood system V. Every locally convex topological vector space is a locally convex cone in this sense, as it may be canonically embedded into a full locally convex cone (see [1], Example I.2.7). Endowed with the neighborhood system W = {ε R ε > 0}, R is a full locally convex cone. The polar v of a neighborhood v V consists of all linear functionals µ on a locally convex cone (P, V) satisfying µ(a) µ(b) + 1, whenever a b + v for a, b P. The union of all polars of neighborhoods forms the dual cone P of P. The functionals belonging to P are said to be (uniformly) continuous. Continuity requires that µ is monotone, and for a full cone P it means just that µ(v) 1 holds for some v V in addition. We endow P with the topology w(p, P) of pointwise convergence of the elements of P, considered as functions on P with values in R with its usual topology. The polar v of a neighborhood v V is seen to be w(p, P)-compact and convex ([1], Theorem II.2.4). Hahn-Banach type extension and separation theorems for locally convex cones were established in [1] and [2]. Theorem II.2.9 from [1] (a more general version is Theorem 4.1 from [2]) states that for a subcone (Q, V) of (P, V) every linear functional in v Q extends to an element of v P. While all elements of a locally convex cone are bounded below, they need not be bounded above. An element a P is bounded (above) if for every v V there is λ 0 such that a λv. The set of all bounded elements forms a subcone and even a face in P. All invertible elements of P are bounded, and continuous linear functionals take only finite values at bounded elements. In Section 2 we define and compare several order relations on a locally convex cone. Section 3 contains our main separation results, showing that the weak local and global preorders and their induced neighborhoods are determined by continuous linear functionals. Separation properties of this type are instrumental in the context of approximation theory in locally convex cones, where duality theory is used in the investigation of sequences of continuous linear operators (see Chapter IV in[1]). Our Example 2.4 demonstrates that the given order of a locally convex cone does in general not support these properties. In Section 4 we establish representations for a locally convex cone as a cone of R-valued functions and as a cone of convex subsets of a locally convex topological vector space, respectively. 2. Global and Local Preorders Throughout the following let (P, V) be a locally convex cone. preorder for elements a, b P by We define the (global) a b if a b + v for all v V. The properties of an order relation on a cone are easily verified, and a b obviously implies a b. The weak (global) preorder is defined by a b if a γb + v for every v V and ε > 0 with some 1 γ 1 + ε. Obviously a b implies a b. It is again straightforward to verify the required properties for an order relation: For

3 W. Roth / Separation Properties for Locally Convex Cones 303 transitivity, let a b and b c. Given v V and 0 < ε 1, there are 1 γ, γ 1 + ε/3 such that a γb + v/2 and b γ c + v/2, hence a γγ c + (1/2)(1 + γ)v γγ c + v. Since 1 γγ (1 + ε/3) ε, this shows a c. Compatibility with the multiplication by positive scalars is obvious. For compatibility with the addition, let a b and c P. Given v V and ε > o, there is λ 0 such that 0 c + λv, as c is bounded below. There is 1 γ 1 + min{ε, 1/(2λ)} such that a γb + v/2. Thus a + c γb + v/2 + c + (γ 1)(c + λv) γ(b + c) + v. This shows a + c b + c. We may also use these preorders in a full cone containing P, hence involving the elements of P as well as the neighborhoods. Lemma 2.1. For a, b P we have a b if and only if a b + v for all v V. Proof. Assume that a (b + v) for all v V. Given v V and 0 < ε 1, we have a (b + v/4), hence a γ(b + v/4) + v/2 for some 1 γ 1 + ε. As γ 2, this shows a γb + v, and indeed a b. Given a neighborhood v V we define the corresponding local preorders v and v for elements a, b P by a v b if a b + εv for all ε > 0. a v b if a b + εv for all ε > 0. The required properties for an order relation follow from the corresponding global relations. Note that the local and global preorders coincide if the neighborhood system V consists of the multiples of a single element. The local preorders may be directly expressed using the given order as follows: Lemma 2.2. For elements a, b P and v V (a) a v b if and only if a b + εv for all ε > 0. (b) a v b if and only if a γb + εv for every ε > 0 with some 1 γ 1 + ε. Proof. (a) If a v b, then a (b+εv) holds for all ε > 0, hence a (b+εv)+εv = b+2εv. If on the other hand, a b + εv holds for all ε > 0, this implies a b + εv, hence a v b. For (b), let a v b and 0 < ε 1. Then a ( b+(ε/4)v ), hence a γ ( b+(ε/4)v ) +(ε/2)v for some 1 γ 1 + ε. As γ 2, this shows a γb + εv, as claimed. For the converse, suppose that for every ε > 0 there exists such a γ as stated. Given ε > 0, we shall show that a (b+εv). For this, let w V and ε > 0. For ε = min{ε, ε } choose 1 γ 1+ε such that a γb + ε v. Then a γ(b + εv) + w. This shows a (b + εv). We shall observe that the preorders and coincide if P contains sufficiently many bounded elements. In this vein, a locally convex cone (P, V) is said to be tightly covered by its bounded elements (see [1], II.2.13) if for all v V and a, b P such that a b + v there is a bounded element a P such that a a but a b + v.

