# Notes on metric spaces

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course. 2 Convergence of real numbers 2.1 Limits Let x n R. We say that x n x if for all ε > 0 there exists N N such that if n N we have x n x < ε for all n > N. 2.2 Lim sup and lim inf When we come to study ergodic theory, we will often have to check that various sequences converge. It will often be most convenient to do this by using lim sups and lim infs. Definition. Let x n R be a sequence. Define ( lim sup x n = lim n n sup{x k } k n ). Remark. The lim sup always exists (although it may be ± ). This is because sup k n {x k } is a decreasing sequence (in n), and decreasing sequences always converge. Definition. Let x n R be a sequence. Define ( ) lim inf x n = lim inf {x k}. n n k n Remark. For the same reason as above, the lim inf always exists but may be equal to ±. Proposition 2.1 Let x n be a sequence. Then x n x if and only if lim sup n x n = lim inf n x n = x. 1

2 Remark. Thus in order to show that a sequence converges, we need only show that both the lim sup and the lim inf agree. In fact, it is clear from the definitions that lim inf n x n lim sup n x n. Hence to show that x n converges, we need only show that lim sup n x n lim inf n x n. Example. Take ( ) 1 x n = ( 1) n + ( 1) n 2 n. Then lim sup n x n = +1 and lim inf n x n = 1. 3 Metric spaces 3.1 Metric spaces Let X be a set. A function d : X X [0, ) is called a metric if (i) d(x, y) 0 and d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), (iii) d(x, z) d(x, y) + d(y, z) (the triangle inequality). We call (X, d) a metric space. Examples. 1. Take X = R and define d(x, y) = x y. 2. Take X = R 2 and define 3. Take X = R 2 and define 4. Consider the space Define d((x 1, x 2 ), (y 1, y 2 )) = y 1 x 1 + y 2 x 2. d((x 1, x 2 ), (y 1, y 2 )) = y 1 x y 2 x 2 2. C([0, 1], R) = {f : [0, 1] R f is continuous}. f = sup f(x). x [0,1] (a standard result says that this supremum is finite.) Then we can define a metric by d(f, g) = f g. 5. More generally, if X is a compact (see below) metric space then the space C(X, R) of continuous real-valued functions defined on X is a metric space with metric d(f, g) = sup x X f(x) g(x). 2

3 3.2 Convergence Let (X, d) be a metric space. Let x n X be a sequence of points in X. We say that x n converges to x X (and write x n x) if for all ε > 0 there exists N N such that for all n N we have d(x n, x) < ε. A sequence x n is Cauchy if: for all ε > 0 there exists N N such that for all n, m N we have d(x n, x m ) ε. A metric space (X, d) is said to be complete if every Cauchy sequence converges. Examples of complete metric spaces include: R, R 2 (with either of the metrics above), C(X, R) where X is a compact metric space,.... The set of all rationals Q is not complete: the sequence x 1 = 1, x 2 = 1.4, x 3 = 1.41, x 4 = 1.414,..., x n = decimal expansion of 2 to n decimal places is Cauchy but does not converge in Q (because 2 is irrational). 3.3 Open and closed sets Let (X, d) be a metric space. Let x X and let ε > 0. The set B(x, ε) = {y X d(x, y) < ε} of all points y that are distance at most ε from x is called the open ball of radius ε and centre x. We can think of B(x, ε) as being a small neighbourhood around the point x. A subset U X is called open if for all x U there exists ε > 0 such that B(x, ε) U, i.e. every point x in U has a small neighbourhood that is also contained in U. One can easily show that open balls B(x, ε) are open subsets. A set F is said to be closed if its complement X \ F is open. There are other ways of defining closed sets: Proposition 3.1 Let (X, d) be a metric space and let F X. Then the following are equivalent: (i) F is closed (i.e. X \ F is open); (ii) if x n F is a sequence of points in F such that x n x for some x X then x F (i.e. any convergent sequence of points in F has its limit in F ). 4 Compactness We will usually study compact metric spaces. Roughly speaking, these are spaces where sequences of points cannot escape. 3

