An optimal transportation problem with import/export taxes on the boundary

Size: px
Start display at page:

Download "An optimal transportation problem with import/export taxes on the boundary"

Transcription

1 An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November Joint work with J. M. Mazón and J. D. Rossi

2 Schedule 1. Statement of the problem 2. Mass Transport Theory 3. The mass transport problem with import/export taxes: Duality 4. Evans-Gangbo Performance 5. Optimal Transport Plans 6. Limited importation/exportation

3 Statement of the problem

4 Business A business man (BM) produces some product in some factories in : f + gives the amount of product and its location. There are some consumers of the product in : f gives its distribution. BM wants: to transport all the mass f + to f (to satisfy the consumers) or to the boundary (export).

5 Costs and constrains The BM pays: the transport costs (given by the Euclidean distance) PLUS when a unit of mass is left on a point y : T e (y), the export taxes. BM must satisfy all the demand of the consumers. So that, he has to import product, if necessary, from the exterior, paying: T i (x), import taxes, for each unit of mass that enters from x.

6 Some freedom BM has the freedom to chose to export or import mass provided he transports all the mass in f + and covers all the mass of f.

7 MAIN GOAL The main goal here is to minimize the total cost of this operation, that is given by the transport cost PLUS export/import taxes. Given the set of transport plans { A(f +, f ) := µ M + ( ) : π 1 #µ = f + L N, π 2 #µ = f L N }, the goal is to obtain min µ A(f +,f ) x y dµ + T i d(π 1 #µ) + T e d(π 2 #µ) π i : R N R N are the projections: π 1 (x, y) := x, π 2 (x, y) := y. Given a Radon measure γ in X X, π 1 #γ is the marginal proj x (γ), and π 2 #γ is the marginal proj y (γ).

8 Equilibrium of masses The transport must verify the natural equilibrium of masses, nevertheless it is not necessary to impose f + (x) dx = f (y) dy.

9 Equilibrium of masses The transport must verify the natural equilibrium of masses, nevertheless it is not necessary to impose f + (x) dx = f (y) dy. In this transport problem two masses appear on, that are unknowns, the ones that encode the mass exported and the mass imported. Taking into account this masses we must have the equilibrium condition.

10 Conditions on the domains is assumed to be convex: we prevent the fact that the boundary of is crossed when the mass is transported inside.

11 Conditions on the domains is assumed to be convex: we prevent the fact that the boundary of is crossed when the mass is transported inside. On the support of the f ± we assume that supp(f + ) supp(f ) =.

12 Mass Transport Theory

13 Monge problem Given two measures µ, ν M(X ) (say X R N ) satisfying the mass balance condition dµ = dν, Monge s Problem consists in solving x T (x) dµ(x), inf T #µ=ν X X T : X R N are Borel functions pushing forward µ to ν: T #µ = ν, T #µ(b) = µ(t 1 (B)). X A minimizer T is called an optimal transport map of µ to ν. In the case that µ and ν represent the distribution for production and consumption of some commodity, the problem is to decide which producer should supply each consumer minimizing the total transport cost.

14 Relaxed Problem: Monge-Kantorovich Problem In general, the Monge problem is ill-posed. But...

15 Relaxed Problem: Monge-Kantorovich Problem In general, the Monge problem is ill-posed. But... Fix two measures µ, ν satisfying the mass balance condition. Let Π(µ, ν) the set of transport plans γ between µ and ν: proj x (γ) = µ, proj y (γ) = ν. The problem of finding a measure γ Π(µ, ν) which minimizes the cost functional K(γ) := x y dγ(x, y), in the set Π(µ, ν), is well-posed. X X A minimizer γ is called an optimal transport plan between µ and ν. Linearity makes the Monge-Kantorovich problem simpler than Monge original problem: a continuity-compactness argument guarantees the existence of an optimal transport plan.

16 Dual Problem: Kantorovich Duality Linear minimization problems admit a dual formulation: For (ϕ, ψ) L 1 (dµ) L 1 (dν), define J(ϕ, ψ) := ϕ dµ + ψ dν, X X and let Φ be the set of all measurable functions (ϕ, ψ) L 1 (dµ) L 1 (dν) satisfying Then ϕ(x) + ψ(y) x y for µ ν almost all (x, y) X X. inf K(γ) = sup J(ϕ, ψ). γ Π(µ,ν) (ϕ,ψ) Φ

17 And... Kantorovich-Rubinstein Theorem Theorem (Kantorovich-Rubinstein) where min K(γ) = γ Π(µ,ν) sup u K 1(X ) X u d(µ ν), K 1 (X ) := {u : X R : u(x) u(y) x y x, y X } is the set of 1-Lipschitz functions in X. The maximizers u of the right hand side are called Kantorovich (transport) potentials.

