UNIVERSITETET I OSLO
|
|
|
- Arleen Burke
- 9 years ago
- Views:
Transcription
1 NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November Examination hours: This examination set consists of 7 pages. Appendices: Permitted aids: None. Approved calculator. Make sure that your copy of the examination set is complete before you start solving the problems. Problem 1. a. If is a domain, and u C and v H 2, show that uv xj x i = u xi x j v + u xi v xj + u xj v xi + uv xi x j. Answer: Let ϕ be a test function, we compute ϕ u xi x j v + u xi v xj + u xj v xi + uv xi x j dx = ϕu xi x j v u xi ϕ xj v u xj ϕ x i v + uϕ xi x j v dx = v u xi x j ϕ u xi x j ϕ u xi ϕ xj u xi x j ϕ u xj ϕ xi + u xi x j ϕ = + u xi ϕ xj + u xj ϕ xi + uϕ xi x j dx vuϕ xi x J dx = uv xi x j ϕ dx Continued on page 2.
2 Examination in Trial exam, November Page 2 For the remainder of this problem, let be a bounded open subset of R 3, with a C 1 boundary. You may find the theorem in Figure 1 useful. Figure 1: Theorem from Evans: Partial differential equations. b. Show that for u and v in H 2 uxi x j v C v L 2 H 2 where C is some constant depending on only. uxi L x j 2 Answer: We have R 3 and u, v W 2,2. Thus in the terminology of the theorem; p = 2, k = 2 and n = 3, i.e., we are in case ii since 2 > 3/2. Hence u and v are in C 0,1/2, and we have the estimate u L u C 0,1/2 C u H 2. Thus uv xi x 2 j dx u 2 L v xi x 2 j dx. From these two estimates follows that uv L xi x u j 2 L vxi L x C u j 2 H 2 vxi L x. j 2 The other estimate is proved in the same way. Continued on page 3.
3 Examination in Trial exam, November Page 3 c. Show that if u is in H 2 then u xi L 6 for i = 1, 2, 3, and that u xi L p C u H 2, for 1 p 6. Answer: We have that u xi H 1 = W 1,2, so in the terminology of the theorem; p = 2, k = 1 and n = 3. Thus we are in case i, since 1 < 3/2. Thus u xi is in L q, with 1 q = = 1 6. By the theorem we have that u xi L 6 C u H 2, but since is bounded, u xi L p C u xi L 6 for 1 p 6 since is bounded. d. Show that if u and v are in H 2, then u xi v xj is in L 2, with the estimate uxi v xj C u L 2 H 2 v H 2. Answer: sing Hölder s inequality with p = 3, q = 3/2 uxi v xj 2 = L 2 uxi v xj 2 dx 1/3 u xi 2 3 dx vxj 2 3/2 2/3 dx = uxj 2 L 6 v x i 2 L 3 C uxj 2 v L 2 x i 2 L 2, since is bounded, C u 2 H 2 v 2 H 2. e. Show that if u and v are in H 2, then so is the product uv, and we have the estimate uv H 2 C u H 2 v H 2. Hint: use approximation of u by smooth functions in H 2 C. We call H 2 an algebra due to this property. Answer: Let {u n } H 2 C such that u n u in H 2. First we note that u n v 2 L 2 un 2 L v 2 H 2 C un 2 H 2 v 2 H 2. Continued on page 4.
4 Examination in Trial exam, November Page 4 By b, Hence u n v xi = u n x i v + u n v xi u n v xi x j = u n x i x j v + u n x i v xi + u n x j v xi + u n v xi x j. u n v xi L 2 u n x i v L 2 + un v xi L 2 u n xi L 2 v L + un L v L 2 C u n H 2 v H 2, and u n L v xi x j 2 u n x i x j v + u n xi v L u + n L xi L 2 2 xj v xi + u n v L xi x j 2 2 u n L x i x j v L 2 + C un H 2 v H 2 + un L vxi L x j 2 C u n H 2 v H 2. Hence u n v H 2 with the estimate Thus {u n v} H 2 satisfies u n v H 2 C un H 2 v H 2. u n v u m v H 2 C un u m H 2 v H 2 0, as m, n. Therefore {u n v} is a Cauchy sequence and u n v w H 2. We also have that the product uv L 2, u n v uv L 2 v L un u L 2 0, so u n v uv in L 2. So for any multiindex α and test function ϕ, D α wϕ dx = 1 α wd α ϕ dx and thus w = uv in H 2. = lim 1 α u n n vd α ϕ dx = 1 α uvd α ϕ dx = D α uvϕ dx, Continued on page 5.