4 4.1 Sequential compactness Let (X, d) be a metric space. We say that X is sequentially compact if every sequence x n X has a convergent subsequence, i.e. there exist n j such that x nj x for some x X. Examples. 1. [0, 1] is compact. 2. (0, 1) is not compact (because x n = 1/n does not have a convergent subsequence in (0, 1)). 3. C(X, R) is not compact. 4.2 Compactness by open covers Let (X, d) be a metric space. A collection of open sets U = {U α α A} is called an open cover if X = α A U α. We say that X is compact if every open cover of X has a finite subcover, i.e. if U = {U α α A} is an open cover of X then there exists α 1,..., α n such that X = U α1 U αn. Example. (0, 1) is not compact: the open cover {(1/(n + 2), 1/n)} does not have a finite subcover. The two notions of compactness are the same: Proposition 4.1 Let (X, d) be a metric space. Then X is sequentially compact if and only if it is compact. 4.3 Properties of compact spaces Proposition 4.2 Let X be compact. Then X is closed. Proposition 4.3 (Heine-Borel) A subset X R d is compact if and only if it is closed and bounded. Remark. For subspaces of spaces other than R d, this characterisation of compactness fails. For example, there are closed and bounded subsets of C([0, 1], R) that are not compact. 4

5 5 Continuity 5.1 (ε, δ)-continuity Definition. Let (X, d) be a metric space and let x X. A function f : X R is said to be continuous at x if for all ε > 0 there exists δ > 0 such that if d(x, y) < δ then f(x) f(y). We say that f is continuous if it is continuous at every point x X. Remark. More generally, we can easily modify this definition to define what it means for a map f : X Y between two metric spaces X and Y to be continuous. 5.2 Continuity by convergence of sequences Let (X, d) be a metric space. We can give an alternative characterisation of continuity in terms of how the images of convergent subsequences behave. Proposition 5.1 The following are equivalent: (i) f : X R is continuous at x X, (ii) for all convergent sequences x n X such that x n x then f(x n ) f(x). Remark. Again, this definition can easily be extended to the case of a continuous function f : X Y between two arbitrary metric spaces. 5.3 Continuity by preimages of open sets Here is another characterisation of continuity in terms of open sets. Proposition 5.2 Let X and Y be two metric spaces and let f : X Y. The following are equivalent: (i) f is continuous (ii) if U Y is an open subset of Y then the set is an open subset of X. f 1 (U) = {x X f(x) U} 5

6 5.4 Continuity and compactness Continuous functions defined on compact metric spaces enjoy various nice properties and we describe some of them here. Proposition 5.3 (Uniform continuity) Let (X, d X ) be a compact metric space and let (Y, d Y ) be a metric space (not necessarily compact). Let f : X Y be continuous. Then f is uniformly continuous: i.e. ε > 0, δ > 0 s.t. x, y X, if d X (x, y) < ε then d Y (f(x), f(y)) < δ. Remarks. 1. Recall that in the (ε, δ)-definition of continuity, given x X and ε > 0 we choose δ > 0 such that d X (x, y) < ε implies d Y (f(x), f(y)) < δ. The crucial point is that a priori δ depends on both ε and x. With uniform continuity, the same δ will work for any x. 2. In particular, if T : X X is a continuous transformation of a compact metric space then T is uniformly continuous. 3. If f : X R is a continuous real-valued function defined on a compact metric space then it is uniformly continuous. Proposition 5.4 (Continuous image of a compact set is compact) Let (X, d) be a compact metric space and let f : X Y be continuous. Then f(x) Y is a compact subset of Y. Proposition 5.5 (Continuous functions are separable) Let (X, d) be a compact metric space. Then the space C(X, R) = {f : X R f is continuous} is separable, i.e. there exists a countable dense set {f n }, i.e. f C(X, R) and ε > 0, n > 0 such that f f n < ε Proposition 5.6 (Stone-Weierstrass theorem) Let (X, d) be a compact metric space and let A C(X, R) be an algebra of continuous functions defined on X, i.e. (i) the zero function f(x) 0 A, (ii) if f, g A and λ R then λf + g A, (iii) if f, g A then the product function fg A. Suppose that A separates the points of X and does not vanish at any point of X, i.e. 6

7 (i) for all x, y X with x y there exists f A such that f(x) f(y), (ii) for all x X there is some f A for which f(x) 0. Then A is dense in C(X, R). Remark. A similar result holds for C(X, C), provided one assumes that if f A then f A (where the bar denotes complex conjugation). Examples. 1. Take X = [0, 1] and take A to be the algebra of all polynomials. Clearly polynomials separate points and do not vanish at any point. The Stone-Weierstrass theorem implies that any continuous function can be arbitrarily well approximated by a polynomial. 2. Take X = R/Z and take A to be the algebra of all trigonometric polynomials, i.e. A = { j α je 2πil jx α j C, l j Z}. Then A is an algebra that separates points and does not vanish at any point. Hence any continuous function f : R/Z C defined on the circle can be arbitrarily well approximated by a trigonometric polynomial. 7

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

### Chap2: The Real Number System (See Royden pp40)

Chap2: The Real Number System (See Royden pp40) 1 Open and Closed Sets of Real Numbers The simplest sets of real numbers are the intervals. We define the open interval (a, b) to be the set (a, b) = {x

### {f 1 (U), U F} is an open cover of A. Since A is compact there is a finite subcover of A, {f 1 (U 1 ),...,f 1 (U n )}, {U 1,...

