# BANACH AND HILBERT SPACE REVIEW

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but rather review the basic definitions and theorems, mostly without proof. 1. Banach Spaces Definition 1.1 (Norms and Normed Spaces). Let X be a vector space (= linear space) over the field C of complex scalars. Then X is a normed linear space if for every f X there is a real number f, called the norm of f, such that: (a) f 0, (b) f = 0 if and only if f = 0, (c) cf = c f for every scalar c, and (d) f + g f + g. Definition 1.2 (Convergent and Cauchy sequences). Let X be a normed space, and let {f n } n N be a sequence of elements of X. (a) {f n } n N converges to f X if lim n f f n = 0, i.e., if ε > 0, N > 0, n N, f f n < ε. In this case, we write lim n f n = f or f n f. (b) {f n } n N is Cauchy if ε > 0, N > 0, m, n N, f m f n < ε. Definition 1.3 (Banach Spaces). It is easy to show that any convergent sequence in a normed linear space is a Cauchy sequence. However, it may or may not be true in an arbitrary normed linear space that all Cauchy sequences are convergent. A normed linear space X which does have the property that all Cauchy sequences are convergent is said to be complete. A complete normed linear space is called a Banach space. Date: evised September 7, c 2006 by Christopher Heil. 1

2 2 CHISTOPHE HEIL Example 1.4. The following are all Banach spaces under the given norms. Here p can be in the range 1 p <. L p () = { f : C : } f(x) p dx <, f p = ( f(x) p dx) 1/p. L () = { f : C : f is essentially bounded }, f = esssup f(x). x C b () = { f L () : f is bounded and continuous }, f = sup f(x), x C 0 () = { f C b () : lim f(x) = 0}, f = sup f(x). x emark 1.5. (a) To be more precise, the elements of L p () are equivalence classes of functions that are equal almost everywhere, i.e., if f = g a.e. then we identify f and g as elements of L p (). (b) If f C b () then esssup x f(x) = sup x f(x). Thus we regard C b () as being a subspace of L (); more precisely, each element f C b () determines an equivalence class of functions that are equal to it a.e., and it is this equivalence class that belongs to L (). (c) The L norm on C b () is called the uniform norm. Convergence with respect to this norm coincides with the definition of uniform convergence. (d) Sometimes the notation C() is used to denote the space that we call C b (), or C() may denote the space of all possible continuous functions on. In this latter case, would not be a norm on C(), since f would not be finite for all f C(). Definition 1.6 (Closed Subspaces). Let X be a Banach space. (a) A vector f X is a limit point of a set S X if there exist vectors g n S that converge to f. In particular, every element of S is a limit point of S. (b) A subset S of a Banach space X is closed if it contains all its limit points. In other words, S is closed if whenever {g n } n N is a sequence of elements of S and g n f X, then f must be an element of S. If Y is a closed subspace of a Banach space X, then it is itself a Banach space under the norm of X. Conversely, if Y is a subspace of X and Y is a Banach space under the norm of X, then Y is a closed subspace of X. Example 1.7. C b () and C 0 () are closed subspaces of L () under the L norm. The following are also subspaces of L (), but they are not a Banach spaces under the L norm because they are not closed subspaces of L (): C c () = {f C b () : f has compact support}, C b () = {f C b() : f is infinitely differentiable and f (m) L () for every m 0}, S() = {f C b () : x m f (n) (x) L () for every m, n 0}. x