4 304 W. Roth / Separation Properties for Locally Convex Cones Proposition 2.3. If the locally convex cone (P, V) is tightly covered by its bounded elements, then the preorders and (and therefore also the corresponding local preorders) coincide. Proof. Following Lemma 2.1 we only have to show that for a, b P and v V the relations a b + v and a b + v coincide. Always, a b + v implies a b + v. For the converse, let a b + v and assume that contrary to our claim a b + v, that is a b + v + w for some w V. By our assumption then there is a bounded element a a such that a b + v + w. We have a λw for some λ > 0. There is 1 γ 1 + 1/(2λ) such that a γ(b + v) + w/2. Thus a γ(b + v) + w/2 and (1/γ)a (b + v) + w/2, hence a = 1 γ a + γ 1 γ a (b + v) + w/2 + γ 1 λw (b + v) + w, γ contradicting the above. Thus a b + v holds as claimed. Example 2.4. Let P be the cone whose elements are the real intervals [0, α] for α 0 and [0, β) for β > 0, endowed with the usual addition of subsets of R, and the set inclusion as order. Let V = {0}. Then a b + 0 if and only if a b for a, b P. The orders 0 and 0 do not coincide in this example, since we have [0, 1] γ[0, 1) for all γ > 1, hence [0, 1] 0 [0, 1), but not [0, 1] 0 [0, 1). The choice for V = {0} while permissible seems peculiar. However, even in standard examples a non-zero neighborhood system may act in such a way on certain subcones: Let P be the cone of all non-empty convex subsets of R 2, endowed with the standard operations and set inclusion as order, and the neighborhood system V consisting of all non-zero multiples of the Euclidean unit ball. On the subcone Q of P consisting of all positive multiples of the set {(x, y) R 2 x 2 y} all neighborhoods act as zero. 3. Separation Properties We shall show that the weak local and global preorders on a locally convex cone are determined by the elements of the dual cone. Theorem 3.1. For elements a, b P and v V (a) a v b if and only if µ(a) µ(b) for all µ v. (b) a b if and only if µ(a) µ(b) for all µ P. Proof. Part (a) is a special case of part (b) if we use the neighborhood system Ṽ = {λv λ > 0} instead of V. The dual cone then consists of all positive multiples of the functionals in v. For (b), let a b and let µ P, that is µ v for some v V. Given ε > 0 there is 1 γ 1 + ε such that a γb + εv, hence µ(a) γµ(b) + ε. This shows µ(a) µ(b.) The proof of the converse implication will however require some Hahn-Banach type arguments that had been established in [2]. For a given element b P and β R consider the sublinear functional p on P defined as p(x) = λβ if x = λb, and p(x) = + else, together with the superlinear functional q(0) = 0 and q(x) = for x 0. Following Theorem 3.1 in [2] there is a linear functional µ P such that q µ p if and only if we can find a neighborhood v V such that q(x) p(x) + 1 whenever x y + v for x, y P; that is in