18 Evans and Gangbo Approach For µ = f + L N and ν = f L N, f + and f adequate Lebesgue integrable functions, Evans and Gangbo find a Kantorovich potential as a limit, as p, of solutions to { p u p = f + f in B(0, R), u p = 0 on B(0, R). Theorem u p u K 1 () as p. u (x)(f + (x) f (x)) dx = u(x)(f + (x) f (x)) dx. max u K 1()

19 Evans and Gangbo Approach For µ = f + L N and ν = f L N, f + and f adequate Lebesgue integrable functions, Evans and Gangbo find a Kantorovich potential as a limit, as p, of solutions to { p u p = f + f in B(0, R), u p = 0 on B(0, R). Theorem u p u K 1 () as p. u (x)(f + (x) f (x)) dx = u(x)(f + (x) f (x)) dx. max u K 1() Characterization of the Kantorovich potential: There exists 0 a L () such that f + f = div(a u ) in D (). Furthermore u = 1 a.e. in the set {a > 0}.

20 Evans and Gangbo Approach Evans and Gangbo used this PDE to find a proof of the existence of an optimal transport map for the classical Monge problem, different to the first one given by Sudakov in 1979 by means of probability methods.

21 The mass transport problem with import/export taxes First approach: Duality

22 A Clever Fellow

23 A Clever Fellow A clever fellow proposes the BM to leave him the planing and offers him the following deal:

24 A Clever Fellow A clever fellow proposes the BM to leave him the planing and offers him the following deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself), * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself).

25 A Clever Fellow A clever fellow proposes the BM to leave him the planing and offers him the following deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself), * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself). * He will do all that job in such a way that: ϕ(x) + ψ(y) x y T i ϕ and T e ψ on. (assuming negative payments if necessary).

26 A Clever Fellow A clever fellow proposes the BM to leave him the planing and offers him the following deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself), * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself). * He will do all that job in such a way that: ϕ(x) + ψ(y) x y T i ϕ and T e ψ on. (assuming negative payments if necessary). Observe that we need to impose the following condition: T i (x) T e (y) x y, x, y, (there is not benefit of importing mass from x and exporting it to y). For x = y : T i (x) + T e (x) 0 means that in the same point the sum of exportation and importation taxes is non negative.

27 Clever Fellow s Goal Consider J(ϕ, ψ) := ϕ(x)f + (x) dx + ψ(y)f (y) dy, defined for continuous functions, and let { (ϕ, ψ) C() C() : ϕ(x) + ψ(y) x y, B(T i, T e ) := T i ϕ, T e ψ on The aim of the fellow that helps the business man is to obtain sup {J(ϕ, ψ) : (ϕ, ψ) B(T i, T e )}. }.

28 Clever Fellow s Goal Consider J(ϕ, ψ) := ϕ(x)f + (x) dx + ψ(y)f (y) dy, defined for continuous functions, and let { (ϕ, ψ) C() C() : ϕ(x) + ψ(y) x y, B(T i, T e ) := T i ϕ, T e ψ on The aim of the fellow that helps the business man is to obtain sup {J(ϕ, ψ) : (ϕ, ψ) B(T i, T e )}. Now, given (ϕ, ψ) B(T i, T e ) and µ A(f +, f ): J(ϕ, ψ) = ϕ(x)f + (x) dx + ψ(y)f (y) dy = ϕ(x)dπ 1 #µ ϕdπ 1 #µ + ψ(y)dπ 2 #µ ψdπ 2 #µ }.

29 Clever Fellow s Goal Consider J(ϕ, ψ) := ϕ(x)f + (x) dx + ψ(y)f (y) dy, defined for continuous functions, and let { (ϕ, ψ) C() C() : ϕ(x) + ψ(y) x y, B(T i, T e ) := T i ϕ, T e ψ on The aim of the fellow that helps the business man is to obtain sup {J(ϕ, ψ) : (ϕ, ψ) B(T i, T e )}. Now, given (ϕ, ψ) B(T i, T e ) and µ A(f +, f ): J(ϕ, ψ) = ϕ(x)f + (x) dx + ψ(y)f (y) dy = ϕ(x)dπ 1 #µ ϕdπ 1 #µ + ψ(y)dπ 2 #µ ψdπ 2 #µ x y dµ + T i d(π 1 #µ) + T e d(π 2 #µ). }.

