Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Size: px
Start display at page:

Download "Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand"

Transcription

1 Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such as existence, uniqueness, or stability of equilibria. The notes are based on MWG, chapter Walrasian Equilibrium and Excess Demand I > 0, J > 0, L > 0, all of them are finite. ({X i, i } I i=1, {Y j } J j=1, {(ω i, θ i1,..., θ ij )} I i=1). An economy is defined by Definition 1 A Walrasian (or price-taking) equilibrium is an allocation (x, y ) and a price vector p = (p 1,..., p L ) if (i) For every j, y j Y j maximizes profits in Y j : p y j p y j for all y j Y j. (ii) For every i, x i X i is maximal for i in the respective budget set {x i X i : p x i p ω i + j θ ijp y j }. (iii) i x i = i ω i + j y j. For a while, let us consider exchange economies. Most results obtained from this exercise easily carry over to economies with production. Definition 2 An exchange economy is defined by E ({X i, i } I i=1, Y 1 = R L +, {ω i } I i=1). We assume that preferences are continuous, strictly convex, and locally nonsatiated (before long: strictly monotone). Moreover, we assume: i ω i 0. Notice also that we assume free disposal, which is taken into account by allowing for one firm whose only available technology is that of free disposal: Y 1 = R L + y l1 0 for all l = 1,...L. Query V.1 What is the relationship between the assumption of free disposal and prices? In the setting of an exchange economy, an allocation (x, y ) and a price vector p constitute a Walrasian equilibrium if and only if (i) y 1 0, p y 1 = 0, p 0, (ii) x i = x i (p, p ω i ) for all i, and (iii) i x i = i ω i + y 1. Ronald Wendner V-1 v1.1

2 Notice that (i) we will prove in class. However, by (i) and (iii) aggregate demand cannot exceed aggregate supply of a commodity (as y 1 0). Thus, by (i), a price p l is zero if and only if aggregate demand is smaller than aggregate supply (i.e., only free goods can be in excess supply). Proposition 1 Suppose, preferences in E are strictly convex and locally nonsatiated. Then, p is a Walrasian equilibrium price vector if and only if: i (x i(p, p ω i ) ω i ) 0. Query V.2 Prove Proposition 1. Definition 3 Consumer i s excess demand function is z i (p) = x i (p, p ω i ) ω i, where x i (p, p ω i ) is her Walrasian demand function. The aggregate excess demand function is z(p) = i z i(p). From here on, we ll state most results in terms of the excess demand (rather than Walrasian demand). Definition 4 E + defines an exchange economy where i are strictly monotone, continuous, and strictly convex. In E +, p constitutes a Walrasian price vector if and only if z(p) 0. If, moreover, preferences are strictly monotone this we ll assume from here on a Walrasian price vector has the property that p 0. Query V.3 If i are strongly monotone for all i, why must a Walrasian price vector be strictly positive: p 0? Under strong monotonicity of preferences, p is a Walrasian equilibrium price vector if and only if z l (p) = 0 for every l = 1,..., L. I.e., z(p) = 0. Proposition 2 Consider an economy E + where i ω i 0. Then z(p) is defined on p 0 and satisfies: (i) z(p) is continuous. (ii) z(p) is HD 0. (iii) Walras law: p z(p) = 0. (iv) z(p) is bounded below. I.e., there is some number s : z l (p) > s for every l = 1,..., L and all p. (v) If p n p, where p 0 and p l = 0 for some l, then: {max{z 1 (p n ),..., z L (p n )}} n=1. Ronald Wendner V-2 v1.1