5 W. Roth / Separation Properties for Locally Convex Cones 305 our particular case 0 λβ + 1 whenever 0 λb + v. If 0 b, then there are arbitrarily large such λ 0, so we have to require that β 0. Otherwise, for any β R we can find such a neighborhood. We shall use Theorem 5.1 from [2], which describes the range of all linear functionals µ P such that q µ p on a fixed element a P. If there is at least one such µ, then sup µ(a) = µ P q µ p sup v V inf {p(x) q(y) x, y P, q(y) R, a + y x + v}. With the particular insertions for p and q from above we obtain sup µ(a) = µ P q µ p sup v V inf {λβ λ 0, a λb + v}. Now let us assume that µ(a) µ(b) holds for all µ P. As q µ p implies that µ(b) β, this yields inf {λβ λ 0, a λb + v} β sup v V for all admissible values of β. We shall derive a b from this. Let v V and ε > 0. We choose β = 1 in the above and observe that there is λ 0 such that a λb + ε v and λ 1 + ε. 2 If 1 λ, this settles our claim. Otherwise we proceed distinguishing 2 cases. If 0 b, then 0 b + (ε/2)v. Thus a λb + (ε/2)v + (1 λ) ( b + (ε/2)v ) b + εv, satisfying our requirement. If 0 b, then we may use the above inequality for β = 1 as well. There is ρ > 0 such that 0 b + ρv. We find λ 0 such that a λ b + ε 2 v and λ 1 + ε 2ρ, that is λ 1 ε/(2ρ). Next we choose 0 α 1 such that 1 ε/(2ρ) λ < 1 holds for λ = αλ + (1 α)λ. (Recall that we are considering the case that λ < 1, therefore such a choice of α is possible.) Then a λ b + (ε/2)v holds as well. This shows a λ b + (ε/2)v + (1 λ ) ( b + ρv ) b + εv, again satisfying our requirement. Theorem 3.2. For elements a, b P and v V we have a b + v if and only if µ(a) µ(b) + 1 for all µ v. Proof. We shall use Theorem 3.1(a) in a full cone containing P and V. If a (b+v), then µ(a) µ(b + v) = µ(b) + µ(v) µ(b) + 1 for all µ v by Theorem 3.1 (a). On the other hand, if a (b+v), following 3.1(b) there is µ P such that µ(a) > µ(b+v) = µ(b)+µ(v). This shows µ(v) < + in particular. If µ(v) = 0, then λµ v for all λ 0, and we may choose λ such that (λµ)(a) > (λµ)(b) + 1. If µ(v) > 0, we set λ = 1/µ(v) and have λµ v, and again (λµ)(a) > (λµ)(b) + 1. The statement of Theorem 3.2, if it applies to the preorder as well, is called the strict separation property for (P, V) (see [1], II.2.12).