3 The space S() is called the Schwartz space. BANACH AND HILBET SPACE EVIEW 3 Example 1.8 (Dense Subspaces). Suppose that S is a subspace of a Banach space X. The closure of S is the smallest closed subset S of X that contains S. It can be shown that S is the union of S and all all of the limit points of S. If S = T then S is said to be dense in T. For example, the space C c () is dense in C 0 () in the L () norm. That is, every function in C 0 () can be written as a limit (in the L norm) of functions from C c (). Similarly, S() is dense in C 0 () in L norm. However, neither C c () nor S() nor C 0 () is dense in L () using the L norm. This is because the L -norm limit of a sequence of continuous functions is continuous, so a bounded but discontinuous function could not be written as a uniform limit of functions from these spaces. On the other hand, C c (), C 0 (), and S() are all dense in L p () (in L p norm, not L norm) for each 1 p <. Definition 1.9 (Sequence spaces). There are also many useful Banach spaces whose elements are sequences of complex numbers. Be careful to distinguish between an element of such a space, which is a sequence of numbers, and a sequence of elements of such a space, which would be a sequence of sequences of numbers. The elements of a sequence space may be indexed by any countable index set I, typically the natural numbers N = {1, 2,... } or the integers Z = {..., 2, 1, 0, 1, 2,... }. If a sequence is indexed by the natural numbers then a typical sequence a has the form a = (a n ) n N = (a 1, a 2,...), while if they are indexed by the integers then a typical sequence has the form a = (a n ) n Z = (...,a 2, a 1, a 0, a 1, a 2,...). In either case, the a n are complex numbers. The following are Banach spaces whose elements are sequences of complex numbers: l p (I) = { (a n ) n I : l (I) = {(a n ) n I n I } a n p <, (a n ) p = : sup a n < }, (a n ) = n I ( ) 1/p a n p, 1 p <, ( n I sup n I ) a n. Example 1.10 (Finite dimensional Banach spaces). The finite-dimensional complex Euclidean space C n is a Banach space. There are infinitely many possible choices of norms for C n. In particular, each of the following determines a norm for C n : u p = ( u 1 p + + u n p) 1/p, 1 p <, u = max{ u 1,, u n }. The norm 2 is the usual Euclidean norm on C n.

4 4 CHISTOPHE HEIL 2. Hilbert Spaces Definition 2.1 (Inner Products). Let H be a vector space. Then H is an inner product space if for every f, g X there exists a complex number f, g, called the inner product of f and g, such that: (a) f, f is real and f, f 0. (b) f, f = 0 if and only if f = 0. (c) g, f = f, g, (d) af 1 + bf 2, g = a f 1, g + b f 2, g. Each inner product determines a norm by the formula f = f, f 1/2. Hence every inner product space is a normed linear space. The Cauchy Schwarz inequality states that f, g f g for every f, g H. If an inner product space H is complete, then it is called a Hilbert space. In other words, a Hilbert space is a Banach space whose norm is determined by an inner product. Example 2.2. L 2 () is a Hilbert space when the inner product is defined by f, g = f(x) g(x)dx. l 2 (I) is a Hilbert space when the inner product is defined by (an ), (b n ) = a n bn. n I However, neither L p () nor l p is a Hilbert space when p 2. Example 2.3 (Finite dimensional Hilbert spaces). The space C n, finite-dimensional complex Euclidean space, is a Hilbert space. The inner product is just the usual dot product of vectors: u, v = u v = u 1 v u n v n. This inner product determines the usual Euclidean norm 2 defined by u 2 = ( u u n 2 ) 1/2. However, none of the norms p with p 2 are determined by an inner product. There are many other possible inner products for C n. 3. Complete Sequences in Hilbert Spaces Warning: the term complete has several entirely distinct mathematical meanings. We have already said that a Banach space is complete if every Cauchy sequence in the space converges. The term complete sequences defined in this section is a completely separate definition that applies to sets of vectors in a Hilbert or Banach space (although we will only define it for Hilbert spaces).