30 Acceptance of the deal Therefore, sup (ϕ,ψ) B(T i,t e) inf µ A(f +,f ) J(ϕ, ψ) x y dµ + T i d(π 1 #µ) + T e d(π 2 #µ).

31 Acceptance of the deal Therefore, sup (ϕ,ψ) B(T i,t e) inf µ A(f +,f ) J(ϕ, ψ) x y dµ + T i d(π 1 #µ) + T e d(π 2 #µ). This inequality will imply that the business man accept the offer.

32 NO GAP But, in fact, there is no gap between both costs: Theorem Assume that T i and T e satisfy T i (x) T e (y) < x y x, y. Then, sup J(ϕ, ψ) (ϕ,ψ) B(T i,t e) = min µ A(f +,f ) x y dµ + T i dπ 1 #µ + T e dπ 2 #µ. Proof based on Fenchel-Rocafellar s duality Theorem.

33 UNKNOWNS There is an important difference between the problem we are studying and the classical transport problem: there are masses, the ones that appear on the boundary, that are unknown variables.

34 UNKNOWNS There is an important difference between the problem we are studying and the classical transport problem: there are masses, the ones that appear on the boundary, that are unknown variables. The above result is an abstract result and does not give explicitly the measures involved in the problem. But...

35 Evans-Gangbo Performance Kantorovich potentials and optimal export/import masses

36 Let f L () and N < p < +. Let g i C( ), g 1 g 2 on. Set Wg 1,p 1,g 2 () = {u W 1,p () : g 1 u g 2 on } and consider the energy functional u(x) p Ψ p (u) := dx f (x)u(x) dx. p

37 Let f L () and N < p < +. Let g i C( ), g 1 g 2 on. Set Wg 1,p 1,g 2 () = {u W 1,p () : g 1 u g 2 on } and consider the energy functional u(x) p Ψ p (u) := dx f (x)u(x) dx. p Wg 1,p 1,g 2 () is a closed convex subset of W 1,p () and Ψ p is convex, l.s.c. and coercive. Then min Ψ p (u) u Wg 1,p 1,g 2 () has a minimizer u p in W 1,p g 1,g 2 (), which is a least energy solution of the obstacle problem { p u = f in, g 1 u g 2 on.

38 Theorem Assume g 1, g 2 satisfy g 1 (x) g 2 (y) x y x, y. Then, up to subsequence, u p u uniformly, and u is a maximizer of the variational problem { } max w(x)f (x) dx : w Wg 1, 1,g 2 (), w L () 1.

39 Theorem Assume g 1, g 2 satisfy g 1 (x) g 2 (y) x y x, y. Then, up to subsequence, u p u uniformly, and u is a maximizer of the variational problem { } max w(x)f (x) dx : w Wg 1, 1,g 2 (), w L () 1. A natural question: Let f + and f be the positive and negative part of f. Can u be interpreted as a kind of Kantorovich potential for some transport problem involving f + and f?

40 DUALITY Theorem If then g 1 (x) g 2 (x) x y x, y, u (x)(f + (x) f (x))dx = sup J(ϕ, ψ) (ϕ,ψ) B( g 1,g 2) = min µ A(f +,f ) x y dµ g 1 dπ 1 #µ + where u is the maximizer given in the above Theorem. g 2 dπ 2 #µ,

41 DUALITY Theorem If then g 1 (x) g 2 (x) x y x, y, u (x)(f + (x) f (x))dx = sup J(ϕ, ψ) (ϕ,ψ) B( g 1,g 2) = min µ A(f +,f ) x y dµ g 1 dπ 1 #µ + where u is the maximizer given in the above Theorem. g 2 dπ 2 #µ, Observe that setting T i = g 1 and T e = g 2 we are dealing with our transport problem.

42 Key result Theorem Assume g 1 (x) g 2 (y) < x y x, y. Let u p, u the functions obtained above. Then, up to a subsequence, X p := Du p p 2 Du p X weakly* in the sense of measures, div(x ) = f in the sense of distributions in, Moreover, the distributions X p η defined as X p η, ϕ := X p ϕ f ϕ for ϕ C0 (R N ), are Radon measures supported on, that, up to a subsequence, X p η V weakly* in the sense of measures; and...