6 306 W. Roth / Separation Properties for Locally Convex Cones Corollary 3.3. A locally convex cone (P, V) has the strict separation property if and only if the preorders and coincide. Proof. If the preorders and coincide, then our claim follows from Theorem 3.2. If on the other hand P has the strict separation property and if a b + v for a, b P and v V, then µ(a) µ(b) + 1 for all µ v, hence a b + v as well. Lemma 2.1 will complete our argument. If we replace the given order of (P, V) with the preorder or the weak preorder, respectively, then (P, V) becomes again a locally convex cone. The dual cone P of P and the polars of neighborhoods remain unchanged. Theorem 3.2 demonstrates that is in fact the coarsest order on (P, V) that generates this duality. 4. Representations for Locally Convex Cones We shall establish a representation for a locally convex cone (P, V) as a cone of continuous R-valued functions on some topological space X. Using the preceding separation results, this representation is straightforward. Let X = P, endowed with the topology w(p, P), and let P denote the cone of all continuous R-valued functions on X, endowed with the pointwise order and algebraic operations. Corresponding to the neighborhoods v V we define neighborhoods ṽ for functions f, g P by f g + ṽ if f(x) g(x) + 1 for all x v. Then w(p, P)-compactness of the sets v X guarantees that the continuous functions f P are bounded below on v, hence 0 f +λṽ for some λ 0. With the neighborhood system Ṽ = { n i=1 λ iṽ i λ i > 0, v i V, n N }, thus ( P, Ṽ) becomes a locally convex cone. We consider the canonical embedding a f a : P P, where f a (x) = x(a) for all x X. This embedding is linear and preserves the weak global preorder by Theorem 3.1(b), that is a b for a, b P if and only if f a f b. It also preserves the neighborhoods with respect to this order, that is a b+v holds for a, b P and v V if and only if f a f b + ṽ. The latter is a consequence of Theorem 3.2. We may use the same procedure to represent (P, V) as a cone of convex subsets of a locally convex topological vector space. Let P and Ṽ be as above, and let E be the vector space of all continuous real-valued functions on X. A neighborhood basis for 0 E is given by the convex sets V = {f E f(x) 1 for all x v } corresponding to the neighborhoods v V. Now let P be the cone of all non-empty convex subset of E, endowed with the usual addition and multiplication by scalars and the set inclusion as order. With the neighborhood system V = { n i=1 λ iv i λ i > 0, v i V }, then (P, V) is a full locally convex cone. We consider the embedding a A : P P, where A = {f E f f a }. This embedding is linear (a consequence of the Riesz decomposition property for functions in E), and preserves the weak global preorder, as a b + v means that f a f b + ṽ which in turn holds if and only if A B + V. We summarize:

7 W. Roth / Separation Properties for Locally Convex Cones 307 Theorem 4.1. Every locally convex cone (P, V) may be embedded into (i) (ii) a locally convex cone of continuous R-valued functions on some topological space X, endowed with the pointwise order and operations and the topology of uniform convergence on a family of compact subsets of X. a locally convex cone of convex subsets of a locally convex topological vector space, endowed with the usual addition and multiplication by scalars, the set inclusion as order and the neighborhoods inherited from the vector space. These embeddings are linear and preserve the weak global preorder and the neighborhoods. References [1] K. Keimel, W. Roth: Ordered Cones and Approximation, Lecture Notes in Mathematics 1517, Springer-Verlag, Berlin et al. (1992). [2] W. Roth: Hahn-Banach type theorems for locally convex cones, Journal of the Australian Math. Soc. (Series A) 68 (2000)

### Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Martina Fedel joint work with K.Keimel,F.Montagna,W.Roth Martina Fedel (UNISI) 1 / 32 Goal The goal of this talk is to

### Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

### Duality of linear conic problems

Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

### Weak topologies. David Lecomte. May 23, 2006

Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such

### Ri and. i=1. S i N. and. R R i

The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

### Sequences and Convergence in Metric Spaces

Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the n-th term of s, and write {s

### Notes on metric spaces

Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

### Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

### BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Convex analysis and profit/cost/support functions

CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

### 5. Convergence of sequences of random variables

5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

### FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

### INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

### Chapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces

Chapter 1. Metric Spaces Metric Spaces MA222 David Preiss d.preiss@warwick.ac.uk Warwick University, Spring 2008/2009 Definitions. A metric on a set M is a function d : M M R such that for all x, y, z

### NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### Fuzzy Differential Systems and the New Concept of Stability

Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

### Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

### ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

### and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

### {f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...

44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it

### Lecture Notes on Measure Theory and Functional Analysis

Lecture Notes on Measure Theory and Functional Analysis P. Cannarsa & T. D Aprile Dipartimento di Matematica Università di Roma Tor Vergata cannarsa@mat.uniroma2.it daprile@mat.uniroma2.it aa 2006/07 Contents

### Our goal first will be to define a product measure on A 1 A 2.

1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ -algebra A 1 A 2 with the unit element is the σ -algebra generated by the

### The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit

The fundamental group of the Hawaiian earring is not free Bart de Smit The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992),