5 BANACH AND HILBET SPACE EVIEW 5 Definition 3.1 (Complete Sequences). Let H be a Hilbert space, and let {f n } n N be a sequence of elements of H. The finite linear span of {f n } n N is the set of all finite linear combinations of the f n, i.e., { N } span{f n } n N = c n f n : all N > 0 and all c 1,...,c N C. The finite span span{f n } n N is a subspace of H. If span{f n } n N is dense in H, then the sequence {f n } n N is said to be complete (or total or fundamental) in H. By definition, the finite linear span is dense in H if the closure of the finite linear span is all of H. The closure of the finite span is the closed span, consisting of all limits of elements of the finite span, i.e., { } span{f n } n N = f H : f = lim h k for some h k span{f n } n N, k Both span{f n } n N and span{f n } n N are subspaces of H, but generally only the closed span is a closed subspace of H. By definition, {f n } n N is complete if every element f H is a limit point of span{f n } n N and therefore can be written as the limit of a sequence of finite linear combinations of the elements f n. In other words, given any ε > 0 there must exist some N > 0 and some scalars c 1 (f, ε),...,c N (f, ε) such that N f c n (f, ε) f n < ε. (3.1) Note that N and the coefficients c n (f, ε) depend on both ε and f. Example 3.2. A sequence {f n } n N is a Schauder basis (or simply a basis) for H if each element f H can be written as a unique infinite linear combination of the f n. That is, given f H there must exist unique coefficients c n (f) so that f = c n (f) f n. (3.2) What the series in (3.2) really means is that the partial sums are converging to f, i.e., N lim f c n (f) f n = 0. N Thus, {f n } n N is a basis if for each f H there exist unique scalars {c n (f)} n N (depending only on f) such that if ε > 0 then there exists an N > 0 so that N f c n (f) f n < ε. (3.3) Comparing (3.3) with (3.1) we see that being a basis is a more stringent condition than being a complete set, i.e., all bases are complete, but not all complete sets need be bases. In particular, when {f n } n N is a basis, the coefficients c n (f) do not depend on ε, while for a

6 6 CHISTOPHE HEIL complete set they can depend on both f and ε. The number N depends on both ε and f in both cases, the difference being that for a basis, if you make ε smaller then you simply have to take more of the coefficients c n (f) to make equation (3.3) valid, while for a complete set, if you make ε smaller then you may have to take both a larger N and a possibly completely different choice of scalars c n (f, ε) to make equation (3.1) valid. The following result gives a characterization of complete sets, namely, a sequence {f n } n N is complete if and only if there is no element other than 0 that is orthogonal to every f n. Theorem 3.3. Let {f n } n N be a set of elements from a Hilbert space H. Then the following two statements are equivalent, i.e., each statement implies the other. (a) {f n } n N is complete in H. (b) The only element f H which satisfies f, f n = 0 for every n is f = 0. Proof. (a) (b). Suppose that {f n } n N is complete, and assume f H satisfies f, f n = 0 for every n. Choose any ε > 0. Then by definition of completeness, we can find an N > 0 and coefficients c 1,...,c N so that the element h = N c nf n lies within ε of f, i.e., f h < ε. Note that f, h = Therefore, by Cauchy Schwarz, f, N c n f n = N c n f, f n = 0. f 2 = f, f = f, f h + f, h = f, f h f f h ε f. Hence f ε. Since this is true for every ε > 0, it follows that f = 0, and therefore that f = 0. Here is another wording of the same proof. Begin as before with a complete set {f n } n N and an element f H satisfying f, f n = 0 for every n. Then f, h = 0 for every finite linear combination h = N c nf n, i.e., for every h span{f n } n N. Since f is an element of H, for each ε = 1/k we can find an element h k span{f n } n N such that f h k < 1/k. Then f = lim k h k, so f 2 = f, f = lim k f, h k = lim k 0 = 0. (b) (a). We will prove the contrapositive statement. Suppose that statement (a) is false, i.e., that {f n } n N is not complete. Then the closed span span{f n } n N cannot be all of H. Therefore, there must be some element f H that is not in span{f n } n N. A basic Hilbert space fact is that we can define the orthogonal projection of H onto a closed subspace of H. Here, S = span{f n } n N is the closed subspace, and the orthogonal projection onto S is the unique mapping P : H H satisfying (a) Ph S for every h H, and Ph = h if h S (and therefore P 2 = P), and (b) Pg, h = g, Ph for every g, h H (i.e., P is self-adjoint). Now let g = f Pf. If g = 0 then f = Pf S, contradicting the fact that f / S. Hence g 0. Since f n S, we have Pf n = f n. Therefore, g, f n = f, f n Pf, f n = f, f n f, Pf n = f, f n f, f n = 0.