3 Property (i) follows from the fact that x i (p, p ω i ) is continuous. Query V.4 From which property about i does it follow that x i (p, p ω i ) is continuous? Property (ii) follows from the fact that x i (p, p ω i ) is HD 0, (iii) comes from strong monotonicity of i, (iv) stems from the fact that demand cannot be negative. Finally, (v) we ll show in class. 2 Some Mathematical Prerequisites for Existence Proofs Correspondence. A correspondence is a multi-valued function. Suppose our domain is A R N. A (real valued) function f : A R is a rule that assigns to every x A a single value f(x) R (a singleton). In contrast, a (real valued) correspondence ϕ(x) : A R K is a rule that assigns to every x A a set ϕ(x) R K (which is not necessarily a singleton). Obviously, every function is a correspondence. But a correspondence is a function if and only if for every x A we have that ϕ(x) is a singleton. Convex-Valuedness of a Correspondence. Suppose, a correspondence ϕ(x) : A R K assigns to every x A a set ϕ(x) R K. This correspondence is convex valued at x if ϕ(x) is a convex set. This correspondence is convex valued if ϕ(x) is a convex set for all x A. Upper Hemicontinuity (uhc) of a Correspondence. Let ϕ : A Y be a correspondence, where A R N, Y R K, both A and Y are closed, and Y is bounded. Consider any two converging sequences {x n } and {y n } such that for all n, y n ϕ(x n ), where x n x and x, x n A, and y n y and y, y n Y for n = 1, 2,... The correspondence ϕ : A Y is said to be uhc at x if y ϕ(x). The correspondence ϕ : A Y is said to be uhc if it is uhc at all x A. Brouwer s Fixed-Point Theorem. Suppose that A R N is nonempty, compact, and convex. If f : A A is a continuous function from A to itself, then f(.) has a fixed point; i.e., there is an x A such that: x = f(x). Kakutani s Fixed-Point Theorem. Suppose that A R N is nonempty, compact, and convex. If ϕ : A A is an upper hemicontinuous correspondence Ronald Wendner V-3 v1.1

4 from A to itself, with ϕ(x) A being nonempty and convex for every x A (i.e., convex-valued ), then ϕ(.) has a fixed point; i.e., there is an x A such that: x ϕ(x). 3 Existence of Equilibrium This is the first (positive) question. We cannot use our GE-framework unless there is an equilibrium. The conditions for which an equilibrium exists are clarified in this section. By HD 0 of an excess function, we are allowed to normalize the price vector (e.g., set one price equal to unity, or normalize prices to the unit simplex in R L +). The unit simplex is defined by {p R L + : l p l = 1}. Moreover, denote the interior of by i, and the boundary of the simplex by. Before going to the propositions, please be sure you understand the following concepts: convex-valuedness of a correspondence, (upper) hemicontinuity of a correspondence, Brouwer s Fixed-Point Theorem, and Kakutani s Fixed-Point Theorem. I start with the general result first, and give a simplified (more special, but probably more instructive) version thereafter. However, for the real existence proof which is also applicable for production economies I ask you to read my Notes VI. Proposition 3 Consider an exchange economy E + with ω 0. There exists a Walrasian equilibrium, i.e., there exists an allocation (x, y ) and a price vector p that constitute a solution to the system of equations z(p) = 0. Proof. First, construct a correspondence f(p) from all p into. Step (i) considers f(p) : i, step (ii) considers f(p) :. (i) Construct a correspondence for all p i : f(p) = {q : z(p) q z(p) q for all q }, which assigns an element (a set) of to every p i. Observe that if z(p) = 0 (i.e., we are having a Walrasian equilibrium), f(p) =. However, if z(p) 0, then f(p). In particular, q l = 0 if z l (p) < max{z 1 (p),..., z L (p)}. (ii) Construct a correspondence for all p : f(p) = {q : p q = 0} = {q : q l = 0 if p l > 0}. As for any p : p p > 0, no fixed point can be represented by a price vector p. (iii) Certainly, a fixed point of f(p) is a Walrasian equilibrium. Notice that Ronald Wendner V-4 v1.1