43 Key result u is a Kantorovich potential for the classical transport problem of the measure ˆf + = f + L N + V + to ˆf = f L N + V. Moreover, u = g 1 on supp(v + ), u = g 2 on supp(v ).

44 Key result This result provides a proof for the previous duality Theorem: u d(ˆf + ˆf ) = min x y dν = x y dν 0, ν Π(ˆf +,ˆf ) for some ν 0 Π(ˆf +, ˆf ). Then, since π 1 #ν 0 = V + and π 2 #ν 0 = V, u (f + f ) = x y dν 0 g 1 dπ 1 #ν 0 + g 2 dπ 2 #ν 0.

45 Moreover, we have that V + and V are import and export masses in our original problem.

46 Proof Let u p be a minimizer of Ψ p (u) := u(x) p p dx f (x)u(x) dx. Then, { p u p = f in, g 1 u p g 2 on.

47 Proof Let u p be a minimizer of Ψ p (u) := u(x) p p dx f (x)u(x) dx. Then, { p u p = f in, g 1 u p g 2 on. Therefore for X p := Du p p 2 Du p we have that div(x p ) = f in the sense of distributions, and that the distribution X p η, defined as X p η, ϕ := X p ϕ f ϕ for ϕ C0 (R N ), is supported on.

48 We proof that, in fact, X p η is the sum of a nonnegative and a nonpositive distribution, so it is a measure, and moreover that supp((x p η) + ) {x : u p (x) = g 1 (x)}, and supp((x p η) ) {x : u p (x) = g 2 (x)}. In addition, we have that X p ϕ = f ϕ + ϕ d (X p η) ϕ W 1,p ().

49 Boundedness of u p, X p and X p η By using adequate test functions we get that, for p N + 1, u p p C, C constant not depending on p. d(x p η) ± C,

50 Boundedness of u p, X p and X p η By using adequate test functions we get that, for p N + 1, u p p C, d(x p η) ± C, C constant not depending on p. Therefore, there exists a sequence p i such that u pi u uniformly in, with u 1, and X pi X weakly as measures in, X pi η V weakly as measures on.

51 Then That is, formally, ϕ dx = f ϕ dx + ϕdv div(x ) = f in ϕ C 1 (). X η = V on.

52 Then That is, formally, ϕ dx = f ϕ dx + ϕdv div(x ) = f X η = V in on. ϕ C 1 (). But also we prove that fu + u dv = d X. And this allows to prove that for any 1 Lipschitz continuous function w, u f dx + u dv wf dx + wdv.

53 Giving ϕ C 1 () with ϕ 1, u f dx + u dv = = ϕ dx = ϕf dx + d X ϕdv. X ϕ d X X Then, by approximation, given a Lipschitz continuous function w with w 1, we obtain u f dx + u dv wf dx + wdv.

54 Conclusion Therefore u is a Kantorovich potential for the classical transport problem associated to the measures f + dl N + V + and f dl N + V (the mass of both measures is the same).

55 Conclusion Therefore u is a Kantorovich potential for the classical transport problem associated to the measures f + dl N + V + and f dl N + V (the mass of both measures is the same). Moreover, V + and V are import and export masses in our original problem.

56 Optimal Transport Plans

57 Detailing the transport Once export/import masses on the boundary are fixed, V + and V, take an optimal transport plan µ for f + L N + V + and f L N + V, (remark that necessarily µ( ) = 0). The part of f + exported is f + = π 1 #(µ ), and the part of f imported is f = π 2 #(µ ).

58 An optimal transport plan via transport maps. Kantorovich potential. t 2 : supp( f + ) an optimal map pushing f + forward V +. t 1 : supp( f ) an optimal map pushing f forward V. t 0 : supp(f + ) an optimal map pushing f + f + forward to f f.

59 An optimal transport plan via transport maps. Kantorovich potential. t 2 : supp( f + ) an optimal map pushing f + forward V +. t 1 : supp( f ) an optimal map pushing f forward V. t 0 : supp(f + ) an optimal map pushing f + f + forward to f f. Then, µ (x, y) = f + (x)δ y=t2(x) + (f + (x) f + (x))δ y=t0(x) + f (y)δ x=t1(y) is an optimal transport plan for our problem. u is a Kantorovich potential for each of these transports problems.