7 BANACH AND HILBET SPACE EVIEW 7 Thus the nonzero element g is orthogonal to every element f n. Hence statement (b) is false. 4. Operators, Functionals, and the Dual Space An operator is a function T that maps one vector space X into another vector space Y (often, an operator is required to be a linear mapping). We write T : X Y to mean that T is a function with domain X and range contained in Y. Definition 4.1 (Notation for Operators). Let X, Y be normed linear spaces, and suppose that T : X Y. We write either T(x) or Tx to denote the image of an element x X. (a) T is linear if T(αx + βy) = αt(x) + βt(y) for every x, y X and α, β C. (b) T is injective if T(x) = T(y) implies x = y. (c) The kernel or nullspace of T is ker(t) = {x X : T(x) = 0}. (c) The range of T is range(t) = {T(x) : x X}. (d) The rank of T is the vector space dimension of its range, i.e., rank(t) = dim(range(t)). In particular, T is finite-rank if range(t) is finite-dimensional. (d) T is surjective if range(t) = Y. (e) T is a bijection if it is both injective and surjective. Definition 4.2 (Continuous and Bounded Operators). Assume that X and Y are normed linear spaces, and that T : X Y is an operator. We use X to denote the norm on the space X, and Y to denote the norm on Y. (a) T is continuous if f n f implies T(f n ) T(f), i.e., if lim f f n X = 0 = lim T(f) T(f n ) Y = 0. n n (b) T is bounded if there is a finite real number C so that T(f) Y C f X for every f X. The smallest such C is called the operator norm of T and is denoted by T. That is, T is the smallest number such that We have the equalities f X, Tf Y T f X. T(f) Y T = sup = sup T(f) Y = sup T(f) Y. f 0 f X f X 1 f X =1 (c) For linear operators T we have the fundamental fact that continuity and boundedness are equivalent, i.e., T is continuous T is bounded.

8 8 CHISTOPHE HEIL Definition 4.3 (Linear Functionals). A functional is an operator whose range is the space of scalars C. In other words, a functional is a mapping T : X C, so T(f) is a number for every f X. If T is a linear functional, then we know that it is continuous if and only if it is bounded. Hence the terms continuous linear functional and bounded linear functional are interchangeable. Also note that since T(f) is a scalar, the norm of T(f) is just its absolute value T(f). Hence the norm of a linear functional T is given by the formulas T(f) T = sup = sup T(f) = f 0 f X f X 1 and T is the smallest number such that f X, T(f) T f X. sup T(f), f X =1 Example 4.4 (The Delta Functional). We can define a linear functional δ on C 0 () by the formula δ(f) = f(0). It is a functional because δ(f) = f(0) is a number for every f. It is easy to see that δ is linear. Let s show that δ is a continuous linear functional. To do this, we show that δ is bounded. ecall that C 0 () is a Banach space under the L norm. So, suppose that f C 0 () and that f = 1. Because f is a continuous function its essential supremum is an actual supremum, i.e., f = sup f(x). Hence, Therefore, δ = f(0) sup f(x) = f = 1. x sup δ(f) = f =1 sup f(0) f =1 sup 1 = 1. f =1 Thus δ is a bounded linear functional on C 0 (), and its norm is at most 1. In fact we have δ = 1, since we can easily find a function f C 0 () such that f(0) = 1 and f = 1. Example 4.5 (Linear Functionals by Integration). Consider the case X = L p (). ecall Hölder s Inequality: if f L p () and g L p () where p is such that = 1, then p p fg L 1 (), and fg 1 f p g p. For example, if p = 1 then p =, if p = 2 then p = 2, and if p = then p = 1. Now let g L p () be a fixed function. Then because of Hölder s inequality, we can define a functional T g : L p () C by the formula T g (f) = f(x) g(x)dx. Hölder s inequality tells us that T g (f) f(x) g(x) dx = fg 1 f p g p.