### POWER SETS AND RELATIONS

POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

### CHAPTER 5. Product Measures

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### I. Pointwise convergence

MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

### Continuity of the Perron Root

Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

### Limits and convergence.

Chapter 2 Limits and convergence. 2.1 Limit points of a set of real numbers 2.1.1 Limit points of a set. DEFINITION: A point x R is a limit point of a set E R if for all ε > 0 the set (x ε,x + ε) E is

### The Lebesgue Measure and Integral

The Lebesgue Measure and Integral Mike Klaas April 12, 2003 Introduction The Riemann integral, defined as the limit of upper and lower sums, is the first example of an integral, and still holds the honour

### Finite dimensional topological vector spaces

Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### Topology and Convergence by: Daniel Glasscock, May 2012

Topology and Convergence by: Daniel Glasscock, May 2012 These notes grew out of a talk I gave at The Ohio State University. The primary reference is [1]. A possible error in the proof of Theorem 1 in [1]

### (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

### ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

### 6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

### Math 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko

Math 563 Measure Theory Project (Funky Functions Group) Luis Zerón, Sergey Dyachenko 34 Let C and C be any two Cantor sets (constructed in Exercise 3) Show that there exists a function F: [,] [,] with

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

### Introduction to Topology

Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### Compactness in metric spaces

MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

### MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

### 9 More on differentiation

Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

### Date: April 12, 2001. Contents

2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

### Notes on Symmetric Matrices

CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

University of Oslo MAT2 Project The Banach-Tarski Paradox Author: Fredrik Meyer Supervisor: Nadia S. Larsen Abstract In its weak form, the Banach-Tarski paradox states that for any ball in R, it is possible

### Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

### Fixed Point Theorems

Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

### Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

### Pacific Journal of Mathematics

Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

### FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS

FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure

### 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### Topics in weak convergence of probability measures

This version: February 24, 1999 To be cited as: M. Merkle, Topics in weak convergence of probability measures, Zb. radova Mat. Inst. Beograd, 9(17) (2000), 235-274 Topics in weak convergence of probability

### Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),

### Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

### Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

### PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume L, Number 3, September 2005 PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION YAVUZ ALTIN AYŞEGÜL GÖKHAN HIFSI ALTINOK Abstract.

### Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

### Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

### Math 421, Homework #5 Solutions

Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition

### 1. Let X and Y be normed spaces and let T B(X, Y ).

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

### MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS I. Csiszár (Budapest) Given a σ-finite measure space (X, X, µ) and a d-tuple ϕ = (ϕ 1,..., ϕ d ) of measurable functions on X, for a = (a 1,...,

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

### 3. Prime and maximal ideals. 3.1. Definitions and Examples.

COMMUTATIVE ALGEBRA 5 3.1. Definitions and Examples. 3. Prime and maximal ideals Definition. An ideal P in a ring A is called prime if P A and if for every pair x, y of elements in A\P we have xy P. Equivalently,

### Maximum Likelihood Estimation

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

### Riesz-Fredhölm Theory

Riesz-Fredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A Ascoli-Arzelá Result 18 B Normed Spaces

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS

ZERO-DIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We

### A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT

Bol. Soc. Mat. Mexicana (3) Vol. 12, 2006 A CHARACTERIZATION OF C k (X) FOR X NORMAL AND REALCOMPACT F. MONTALVO, A. A. PULGARÍN AND B. REQUEJO Abstract. We present some internal conditions on a locally

### MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f

### Notes on weak convergence (MAT Spring 2006)

Notes on weak convergence (MAT4380 - Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p

### On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

Journal of Linear and Topological Algebra Vol. 04, No. 02, 2015, 53-63 On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules M. Rashidi-Kouchi Young Researchers and Elite Club Kahnooj

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

### Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

### GenOpt (R) Generic Optimization Program User Manual Version 3.0.0β1

(R) User Manual Environmental Energy Technologies Division Berkeley, CA 94720 http://simulationresearch.lbl.gov Michael Wetter MWetter@lbl.gov February 20, 2009 Notice: This work was supported by the U.S.