60 u (x) = min y (g 2(y) + x y ) for a.e. x supp( f + ), u (x) = max y (g 1(y) x y ) for a.e. x supp( f ).

61 T i = 0, T e = 1 2 y x

62 T i = 0, T e = 1 2 y x Importing mass from 1 is free of taxes, nevertheless, doing this would imply to export more mass to 0 and export taxes make this expensive.

63 T i = 0, T e = 1 4 y x Decreasing the export taxes, more mass is exported to 0 and some mass is imported from 1.

64 T i = 0, T e(0) = 3 4, Te(1) = 0 y x Increasing export taxes in 0, all the other null, implies that the optimal transport plan exports to 1.

65 T i = 0, T e = 1 2 y x

66 T i = 0, T e = 1 2 y x Observe that this transport problem would have coincided with the classical one if we had put T e = 1.

67 Limited importation/exportation

68 More realistic We have been using as an infinite reserve/repository.

69 More realistic We have been using as an infinite reserve/repository. We can impose the restriction of not exceeding the punctual quantity of M e (x) when we export some mass through x and also a punctual limitation of M i (x) for importing from x. We will assume M i, M e L ( ) with M i, M e 0 on.

70 More realistic We have been using as an infinite reserve/repository. We can impose the restriction of not exceeding the punctual quantity of M e (x) when we export some mass through x and also a punctual limitation of M i (x) for importing from x. We will assume M i, M e L ( ) with M i, M e 0 on. A natural constraint must be verified: M e (f + f ) that is, the interplay with the boundary is possible. Hence the mass transport problem is possible, and the problem becomes, as before, to minimize the cost. M i,

71 Especial situations 1. When moreover T i = T e = 0: limited importation/exportation but without taxes. 2. When M i (x) = 0 or M e (x) = 0 on certain zones of the boundary: it is not allowed importation or exportation in those zones. 2. M i (x) = M e (x) = 0 on the whole boundary ( f + = f ) we recover the classical Monge-Kantorovich mass transport problem.

72 New goal Given now A l (f +, f ) := µ M + ( ) : π 1 #µ = f + L N, π 2 #µ = f L N, π 1 #µ M i, π 2 #µ M e, we want to obtain min µ A l (f +,f ) x y dµ + T i d(π 1 #µ) + T e d(π 2 #µ). Conditions on T i and T e : T i + T e 0 on.

73 The Clever Fellow again New deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself) * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself).

74 The Clever Fellow again New deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself) * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself). * he will do all this in such a way that: ϕ(x) + ψ(y) x y T i ϕ and T e ψ on,

75 The Clever Fellow again New deal: * to pick up the product f + (x), x, he will charge him ϕ(x), * to pick it up at x, T i (x) (paying the taxes by himself) * to leave the product at the consumer s location f (y), y, he will charge him ψ(y), and * for leaving it at y, T e (y) (paying again the taxes himself). * he will do all this in such a way that: ϕ(x) + ψ(y) x y T i ϕ and T e ψ on, (now:) * he will pay a compensation when ϕ < T i or ψ < T e of: M i ( ϕ T i ) + + M e ( ψ T e ) +.

76 The aim of the fellow now is to obtain ϕf + + ψf M i ( ϕ T i ) + sup ϕ(x)+ψ(y) x y M e ( ψ T e ) +.

77 The aim of the fellow now is to obtain ϕf + + ψf M i ( ϕ T i ) + sup ϕ(x)+ψ(y) x y M e ( ψ T e ) +. And again There is no gap between both costs.

78 New energy functional The energy functional to be considered now is u(x) p Ψ l (u) := dx f (x)u(x) dx + j(x, u(x)), p M i (x)( T i (x) r) if r < T i (x), j(x, r) = 0 if T i (x) r T e (x), M e (x)(r T e (x)) if r > T e (x). For the minimizers of we prove the following result: min Ψ l(u), u W 1,p ()

79 Theorem Up to subsequence, u p u uniformly as p.

80 Theorem Up to subsequence, u p u uniformly as p. There exist X p η L ( ), X p η j(x, u p ) a.e. x such that X p η ϕ = Du p p 2 Du p ϕ f ϕ for all ϕ W 1,p (), so u p are solutions of the nonlinear boundary problem { p u = f in, u p 2 u η + j(, u( )) 0 on.