5 a fixed point means p f(p ). In this case, p. Thus, p 0. But if z(p ) 0, then p. Hence, a fixed point represents a Walrasian equilibrium. (iv) The fixed point correspondence is convex-valued and upper hemicontinuous (as will be shown in class). (v) Now we can apply Kakutani s Fixed-Point Theorem to establish that there is a fixed point. By (iii), then, there is a Walrasian equilibrium.. W.H.O.W. All right, this was pretty tough. The difficulty in the preceding proof arose from boundary complications, i.e., excess demand is not well defined when p, as the maximum z l (p) is going to infinity. For purely instructive reasons, we proceed as follows. Assume properties (i) to (iii) from Proposition 2, and z(p) is well defined for all nonzero p R L +. 1 Remember that in equilibrium we have z(p) 0. Corollary 1 Consider an exchange economy E with ω 0 and z(p) being well defined for all p R L +. Then there exists a Walrasian equilibrium, i.e., there exists an allocation (x, y ) and a price vector p 0 that constitute a solution to the system of equations z(p) 0. (i) As z(p) are HD0 in prices, we can restrict our attention to the price simplex: = {p R L + l p l = 1}. (ii) Define the function z + l (p) = max {z l (p), 0}. The function z + (p) is continuous, and z + (p) z(p) = 0 implies z(p) 0. (iii) Define α(p) = l (p l + z + l (p)) 1. (iv) f(p) = (p + z + (p))/α(p) is a continuous function from the price simplex to itself. (v) By Brouwer s Fixed-Point Theorem there exists a p such that p = f(p ). (vi) By Walras law: 0 = p z(p ) = f(p ) z(p ) = (1/α(p )) (p + z + (p )) z(p ) = (1/α(p )) z + (p ) z(p ). But then, z + (p ) z(p ) = 0, which implies, by (i), that z(p ) 0. W.H.O.W. Query V.5 Show that f(p) :, as claimed in step (iv). 1 Such excess demand functions are not possible with monotone preferences, yet they exist with locally nonsatiated preferences. Ronald Wendner V-5 v1.1

6 4 Bonus Stuff Uniqueness A few Results Suppose there exist Walrasian equilibria. The question then is: How many equilibria are there? If there is a (globally) unique equilibrium, we can perform meaningful comparative static analysis. However, if there is more than one equilibrium (i.e., multiplicity) the next best thing is to have a finite number of equilibria. In this case, we have local uniqueness, i.e., at every Walrasian equilibrium (x, y ), there exists an ɛ > 0 and an ɛ ball about (x, y ), B ɛ (x, y ), such that there is no other Walrasian equilibrium within B ɛ (x, y ). More precisely, a Walrasian equilibrium price vector p 0 is locally unique, if there is an ɛ > 0 such that if p p, and p p < ɛ then z(p ) 0. In contrast to local uniqueness, we might encounter indeterminate equilibria, in which case for every ɛ > 0 however small there is an infinite number of Walrasian equilibrium price vectors in p p < ɛ. Indeterminateness is not a desirable property. If the economy is regular, all equilibria are locally unique (determinate). Moreover, an economy is regular, if the Jacobian matrix of price effects Dẑ(p) has rank L 1 (is nonsingular). 2 Query. Suppose, L = 2. Under which condition is E + regular? Under which condition does E + face indeterminate equilibria? We now consider a condition that guarantees global uniqueness of equilibrium. Definition 5 (Gross Substitution) The excess demand function has the gross substitution (GS) property if whenever p and p are such that, for some l, p l > p l and p k = p k for all k l, we have z k (p ) > z k (p) for all k l. Notice that the gross substitution property (as defined above) implies: z l (p ) < z l (p)! In a differential version, GS implies: δ z k (p)/δ p l > 0, i.e., all the offdiagonal entries of Dz(p) are positive. Proposition 4 In E +, there is a globally unique equilibrium, if z(p) satisfies the gross substitution property. 2 Normalize the price vector such that the price of good L = 1: p = (p 1, p 2,..., p L 1, 1). The normalized excess demand function is then: ẑ(p) = (z 1 (p), z 2 (p),..., z L 1 (p)). Then, p 0 is a Walrasian equilibrium price vector if ẑ(p) = 0. Ronald Wendner V-6 v1.1