9 Therefore T g is bounded, with BANACH AND HILBET SPACE EVIEW 9 T g = sup T g (f) g p <. f p=1 In fact, we actually have T g = g p. Each function g L p () determines a continuous linear functional T g on L p (). Because the formula for T g looks just like the definition of the inner product on L 2 (), we often use the same notation. That is, we write T g (f) = f, g = f(x) g(x) dx. (4.1) However, you should remember that, unlike the L 2 case, the functions f and g are coming from different places: f L p () while g L p (). Thus, the notation f, g in (4.1) is not a true inner product except in the special case p = p = 2. Because of this example, we often abuse the inner product notation and use it represent the action of arbitrary linear functionals T : X C. That is, we often write f, T instead of T(f). Definition 4.6 (Dual Spaces). If X is a normed linear space then its dual space is the set of all continuous linear functionals with domain X. The dual space is usually denoted by either X or X. In other words, X = {T : X C : T is continuous and linear}. The dual space is a Banach space, even if X is only a normed space. Example 4.7 (Dual of L p ()). We ve already seen that every function g L p () determines a continuous linear functional T g on L p (). We usually identify g with T g. In other words, because each g determines a unique T g, we say that a function g L p () is a continuous linear functional on L p (), and so each g L p () is an element of the dual space of L p (). In this sense, we write L p () (L p ()), for 1 p. In fact, there is more to the story. When 1 p <, Hölder s inequality can be refined to show that every bounded linear functional on L p () comes from integration against a unique function in L p (). That is, every continuous linear functional T : L p () C is equal to T g for some unique g L p (). Thus, we actually have (L p ()) = L p (), for 1 p <. This equality fails for p =, i.e., (L ()) L 1 (), because there exist continuous linear functionals on L () that are not given by integration against an L 1 function. Example 4.8 (Hilbert space duals). Consider the Hilbert space case of the preceding example, i.e., the case p = 2. In this case we have p = p = 2, and therefore (L 2 ()) = L 2 (). This fact is true for every Hilbert space: i.e., if H is a Hilbert space then H = H. Only Hilbert spaces are self-dual.

10 10 CHISTOPHE HEIL Example 4.9 (eflexivity). Note the following: since (p ) = p, we have However, 1 < p < = (L p ()) = L p () and (L p ()) = L p (). p = 1 = (L 1 ()) = L () and (L ()) L 1 (). Therefore L p () for 1 < p < is said to be reflexive, while L 1 () is not. A general Banach space X is reflexive if (X ) = X. 5. Adjoints Definition 5.1 (Adjoints). Let X and Y be Banach spaces, and let S : X Y be a bounded linear operator. Fix an element g Y, and define a functional f : X F by f, f = Sf, g, f X. Then f is linear since S and g are linear. Further, so f = f, f = Sf, g Sf Y g Y, sup f, f g Y sup Sf Y = g Y S <. (5.1) f X =1 f X =1 Hence f is bounded, so f X. Thus, for each g Y we have defined a functional f X. Therefore, we can define an operator S : Y X by setting S (g ) = f. This mapping S is linear, and by (5.1) we have S = sup S (g ) X = sup f X sup g Y S = S. g Y =1 g Y =1 g Y =1 In fact, it is true that S = S. This operator S is called the adjoint of S. The fundamental property of the adjoint can be restated as follows: S : Y X is the unique mapping which satisfies f X, g Y, Sf, g = f, S (g ). (5.2) emark 5.2. Assume that X = H and Y = K are Hilbert spaces. Then H = H and K = K. Therefore, if S : H K then its adjoint S maps K back to H. Moreover, by (5.2), the adjoint S : K H is the unique mapping which satisfies f H, g K, Sf, g = f, S g. (5.3) We make the following further definitions specifically for operators S : H H which map a Hilbert space H into itself. Definition 5.3. Let H be a Hilbert space.

11 BANACH AND HILBET SPACE EVIEW 11 (a) S: H H is self-adjoint if S = S. By (5.3), S is self-adjoint f, g H, Sf, g = f, Sg. It can be shown that if S is self-adjoint, then Sf, f is real for every f, and S = sup Sf, f. f =1 (b) S: H H is positive, denoted S 0, if Sf, f is real and Sf, f 0 for every f H. It can be shown that a positive operator on a complex Hilbert space is self-adjoint. (c) S: H H is positive definite, denoted S > 0, if Sf, f is real and Sf, f > 0 for every f 0. (d) If S, T : H H, then we write S T if S T 0. Similarly, S > T if S T > 0. As an example, consider the finite-dimensional Hilbert spaces H = C n and K = C m. A linear operator S : C n C m is simply an m n matrix with complex entries, and its adjoint S : C m C n is simply the n m matrix given by the conjugate transpose of S. In this case, the matrix S is often called the Hermitian of the matrix S, i.e., S = S H = S T. 6. Compact Operators In this section we consider compact operators. We will focus on operators on Hilbert spaces, although compact operators on Banach spaces are equally important. Definition 6.1 (Compact Operator). Let H, K be Hilbert spaces. A linear operator T : H K is compact if for every sequence of functions {f n } n N in the unit ball of H (i.e., f n 2 1 for all n), there is a subsequence {f nk } k N such that {Tf nk } k N converges in K. Theorem 6.2 (Properties of Compact Operators). Let H, K be Hilbert spaces, and let T : H K be linear. (a) If T is compact, then it is bounded. (b) If T is bounded and has finite rank, then T is compact. (c) If T n : H K are compact and T n T in operator norm, i.e., lim n T T n = 0, then T is compact. (d) T is compact if and only if there exist bounded, finite-rank operators T n : H K such that T n T in operator norm. Theorem 6.3 (Compositions and Compact Operators). Let H 1, H 2, H 3 be Hilbert spaces. (a) If A: H 1 H 2 is bounded and T : H 2 H 3 is compact, then TA: H 1 H 3 is compact. (b) If T : H 1 H 2 is compact and A: H 2 H 3 is bounded, then AT : H 1 H 3 is compact.