81 Theorem Up to subsequence, u p u uniformly as p. There exist X p η L ( ), X p η j(x, u p ) a.e. x such that X p η ϕ = Du p p 2 Du p ϕ f ϕ for all ϕ W 1,p (), so u p are solutions of the nonlinear boundary problem { p u = f in, u p 2 u η + j(, u( )) 0 on. X p η V weakly in L ( ) with V + M i, V M e.

82 Theorem sup w(x)f (x) dx j(x, w(x)) w W 1, (), w L () 1 = u (x)(f + (x) f (x))dx j(x, u (x)) = sup ϕ(x)+ψ(y) x y ϕf + + ψf M i ( ϕ T i ) + M e ( ψ T e ) + = min x y dµ + T i dπ 1 #µ + T e dπ 2 #µ. µ A l (f +,f )

83 u is a Kantorovich potential for the classical transport problem for the measures f + L N + V + dh N 1 and f L N + V dh N 1. V + M i and V M e are the import and export masses.

84 T i = 0, T e = 1 2, M i = M e = y x Cost: 56/16 2.

85 T i = 0, T e = 1 2, M i = M e = 1 16 y x Cost: 58/16 2.

86 Some references L. V. Kantorovich. On the tranfer of masses, Dokl. Nauk. SSSR 37 (1942), V. N. Sudakov. Geometric problems in the theory of infinite-dimensional probability distributions, Proc. Stekelov Inst. Math., 141 (1979), L. C. Evans and W. Gangbo. Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc., L. C. Evans. Partial differential equations and Monge-Kantorovich mass transfer. Current developments in mathematics, L. Ambrosio. Lecture notes on optimal transport problems, L. Ambrosio and A. Pratelli. Existence and stability results in the L 1 theory of optimal transportation. Lecture Notes in Math., C. Villani. Topics in Optimal Transportation. Graduate Studies in Mathematics, C. Villani. Optimal Transport, Old and New. Fundamental Principles of Mathematical Sciences, 2009.

87 Shúkraan

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Shape Optimization Problems over Classes of Convex Domains

Shape Optimization Problems over Classes of Convex Domains Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY e-mail: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

More information

Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu

Follow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part

More information

The integrating factor method (Sect. 2.1).

The integrating factor method (Sect. 2.1). The integrating factor method (Sect. 2.1). Overview of differential equations. Linear Ordinary Differential Equations. The integrating factor method. Constant coefficients. The Initial Value Problem. Variable

More information

Convex Programming Tools for Disjunctive Programs

Convex Programming Tools for Disjunctive Programs Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible

More information

Numerical Verification of Optimality Conditions in Optimal Control Problems

Numerical Verification of Optimality Conditions in Optimal Control Problems Numerical Verification of Optimality Conditions in Optimal Control Problems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von

More information

Finite speed of propagation in porous media. by mass transportation methods

Finite speed of propagation in porous media. by mass transportation methods Finite speed of propagation in porous media by mass transportation methods José Antonio Carrillo a, Maria Pia Gualdani b, Giuseppe Toscani c a Departament de Matemàtiques - ICREA, Universitat Autònoma

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework

Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework Valuation and Optimal Decision for Perpetual American Employee Stock Options under a Constrained Viscosity Solution Framework Quan Yuan Joint work with Shuntai Hu, Baojun Bian Email: candy5191@163.com

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

10. Proximal point method

10. Proximal point method L. Vandenberghe EE236C Spring 2013-14) 10. Proximal point method proximal point method augmented Lagrangian method Moreau-Yosida smoothing 10-1 Proximal point method a conceptual algorithm for minimizing

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and

More information

Class Meeting # 1: Introduction to PDEs

Class Meeting # 1: Introduction to PDEs MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

More information

Consumer Theory. The consumer s problem

Consumer Theory. The consumer s problem Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

Chapter 5. Banach Spaces

Chapter 5. Banach Spaces 9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

17.3.1 Follow the Perturbed Leader

17.3.1 Follow the Perturbed Leader CS787: Advanced Algorithms Topic: Online Learning Presenters: David He, Chris Hopman 17.3.1 Follow the Perturbed Leader 17.3.1.1 Prediction Problem Recall the prediction problem that we discussed in class.

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

Big Data - Lecture 1 Optimization reminders

Big Data - Lecture 1 Optimization reminders Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data - Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Envelope Theorem. Kevin Wainwright. Mar 22, 2004

Envelope Theorem. Kevin Wainwright. Mar 22, 2004 Envelope Theorem Kevin Wainwright Mar 22, 2004 1 Maximum Value Functions A maximum (or minimum) value function is an objective function where the choice variables have been assigned their optimal values.

