1 Lecture: Integration of rational functions by decomposition

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic. Divide to write a rational function as the sum of a polynomial and a proper rational function. Write out the form of the partial fractions decomposition. Find the partial fractions decomposition of a rational function by solving for the constants.. Summary. Theorem Every rational function has an anti-derivative that can be expressed in terms of polynomials, the logarithm function and the function tan. The goal of this section is to describe a procedure that will allow us to find this anti-derivative. We will not prove every step of the argument. However, by following this procedure, we will be able to integrate the functions that arise in practice. We begin by defining rational functions: Definition. A rational function is a function which is the quotient of two polynomials. A proper rational function is a rational function where the degree of the numerator is strictly less than the degree of the denominator. The division algorithm allows us to write any rational function as the sum of a polynomial and a proper rational function. Thus, we only need to consider how to integrate proper rational functions. Write x 3 x + as the sum of a polynomial and a proper rational function. Solution. Using the division algorithm, we can write x 3 = (x + )(x 2 x + ) + thus, we have x 3 x + = x2 x + + x +.

2 Second approach. division by a trick: For simple functions such as this one, one can often to the x 3 x + = x3 + x + = (x + )(x2 x + ) x + = x 2 x + + x +. + x + where the second step requires us to remember how to factor b 3 a 3. Notice that in this example, when we divide, we put the function into a form where it is easy to find the anti-derivative: x 3 x + dx = x 2 x + + x3 dx = x + 3 x2 + x + ln x + + C. 2 In general, we will not be so lucky. However, there are further simplifications that allow us to integrate all rational functions..2 Some elementary rational functions In this section, we recall several rational functions that we know how to integrate. The main point of this section is that every rational function can be written in terms of these simple functions. The basic functions we consider are: A dx () (ax + b) k where A, a 0 and b are constants and k is a natural number. The basic function we consider is Ax + B dx. (2) (ax 2 + bx + c) k where A, B, a 0, b, and c are constants and the quadratic expression in the denominator is irreducible. This means that the equation ax 2 + bx + c = 0 has no real roots and happens precisely when the discriminant b 2 4ac < 0. We recall the techniques for integrating these functions: Find (2x + ) 2 dx.

3 Solution. Substituting u = 2x + gives that du = 2dx. Thus, we have that (2x + ) dx = 2 2 u dx = 2 2 u + C = (4x + 2) + C. Find x 2 + 4x + 6 dx. Solution. Here we begin by complete the square in the denominator, x 2 + 4x + 6 = (x+2) Note that if we have an irreducible quadratic, then the expression should be strictly positive. Now, we substitute u = x + 2, du = dx in the integral and obtain that x 2 + 4x + 6 dx = u u du + u du. The first integral on the write can be evaluated by substituting v = u and we obtain u u du = 2 ln(u2 + 2) + C. The second integral is can be evaluated and leads to a tan. u du = tan ( u ) + C. 2 2 Combining everything, and putting u = x + 2 gives x 2 + 4x + 6 dx = 2 ln((x + )2 + 2) + tan ( x C. 2 2 The alert reader will observe that we have not discussed how to integrate functions such as (x 2 + ) dx k when k >. There is a reduction formula which allows us to reduce the value of k, however we will not discuss this case.

4 .3 Decomposition into partial fractions. In this section, we describe how to decompose a general proper rational function into simpler functions that we can integrate as in the previous section. We begin by factoring the denominator into linear and irreducible quadratic factors. It is a deep theorem of algebra that this is always possible for polynomials with real coefficients. We also assume that all common factors between the numerator and denominator have been canceled. So let us consider a rational function where the denominator is a product of linear factors L j (x) and quadratic factors Q k (x) raised to various powers. We claim that we can find constant so that we have P (x) = A, L (x) k... Lm (x) km Q (x) j... Qn (x) jn L (x) A,k L (x) k... + A m, L m (x) B,x + C, Q (x)... + B n,x + C n, Q n (x) A m,k m L m (x) km B,j x + C,j Q (x) j B n,j n x + C n,jn Q n (x) jn. I think we can all agree that the right-hand side is a big mess. This mess is called the partial fractions decomposition. Let me summarize the rules for writing the decomposition. For a linear factor raised to a power k, we obtain k terms where the numerator is constant and the denominator is the linear factor raised to the powers,..., k. For a quadratic factor raised to the power k, we obtain k terms where the numerator is a linear function and the denominator is a quadratic factor raised to the powers,..., k. An example might help. Write out the form of the partial fractions decomposition. Do not solve for the constants. f(x) = (x + 2)(x ) 2 (x 2 + ) 2 (x 2 ). Solution. Notice that the quadratic expression x 2 + is irreducible. The quadratic expression x 2 factors as (x )(x + ). After factoring and collecting like terms in the denominator, we obtain that f(x) = (x ) 3 (x + )(x + 2)(x 2 + ) 2.