7 Observe that the GS property is sufficient, not necessary! Excess Demand in Economies with Production Definition 6 An economy with production is defined by P ({X i, i } I i=1, {Y j } J j=1, {(ω i, θ i1,..., θ ij )} I i=1). Let P + be an economy with production, where all production sets are closed, strictly convex and bounded. Consider an economy P. The production-inclusive excess demand is given by: z(p) = i x i(p, p ω i + j θ ijπ j (p)) i ω i j y j(p). Proposition 5 Consider an economy P +. (i) to (v), as given by Proposition 2. See Exercise 17.B.4 (MWG, p.642). Local Nonsatiation and Positivity of Prices Then, z(p) satisfies properties Notice that local nonsatiation implies that there is at least one desirable good, otherwise 0 would be a global satiation point. Thus, p x i = p ω i. Proposition 6 Suppose, preferences in E are strictly convex and locally nonsatiated. Then, p is a Walrasian equilibrium price vector if and only if: z(p) i (x i(p, p ω i ) ω i ) 0. Proof (Sketch). It can easily be shown that z(p) 0 [(y 1 0, p y 1 = 0, p 0) & (x i = x i (p, p ω i ) for all i) & ( i x i = i ω i + y 1)]. Proposition 7 Let p be a Walrasian price vector in E. Then, no commodity has a negative price: p l 0 for all l = 1,..., L. Proof (direct). Because of the possibility of free disposal, there are no transactions with a negatively priced commodity (nobody is willing to sell). So there are is no trade with such commodities hence, no good has a negative price. Proposition 8 Let p be a Walrasian price vector in E. Then, p 0. Proof (direct). Suppose p = 0. By local nonsatiation there is a desirable commodity, say l. But then, as the budget set is unbounded, there exists no maximal element, x i, in the budget set. From HD0 of the excess demand functions, and from Proposition 3, we can normalize prices without loss of generality: l p l = 1. Ronald Wendner V-7 v1.1

8 Corollary 2 Let p be a Walrasian price vector in E. every desirable commodity l is strictly positive: p l > 0. Then, the price of Corollary 3 Let p be a Walrasian price vector in E. If all commodities are desirable (strong monotonicity), p 0. Proposition 9 Let p be a Walrasian price vector in E. If some commodities are not desirable, i.e., z l (p) < 0, then, p l = 0 and the price vector is not strictly positive. Proof (direct). Suppose first, all goods are desirable. Then, p 0. As p z(p) = 0 we have z(p) = 0, i.e., z l (p) = 0 for all l = 1,..., L. Next, suppose that l is not desirable, i.e.: i z l i(p) < 0. Define z (p) = (z 1, z 2,...z l 1, z l +1,..., z L ), and p = (p 1,...p l 1, p l +1,..., p L ). Then, p l z l (p)+ p z (p) = 0. By Corollary 1, p 0. Moreover, z (p) = 0, as all those goods are desirable (and z (p) 0). Thus, p z (p) = 0. As z l (p) < 0, we must have p l = 0. The argument can easily be extended to the case with several bads. Ronald Wendner V-8 v1.1

Economics 200B Part 1 UCSD Winter 2015 Prof. R. Starr, Mr. John Rehbeck Final Exam 1

Economics 200B Part 1 UCSD Winter 2015 Prof. R. Starr, Mr. John Rehbeck Final Exam 1 Economics 200B Part 1 UCSD Winter 2015 Prof. R. Starr, Mr. John Rehbeck Final Exam 1 Your Name: SUGGESTED ANSWERS Please answer all questions. Each of the six questions marked with a big number counts

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium

6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium 6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium Asu Ozdaglar MIT February 18, 2010 1 Introduction Outline Pricing-Congestion Game Example Existence of a Mixed

More information

First Welfare Theorem

First Welfare Theorem First Welfare Theorem Econ 2100 Fall 2015 Lecture 17, November 2 Outline 1 First Welfare Theorem 2 Preliminaries to Second Welfare Theorem Last Class Definitions A feasible allocation (x, y) is Pareto