5 Examination in Trial exam, November Page 5 Problem 2. a. For functions in L 2, the Fourier transform is given by 1 ûy = e ix y ux dx. 2π n/2 Show that if u L 2, then uy = y 2 ûy. Answer: We have that û xi x i y = y 2 i ûy. The answer follows by summing over i. b. On the space H m, we use the norm u H m = 1 + y m û L 2. Show that if u H m+1 and u H m then u H m+2 C u H m + u L 2 for some constant C. Hint: The following facts may be useful: i a + b 2 2a 2 + b 2, ii 1 + y m y m y 2., Answer: We have that 1 + y m y m y 2. sing a + b 2 2a 2 + b 2 we find that 1 + y m y m 2 y 2 2. Therefore u 2 H m+2 R = 1 + y m+2 2 ûy 2 dy n 2 ûy 2 dy y m 2 y 2 ûy 2 dy R n = 2 u 2 L 2 + u 2 H m 2 2 u L 2 + u H m R. n Continued on page 6.
6 Examination in Trial exam, November Page 6 c. Let cx be a bounded positive function such that 0 < c 1 cx c 2 < for all x. Here c 1 and c 2 are constants. Define a weak solution to the differential equation u + cxu = fx, x, 1 where f L 2. se the Riesz representation theorem to show that there exists a unique weak solution to 1 in H 1. Answer: The weak formulation is B[u, v] := u xi v xi + cxuv dx = fv dx = f, v L 2 u is called a weak solution if this holds for any v H 1. We have that B[u, v] max {1, c 2 } u xi v xi + uv dx C u H 1 v H 1, B[u, u] min {1, c 1 } u 2 H 1. Hence B is continuous and coersive. Furthermore, B[u, v] = B[v, u], and therefore B defines an alternative inner product on H 1. Consider the linear functional v f, v L 2. This is in H 1, and Riesz representation theorem says that there exists a unique u H 1 such that B[u, v] = f, v L 2. i d. Show that if u is a weak solution in H 1 of 1 then u H 2 and that u H 2 C f L 2, for some constant C. Answer: Let u be the weak solution, and consider the linear functional on L 2 given by v fv cuv dx. By Riesz representation theorem, there is a unique h L 2 such that vh dx = fv cuv dx, Continued on page 7.
7 Examination in Trial exam, November Page 7 for all v L 2. Furthermore h 2 L 2 fh + cuh dx h L 2 f L 2 + c 2 u L 2, or h L 2 C f L 2 + u L 2 Also for every v Cc L 2, vh dx = fv cuv dx = Du Dv dx = u v dx. This means that u = h in the weak sense. Next, use b with m = 0, this gives u H 2 C f L u L 2 since u L 2 C f L 2 + u L 2. However,, u 2 L 2 CB[u, u] C f L 2 u L 2, so u L 2 C f L 2. END
Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: [email protected] Narvik 6 PART I Task. Consider two-point
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Nonlinear Algebraic Equations Example
Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Consumer Theory. The consumer s problem
Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.
Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian
0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup
456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
1. Let P be the space of all polynomials (of one real variable and with real coefficients) with the norm
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 005-06-15 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Metric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu
An optimal transportation problem with import/export taxes on the boundary
An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint
Introduction to the Finite Element Method
Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
1 Inner Products and Norms on Real Vector Spaces
Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from
MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich
MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites
Multi-variable Calculus and Optimization
Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Lecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
The two dimensional heat equation
The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Error estimates for nearly degenerate finite elements
Error estimates for nearly degenerate finite elements Pierre Jamet In RAIRO: Analyse Numérique, Vol 10, No 3, March 1976, p. 43 61 Abstract We study a property which is satisfied by most commonly used
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
1. Let X and Y be normed spaces and let T B(X, Y ).
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
MATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Advanced Microeconomics
Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss
AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
Verifying Numerical Convergence Rates
1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
Numerical Verification of Optimality Conditions in Optimal Control Problems
Numerical Verification of Optimality Conditions in Optimal Control Problems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS SERENA DIPIERRO, XAVIER ROS-OTON, AND ENRICO VALDINOCI Abstract. We introduce a new Neumann problem for the fractional Laplacian arising from a simple
EXERCISES PDE 31.10.12-02.11.12. v(x)
EXERCISES PDE 31.1.12-2.11.12 1. Exercise Let U R N 2 be a bounded open set. We say that v C (Ū) is subharmonic iff v in U. (a) Prove that subharmonic functions enjoy the following form of the mean-value
THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS
Scientiae Mathematicae Japonicae Online, Vol. 5,, 9 9 9 THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS CHIKAKO HARADA AND EIICHI NAKAI Received May 4, ; revised
Chapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
Theory of Sobolev Multipliers
Vladimir G. Maz'ya Tatyana O. Shaposhnikova Theory of Sobolev Multipliers With Applications to Differential and Integral Operators ^ Springer Introduction Part I Description and Properties of Multipliers
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
ALMOST COMMON PRIORS 1. INTRODUCTION
ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
1 Calculus of Several Variables
1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Quotient Rings and Field Extensions
Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Linköping University Electronic Press
Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Lecture Notes on Elasticity of Substitution
Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
To give it a definition, an implicit function of x and y is simply any relationship that takes the form:
2 Implicit function theorems and applications 21 Implicit functions The implicit function theorem is one of the most useful single tools you ll meet this year After a while, it will be second nature to
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
Fixed Point Theorems
Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