5 To obtain the decomposition, we consider each factor separately. A factor raised to the k power will give us k terms. The denominators are the factor raised to the powers,..., k. If the factor is linear, the numerators are constants and if the factor is quadratic, the numerators are linear functions. Applying these rules give: f(x) = A x + B (x ) + C 2 (x ) 3 + D x + + E x F x + G x Hx + I (x 2 + ) Finding the constants After we have written out the form of the partial fractions decomposition, finding the values of the constants is a straightforward, but often lengthy computation. Find a common denominator. Collect like terms in the numerator. Write a system of equations by comparing coefficients of each power of x. If all is going well, this will give a system linear equations where the number of equations is the same as the number of unknowns and one may solve this system by elimination or your favorite method. We illustrate this method with a simple example. Find the partial fractions decomposition of the function g(x) = x + 2 x 2 + x.

6 Solution. The denominator factors as (x + )x, thus the partial fractions decomposition will contain two terms, one for each factor. x 2 + x = A x + + B x. Obtaining a common denominator on the left gives x 2 + x = Ax + B(x + ) x(x + ) Collecting like terms on the left-hand side gives x 2 + x = (A + B)x + B x(x + ) We obtain a system of two equations in A and B by comparing the coefficient of x on both sides and the constant term. x : A + B = 3 : B = 2 Here, the first entry in each row tells the power of x whose coefficients are equated to obtain the equation. It is easy to see that the solutions of this system are B = 2 A =. Thus, the partial fractions decomposition is x 2 + x = 3 x x. We were not asked to evaluate an integral in the previous example, but we should observe that the expression on the right is easy to integrate. We end this lecture by giving one example where we follow the entire procedure. Find the anti-derivative x 4 dx

7 Solution. to factor We observe that x 4 = (x 2 ) 2 2 is a difference of squares and use this x 4 = (x 2 )(x 2 + ). Next, we write out the form of the partial fractions decomposition: (x )(x + )(x 2 + ) = A x + B x + + Cx + D x 2 + Obtaining a common denominator on the right hand side gives (x )(x + )(x 2 + ) = (x + )(x2 + ) A (x + )(x 2 + ) x + (x )(x2 + ) B (x )(x 2 + ) x + + (x2 ) (x 2 ) Cx + D x 2 + And if we multiply out each numerator and collect like terms we have (x )(x + )(x 2 + ) = (A + B + C)x3 + (A B + D)x 2 + (A + B C)x + (A B D) (x )(x + )(x 2 + ) This gives the system of equations: Solving this system gives: x 3 : A + B + C = 0 x 2 : A B + D = 0 x : A + B C = 0 : A B D = A = /4 B = /4 C = /2. After all of this, evaluating the integral is easy: x 4 dx = 4 x dx 4 x + dx 2 x 2 + dx = 4 ln x 4 ln x + 2 tan x + C = 4 ln x x + 2 tan x + C.

The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

5 Indefinite integral

5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse

Partial Fractions. p(x) q(x)

Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

Partial Fractions Decomposition

Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

is identically equal to x 2 +3x +2

Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

Partial Fractions Examples

Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

Partial Fraction Decomposition for Inverse Laplace Transform

Partial Fraction Decomposition for Inverse Laplace Transform Usually partial fractions method starts with polynomial long division in order to represent a fraction as a sum of a polynomial and an another

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

Integrating algebraic fractions

Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

is identically equal to x 2 +3x +2

Partial fractions.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as + for any

Integration of Rational Expressions by Partial Fractions

Integration of Rational Epressions by Partial Fractions INTRODUTION: We start with a few definitions rational epression is formed when a polynomial is divided by another polynomial In a proper rational