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

Lecture 8: Market Equilibria

Lecture 8: Market Equilibria Computational Aspects of Game Theory Bertinoro Spring School 2011 Lecturer: Bruno Codenotti Lecture 8: Market Equilibria The market setting transcends the scenario of games. The decentralizing effect of

More information

UCLA. Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory

UCLA. Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory UCLA Department of Economics Ph. D. Preliminary Exam Micro-Economic Theory (SPRING 2011) Instructions: You have 4 hours for the exam Answer any 5 out of the 6 questions. All questions are weighted equally.

More information

Section 3 Sequences and Limits

Section 3 Sequences and Limits Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the n-th term of the sequence.

More information

MSc Economics Economic Theory and Applications I Microeconomics. General Equilibrium. Dr Ken Hori,

MSc Economics Economic Theory and Applications I Microeconomics. General Equilibrium. Dr Ken Hori, MSc Economics Economic Theory and Applications I Microeconomics General Equilibrium Dr Ken Hori, k.hori@bbk.ac.uk Birkbeck College, University of London October 2004 Contents 1 General Equilibrium in a

More information

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti)

Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Lecture 3: Growth with Overlapping Generations (Acemoglu 2009, Chapter 9, adapted from Zilibotti) Kjetil Storesletten September 10, 2013 Kjetil Storesletten () Lecture 3 September 10, 2013 1 / 44 Growth

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Working Paper Series

Working Paper Series RGEA Universidade de Vigo http://webs.uvigo.es/rgea Working Paper Series A Market Game Approach to Differential Information Economies Guadalupe Fugarolas, Carlos Hervés-Beloso, Emma Moreno- García and

More information

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions.

Name. Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Name Final Exam, Economics 210A, December 2011 Here are some remarks to help you with answering the questions. Question 1. A firm has a production function F (x 1, x 2 ) = ( x 1 + x 2 ) 2. It is a price

More information

Game Theory: Supermodular Games 1

Game Theory: Supermodular Games 1 Game Theory: Supermodular Games 1 Christoph Schottmüller 1 License: CC Attribution ShareAlike 4.0 1 / 22 Outline 1 Introduction 2 Model 3 Revision questions and exercises 2 / 22 Motivation I several solution

More information

Geometry of Linear Programming

Geometry of Linear Programming Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

More information

Math 317 HW #5 Solutions

Math 317 HW #5 Solutions Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

More information

MTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem

More information

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

More information

Math 317 HW #7 Solutions

Math 317 HW #7 Solutions Math 17 HW #7 Solutions 1. Exercise..5. Decide which of the following sets are compact. For those that are not compact, show how Definition..1 breaks down. In other words, give an example of a sequence

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Gains from Trade. Christopher P. Chambers and Takashi Hayashi. March 25, 2013. Abstract

Gains from Trade. Christopher P. Chambers and Takashi Hayashi. March 25, 2013. Abstract Gains from Trade Christopher P. Chambers Takashi Hayashi March 25, 2013 Abstract In a market design context, we ask whether there exists a system of transfers regulations whereby gains from trade can always

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Ordinal preference theory Harald Wiese University of Leipzig Harald Wiese (University of Leipzig) Advanced Microeconomics 1 / 68 Part A. Basic decision and preference theory 1 Decisions

More information

Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter 2 Limits Functions and Sequences sequence sequence Example Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

More information

Problem Set II: budget set, convexity

Problem Set II: budget set, convexity Problem Set II: budget set, convexity Paolo Crosetto paolo.crosetto@unimi.it Exercises will be solved in class on January 25th, 2010 Recap: Walrasian Budget set, definition Definition (Walrasian budget

More information

1 Local Brouwer degree

1 Local Brouwer degree 1 Local Brouwer degree Let D R n be an open set and f : S R n be continuous, D S and c R n. Suppose that the set f 1 (c) D is compact. (1) Then the local Brouwer degree of f at c in the set D is defined.