12 12 CHISTOPHE HEIL The following is a fundamental result for operators that are both compact and self-adjoint. Theorem 6.4 (Spectral Theorem for Compact Self-Adjoint Operators). Let H be a Hilbert space, and let T : H H be compact and self-adjoint. Then there exist nonzero real numbers {λ n } n J, either finitely many or λ n 0 if infinitely many, and an orthonormal basis {e n } n J of range(t), such that Tf = n J λ n f, e n e n, f H. Each λ n is an eigenvalue of T, and each e n is a corresponding eigenvector. If T is a positive operator, then λ n > 0 for each n J. Definition 6.5 (Singular Numbers). Let T : H H be an arbitrary compact operator on a Hilbert space H. Then T T and TT are both compact and self-adjoint, and in fact are positive operators. In particular, by the Spectral Theorem, there exists an orthonormal sequence {e n } n J and corresponding positive real numbers {µ n } n J such that T Tf = n J µ n f, e n e n, f H. (a) The singular numbers of T are s n = µ 1/2 n. The vectors e n are the singular vectors of T. (b) Given 1 p <, the Schatten class I p consists of all compact operators T : H H such that ( 1/p T Ip = sn) p <. n J (c) We say that T is a Hilbert Schmidt operator if T I 2, i.e., if n J s 2 n <. (d) We say that T is a trace-class operator if T I 1, i.e., if n J s n <. In particular, if T is compact and self-adjoint, then the singular numbers are simply the absolute values of the eigenvalues, i.e., s n = λ n. By the Spectral Theorem, we must have s n 0, and the definition of the Schatten classes simply quantifies the rate of convergence to zero. As an example, consider an integral operator on L 2 (), formally defined by the rule Lf(x) = k(x, y) f(y) dy, (6.1) where k is a fixed measurable function on 2, called the kernel of L (not to be confused with nullspace of L). The following result summarizes some properties of integral operators Theorem 6.6 (Integral Operators). Let k: 2 be measurable, and let L be formally defined by (6.1). (a) If k L 2 ( 2 ) then L is a bounded and compact mapping of L 2 () into itself, and L k 2.

13 BANACH AND HILBET SPACE EVIEW 13 (b) L is a Hilbert Schmidt operator if and only if k L 2 ( 2 ). In this case, ( 1/2 k 2 = L I2 = sn) 2. (c) The adjoint L is the integral operator whose kernel is k(y, x). In particular, L is self-adjoint if and only if k(x, y) = k(y, x). n J

### Chapter 5. Banach Spaces

9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### ( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

### ON SUPERCYCLICITY CRITERIA. Nuha H. Hamada Business Administration College Al Ain University of Science and Technology 5-th st, Abu Dhabi, 112612, UAE

International Journal of Pure and Applied Mathematics Volume 101 No. 3 2015, 401-405 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i3.7

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### Inner products on R n, and more

Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### 1 The Brownian bridge construction

The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof

### Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 MICROLOCAL ANALYSIS OF THE BOCHNER-MARTINELLI INTEGRAL NIKOLAI TARKHANOV AND NIKOLAI VASILEVSKI