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

Sample Problems. Practice Problems

Lecture Notes Partial Fractions page Sample Problems Compute each of the following integrals.. x dx. x + x (x + ) (x ) (x ) dx 8. x x dx... x (x + ) (x + ) dx x + x x dx x + x x + 6x x dx + x 6. 7. x (x

To add fractions we rewrite the fractions with a common denominator then add the numerators. = +

Partial Fractions Adding fractions To add fractions we rewrite the fractions with a common denominator then add the numerators. Example Find the sum of 3 x 5 The common denominator of 3 and x 5 is 3 x

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

Differentiation and Integration

This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic non-linear equations by factoring. The astute reader should have noticed that all of the equations in that

Situation: Dividing Linear Expressions

Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math 110 Review for Final Examination 2012 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the equation to the correct graph. 1) y = -

Introduction to polynomials

Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

Integration ALGEBRAIC FRACTIONS. Graham S McDonald and Silvia C Dalla

Integration ALGEBRAIC FRACTIONS Graham S McDonald and Silvia C Dalla A self-contained Tutorial Module for practising the integration of algebraic fractions Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

Decomposing Rational Functions into Partial Fractions:

Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

Linear and quadratic Taylor polynomials for functions of several variables.

ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

7 Quadratic Expressions A quadratic expression (Latin quadratus squared ) is an expression involving a squared term, e.g., x + 1, or a product term, e.g., xy x + 1. (A linear expression such as x + 1 is

Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

Homework # 3 Solutions

Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

Geometric Series. On the other hand, if 0 <r<1, then the exponential function of base r, the function g(x) =r x, has a graph that looks like this:

Geometric Series In the previous chapter we saw that if a>, then the exponential function with base a, the function f(x) =a x, has a graph that looks like this: On the other hand, if 0

Lecture 7 : Inequalities 2.5

3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of

Math 1111 Journal Entries Unit I (Sections , )

Math 1111 Journal Entries Unit I (Sections 1.1-1.2, 1.4-1.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection

Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

Techniques of Integration

CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

Rational Polynomial Functions

Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of

3.7 Complex Zeros; Fundamental Theorem of Algebra

SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,

Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real

Polynomials Classwork

Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

Separable First Order Differential Equations

Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

7.4 MÜLLER S METHOD. f(x 0 ) = a(x 0 x 2 ) 2 + b(x 0 x 2 ) + c (7.18)

7.4 MÜLLER S METHOD 181 When complex roots are possible, the bracketing methods cannot be used because of the obvious problem that the criterion for defining a bracket (that is, sign change) does not translate

2 Integrating Both Sides

2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

Key. Introduction. What is a Quadratic Equation? Better Math Numeracy Basics Algebra - Rearranging and Solving Quadratic Equations.

Key On screen content Narration voice-over Activity Under the Activities heading of the online program Introduction This topic will cover: the definition of a quadratic equation; how to solve a quadratic

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

Advanced Higher Mathematics Course Assessment Specification (C747 77)

Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

Worksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form

Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a

PARTIAL FRACTIONS EXAMPLE. Question: Suppose you want to make a batch of muffins, and the recipe calls for 2 1 6

PARTIAL FRACTIONS EXAMPLE Question: Suppose you want to make a batch of muffins, and the recipe calls for 2 1 6 cups of flour. However, being a normal household, you don't have any 1/6-cups. What you do

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

Asymptotes. Definition. The vertical line x = a is called a vertical asymptote of the graph of y = f(x) if

Section 2.1: Vertical and Horizontal Asymptotes Definition. The vertical line x = a is called a vertical asymptote of the graph of y = f(x) if, lim x a f(x) =, lim x a x a x a f(x) =, or. + + Definition.

Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.

Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

PURE MATHEMATICS AM 27

AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

PURE MATHEMATICS AM 27

AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

3.4 Complex Zeros and the Fundamental Theorem of Algebra

86 Polynomial Functions.4 Complex Zeros and the Fundamental Theorem of Algebra In Section., we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons and

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

Chapter 7. Induction and Recursion. Part 1. Mathematical Induction

Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P 1, P 2, P 3,..., P n,... (or, simply

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

Representation of functions as power series

Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role