More information

How To Calculate A Cpt Trader

How To Calculate A Cpt Trader WEAK INSIDER TRADING AND BEHAVIORAL FINANCE L. Campi 1 M. Del Vigna 2 1 Université Paris XIII 2 Department of Mathematics for Economic Decisions University of Florence 5 th Florence-Ritsumeikan Workshop

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

More information

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation

Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation Multigrid preconditioning for nonlinear (degenerate) parabolic equations with application to monument degradation M. Donatelli 1 M. Semplice S. Serra-Capizzano 1 1 Department of Science and High Technology

More information

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction DIVISORS IN A DEDEKIND DOMAIN Javier Cilleruelo and Jorge Jiménez-Urroz 1 Introduction Let A be a Dedekind domain in which we can define a notion of distance. We are interested in the number of divisors

More information

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Publicacions Matemàtiques, Vol 42 (998), 53 63. A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Juha Kinnunen Abstract We prove that Muckenhoupt s A -weights satisfy a reverse Hölder inequality with an explicit

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

Stochastic Inventory Control

Stochastic Inventory Control Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the

More information

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

Existence de solutions à support compact pour un problème elliptique quasilinéaire

Existence de solutions à support compact pour un problème elliptique quasilinéaire Existence de solutions à support compact pour un problème elliptique quasilinéaire Jacques Giacomoni, Habib Mâagli, Paul Sauvy Université de Pau et des Pays de l Adour, L.M.A.P. Faculté de sciences de

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

15 Kuhn -Tucker conditions

15 Kuhn -Tucker conditions 5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes

More information

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.

Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all. 1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Lecture 2: Consumer Theory

Lecture 2: Consumer Theory Lecture 2: Consumer Theory Preferences and Utility Utility Maximization (the primal problem) Expenditure Minimization (the dual) First we explore how consumers preferences give rise to a utility fct which

More information

CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

Hydrodynamic Limits of Randomized Load Balancing Networks

Hydrodynamic Limits of Randomized Load Balancing Networks Hydrodynamic Limits of Randomized Load Balancing Networks Kavita Ramanan and Mohammadreza Aghajani Brown University Stochastic Networks and Stochastic Geometry a conference in honour of François Baccelli

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

On Lexicographic (Dictionary) Preference

On Lexicographic (Dictionary) Preference MICROECONOMICS LECTURE SUPPLEMENTS Hajime Miyazaki File Name: lexico95.usc/lexico99.dok DEPARTMENT OF ECONOMICS OHIO STATE UNIVERSITY Fall 993/994/995 Miyazaki.@osu.edu On Lexicographic (Dictionary) Preference

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

( ) ( ) [2],[3],[4],[5],[6],[7]

( ) ( ) [2],[3],[4],[5],[6],[7] ( ) ( ) Lebesgue Takagi, - []., [2],[3],[4],[5],[6],[7].,. [] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., (984), 83 99. [2] T. Sekiguchi and Y. Shiota, A

More information

Dual Methods for Total Variation-Based Image Restoration

Dual Methods for Total Variation-Based Image Restoration Dual Methods for Total Variation-Based Image Restoration Jamylle Carter Institute for Mathematics and its Applications University of Minnesota, Twin Cities Ph.D. (Mathematics), UCLA, 2001 Advisor: Tony

More information

Variational approach to restore point-like and curve-like singularities in imaging

Variational approach to restore point-like and curve-like singularities in imaging Variational approach to restore point-like and curve-like singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure Blanc-Féraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012

More information

Sample Midterm Solutions

Sample Midterm Solutions Sample Midterm Solutions Instructions: Please answer both questions. You should show your working and calculations for each applicable problem. Correct answers without working will get you relatively few

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

THE DIMENSION OF A CLOSED SUBSET OF R n AND RELATED FUNCTION SPACES

THE DIMENSION OF A CLOSED SUBSET OF R n AND RELATED FUNCTION SPACES THE DIMENSION OF A CLOSED SUBSET OF R n AND RELATED FUNCTION SPACES HANS TRIEBEL and HEIKE WINKELVOSS (Jena) Dedicated to Professor Károly Tandori on his seventieth birthday 1 Introduction Let F be a closed

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

A simple criterion on degree sequences of graphs

A simple criterion on degree sequences of graphs Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information