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### 9 More on differentiation

Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

### NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### THE KADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT

THE ADISON-SINGER PROBLEM IN MATHEMATICS AND ENGINEERING: A DETAILED ACCOUNT PETER G. CASAZZA, MATTHEW FICUS, JANET C. TREMAIN, ERIC WEBER Abstract. We will show that the famous, intractible 1959 adison-singer

### The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

### (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties

Lecture 1 Convex Sets (Basic definitions and properties; Separation theorems; Characterizations) 1.1 Definition, examples, inner description, algebraic properties 1.1.1 A convex set In the school geometry

### Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

### Orthogonal Projections and Orthonormal Bases

CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

### Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### The Dirichlet Unit Theorem

Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

### x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3

Math 24 FINAL EXAM (2/9/9 - SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r

### Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

### Tensor product of vector spaces

Tensor product of vector spaces Construction Let V,W be vector spaces over K = R or C. Let F denote the vector space freely generated by the set V W and let N F denote the subspace spanned by the elements

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Ideal Class Group and Units

Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

### Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

### INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

### Lecture 13 Linear quadratic Lyapunov theory

EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

### A Modern Course on Curves and Surfaces. Richard S. Palais

A Modern Course on Curves and Surfaces Richard S. Palais Contents Lecture 1. Introduction 1 Lecture 2. What is Geometry 4 Lecture 3. Geometry of Inner-Product Spaces 7 Lecture 4. Linear Maps and the Euclidean

### ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

### State of Stress at Point

State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

### RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### CHAPTER 5. Product Measures

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

### On the representability of the bi-uniform matroid

On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large

### Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

### Pacific Journal of Mathematics

Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

### MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

### You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Date: April 12, 2001. Contents

2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

### Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

### Model order reduction via Proper Orthogonal Decomposition

Model order reduction via Proper Orthogonal Decomposition Reduced Basis Summer School 2015 Martin Gubisch University of Konstanz September 17, 2015 Martin Gubisch (University of Konstanz) Model order reduction

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

### MATH 590: Meshfree Methods

MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

### Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis vorgelegt von Dipl.-Math. Vili Dhamo von der Fakultät II - Mathematik und Naturwissenschaften

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

### Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric

### Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

### LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS

LINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS LESLIE D. GATES, JR.1 1. Introduction. The main result of this paper is an extension of the analysis of Laurent Schwartz [l ] concerning the primitive of

### Lecture 13: Martingales

Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS

INVARIANT METRICS WITH NONNEGATIVE CURVATURE ON COMPACT LIE GROUPS NATHAN BROWN, RACHEL FINCK, MATTHEW SPENCER, KRISTOPHER TAPP, AND ZHONGTAO WU Abstract. We classify the left-invariant metrics with nonnegative

### 1 The Concept of a Mapping

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing

### Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

### The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method

The Steepest Descent Algorithm for Unconstrained Optimization and a Bisection Line-search Method Robert M. Freund February, 004 004 Massachusetts Institute of Technology. 1 1 The Algorithm The problem

### Linear Codes. Chapter 3. 3.1 Basics

Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length

### Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

### Invariant Metrics with Nonnegative Curvature on Compact Lie Groups

Canad. Math. Bull. Vol. 50 (1), 2007 pp. 24 34 Invariant Metrics with Nonnegative Curvature on Compact Lie Groups Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and Zhongtao Wu Abstract.

### DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER. 1. Introduction

DIRICHLET S PROBLEM WITH ENTIRE DATA POSED ON AN ELLIPSOIDAL CYLINDER DMITRY KHAVINSON, ERIK LUNDBERG, HERMANN RENDER. Introduction A function u is said to be harmonic if u := n j= 2 u = 0. Given a domain

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### Vector Spaces. Chapter 2. 2.1 R 2 through R n

Chapter 2 Vector Spaces One of my favorite dictionaries (the one from Oxford) defines a vector as A quantity having direction as well as magnitude, denoted by a line drawn from its original to its final

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### 1 Local Brouwer degree

1 Local Brouwer degree Let D R n be an open set and f : S R n be continuous, D S and c R n. Suppose that the set f 1 (c) D is compact. (1) Then the local Brouwer degree of f at c in the set D is defined.

### Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full