More information

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written

More information

Introduction to Flocking {Stochastic Matrices}

Introduction to Flocking {Stochastic Matrices} Supelec EECI Graduate School in Control Introduction to Flocking {Stochastic Matrices} A. S. Morse Yale University Gif sur - Yvette May 21, 2012 CRAIG REYNOLDS - 1987 BOIDS The Lion King CRAIG REYNOLDS

More information

Chapter 7. Sealed-bid Auctions

Chapter 7. Sealed-bid Auctions Chapter 7 Sealed-bid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market

More information

General Equilibrium Theory: Examples

General Equilibrium Theory: Examples General Equilibrium Theory: Examples 3 examples of GE: pure exchange (Edgeworth box) 1 producer - 1 consumer several producers and an example illustrating the limits of the partial equilibrium approach

More information

Introduction to Linear Programming.

Introduction to Linear Programming. Chapter 1 Introduction to Linear Programming. This chapter introduces notations, terminologies and formulations of linear programming. Examples will be given to show how real-life problems can be modeled

More information

SYSTEMS OF EQUATIONS

SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options.

K 1 < K 2 = P (K 1 ) P (K 2 ) (6) This holds for both American and European Options. Slope and Convexity Restrictions and How to implement Arbitrage Opportunities 1 These notes will show how to implement arbitrage opportunities when either the slope or the convexity restriction is violated.

More information

A Simple Model of Price Dispersion *

A Simple Model of Price Dispersion * Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion

More information

Definition of a Linear Program

Definition of a Linear Program Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

More information

Sequences and Convergence in Metric Spaces

Sequences and Convergence in Metric Spaces Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the n-th term of s, and write {s

More information

Lecture 13 Linear quadratic Lyapunov theory

Lecture 13 Linear quadratic Lyapunov theory EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time

More information

Nash Equilibrium. Ichiro Obara. January 11, 2012 UCLA. Obara (UCLA) Nash Equilibrium January 11, 2012 1 / 31

Nash Equilibrium. Ichiro Obara. January 11, 2012 UCLA. Obara (UCLA) Nash Equilibrium January 11, 2012 1 / 31 Nash Equilibrium Ichiro Obara UCLA January 11, 2012 Obara (UCLA) Nash Equilibrium January 11, 2012 1 / 31 Best Response and Nash Equilibrium In many games, there is no obvious choice (i.e. dominant action).

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

By W.E. Diewert. July, Linear programming problems are important for a number of reasons: APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

1. R In this and the next section we are going to study the properties of sequences of real numbers.

1. R In this and the next section we are going to study the properties of sequences of real numbers. +a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

More information

Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

INTRODUCTION TO THE CONVERGENCE OF SEQUENCES

INTRODUCTION TO THE CONVERGENCE OF SEQUENCES INTRODUCTION TO THE CONVERGENCE OF SEQUENCES BECKY LYTLE Abstract. In this paper, we discuss the basic ideas involved in sequences and convergence. We start by defining sequences and follow by explaining

More information

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b. Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

The Market-Clearing Model

The Market-Clearing Model Chapter 5 The Market-Clearing Model Most of the models that we use in this book build on two common assumptions. First, we assume that there exist markets for all goods present in the economy, and that

More information

3 Does the Simplex Algorithm Work?

3 Does the Simplex Algorithm Work? Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

x if x 0, x if x < 0.

x if x 0, x if x < 0. Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

More information

IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY TRADING INFINITELY-LIVED SECURITIES

IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY TRADING INFINITELY-LIVED SECURITIES IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY TRADING INFINITELY-LIVED SECURITIES Kevin X.D. Huang and Jan Werner DECEMBER 2002 RWP 02-08 Research Division Federal Reserve Bank of Kansas City Kevin X.D. Huang

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Migration with Local Public Goods and the Gains from Changing Places

Migration with Local Public Goods and the Gains from Changing Places Migration with Local Public Goods and the Gains from Changing Places Peter J. Hammond Department of Economics, University of Warwick, Coventry CV4 7AL, U.K. p.j.hammond@warwick.ac.edu Jaume Sempere C.E.E.,

More information

Ri and. i=1. S i N. and. R R i

Ri and. i=1. S i N. and. R R i The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE

ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE ECON20310 LECTURE SYNOPSIS REAL BUSINESS CYCLE YUAN TIAN This synopsis is designed merely for keep a record of the materials covered in lectures. Please refer to your own lecture notes for all proofs.

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, ) 6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

More information

Lecture 12 Basic Lyapunov theory

Lecture 12 Basic Lyapunov theory EE363 Winter 2008-09 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12

More information

Manipulability of the Price Mechanism for Data Centers

Manipulability of the Price Mechanism for Data Centers Manipulability of the Price Mechanism for Data Centers Greg Bodwin 1, Eric Friedman 2,3,4, and Scott Shenker 3,4 1 Department of Computer Science, Tufts University, Medford, Massachusetts 02155 2 School

More information

Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year , First Semester Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

4.3 Limit of a Sequence: Theorems

4.3 Limit of a Sequence: Theorems 4.3. LIMIT OF A SEQUENCE: THEOREMS 5 4.3 Limit of a Sequence: Theorems These theorems fall in two categories. The first category deals with ways to combine sequences. Like numbers, sequences can be added,

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

Double Sequences and Double Series

Double Sequences and Double Series Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Introduction. Agents have preferences over the two goods which are determined by a utility function. Speci cally, type 1 agents utility is given by

Introduction. Agents have preferences over the two goods which are determined by a utility function. Speci cally, type 1 agents utility is given by Introduction General equilibrium analysis looks at how multiple markets come into equilibrium simultaneously. With many markets, equilibrium analysis must take explicit account of the fact that changes

More information

A Direct Numerical Method for Observability Analysis

A Direct Numerical Method for Observability Analysis IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

On the Interaction and Competition among Internet Service Providers

On the Interaction and Competition among Internet Service Providers On the Interaction and Competition among Internet Service Providers Sam C.M. Lee John C.S. Lui + Abstract The current Internet architecture comprises of different privately owned Internet service providers

More information

Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Ù Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

More information

CHAPTER 3. Sequences. 1. Basic Properties

CHAPTER 3. Sequences. 1. Basic Properties CHAPTER 3 Sequences We begin our study of analysis with sequences. There are several reasons for starting here. First, sequences are the simplest way to introduce limits, the central idea of calculus.

More information

Manipulator Kinematics. Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology

Manipulator Kinematics. Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology Manipulator Kinematics Prof. Matthew Spenko MMAE 540: Introduction to Robotics Illinois Institute of Technology Manipulator Kinematics Forward and Inverse Kinematics 2D Manipulator Forward Kinematics Forward

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Solutions to Tutorial 2 (Week 3)

Solutions to Tutorial 2 (Week 3) THE UIVERSITY OF SYDEY SCHOOL OF MATHEMATICS AD STATISTICS Solutions to Tutorial 2 (Week 3) MATH3969: Measure Theory and Fourier Analysis (Advanced) Semester 2, 2016 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Diagonal, Symmetric and Triangular Matrices

Diagonal, Symmetric and Triangular Matrices Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

More information

Getting on For all the preceding functions, discuss, whenever possible, whether local min and max are global.

Getting on For all the preceding functions, discuss, whenever possible, whether local min and max are global. Problems Warming up Find the domain of the following functions, establish in which set they are differentiable, then compute critical points. Apply 2nd order sufficient conditions to qualify them as local

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets

Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that

More information

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania

Moral Hazard. Itay Goldstein. Wharton School, University of Pennsylvania Moral Hazard Itay Goldstein Wharton School, University of Pennsylvania 1 Principal-Agent Problem Basic problem in corporate finance: separation of ownership and control: o The owners of the firm are typically

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Weak topologies. David Lecomte. May 23, 2006

Weak topologies. David Lecomte. May 23, 2006 Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such

More information