44 CHAPTER 4. CONTINUOUS FUNCTIONS In Calculus we often use arithmetic operations to generate new continuous functions from old ones. In a general metric space we don t have arithmetic, but much of it

### 1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

### Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

### Compactness in metric spaces

MATHEMATICS 3103 (Functional Analysis) YEAR 2012 2013, TERM 2 HANDOUT #2: COMPACTNESS OF METRIC SPACES Compactness in metric spaces The closed intervals [a, b] of the real line, and more generally the

### Chapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces

Chapter 1. Metric Spaces Metric Spaces MA222 David Preiss d.preiss@warwick.ac.uk Warwick University, Spring 2008/2009 Definitions. A metric on a set M is a function d : M M R such that for all x, y, z

### Geometry 2: Remedial topology

Geometry 2: Remedial topology Rules: You may choose to solve only hard exercises (marked with!, * and **) or ordinary ones (marked with! or unmarked), or both, if you want to have extra problems. To have

### FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

### MATH41112/61112 Ergodic Theory Lecture Measure spaces

8. Measure spaces 8.1 Background In Lecture 1 we remarked that ergodic theory is the study of the qualitative distributional properties of typical orbits of a dynamical system and that these properties

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

### Course 421: Algebraic Topology Section 1: Topological Spaces

Course 421: Algebraic Topology Section 1: Topological Spaces David R. Wilkins Copyright c David R. Wilkins 1988 2008 Contents 1 Topological Spaces 1 1.1 Continuity and Topological Spaces...............

### Ri and. i=1. S i N. and. R R i

The subset R of R n is a closed rectangle if there are n non-empty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an

### Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

### Sequences and Convergence in Metric Spaces

Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the n-th term of s, and write {s

### Limits and convergence.

Chapter 2 Limits and convergence. 2.1 Limit points of a set of real numbers 2.1.1 Limit points of a set. DEFINITION: A point x R is a limit point of a set E R if for all ε > 0 the set (x ε,x + ε) E is

### Metric Spaces. Chapter 1

Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

### BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

### 6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

### and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

### Introduction to Topology

Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

### Weak topologies. David Lecomte. May 23, 2006

Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such

### THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

### Prof. Girardi, Math 703, Fall 2012 Homework Solutions: Homework 13. in X is Cauchy.

Homework 13 Let (X, d) and (Y, ρ) be metric spaces. Consider a function f : X Y. 13.1. Prove or give a counterexample. f preserves convergent sequences if {x n } n=1 is a convergent sequence in X then

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### Polish spaces and standard Borel spaces

APPENDIX A Polish spaces and standard Borel spaces We present here the basic theory of Polish spaces and standard Borel spaces. Standard references for this material are the books [143, 231]. A.1. Polish

### x a x 2 (1 + x 2 ) n.

Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

### Math 104: Introduction to Analysis

Math 104: Introduction to Analysis Evan Chen UC Berkeley Notes for the course MATH 104, instructed by Charles Pugh. 1 1 August 29, 2013 Hard: #22 in Chapter 1. Consider a pile of sand principle. You wish

### x = (x 1,..., x d ), y = (y 1,..., y d ) x + y = (x 1 + y 1,..., x d + y d ), x = (x 1,..., x d ), t R tx = (tx 1,..., tx d ).

1. Lebesgue Measure 2. Outer Measure 3. Radon Measures on R 4. Measurable Functions 5. Integration 6. Coin-Tossing Measure 7. Product Measures 8. Change of Coordinates 1. Lebesgue Measure Throughout R

### 1. Let X and Y be normed spaces and let T B(X, Y ).

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: NVP, Frist. 2005-03-14 Skrivtid: 9 11.30 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

### MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 4: Fourier Series and L 2 ([ π, π], µ) ( 1 π

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION Chapter 4: Fourier Series and L ([, π], µ) Square Integrable Functions Definition. Let f : [, π] R be measurable. We say that f

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

### Math Real Analysis I

Math 431 - Real Analysis I Solutions to Homework due October 1 In class, we learned of the concept of an open cover of a set S R n as a collection F of open sets such that S A. A F We used this concept

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg

Metric Spaces Lecture Notes and Exercises, Fall 2015 M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK mamvdb@bristol.ac.uk 1 Definition of a metric space. Let X be a set,

### FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C.

### Function Sequences and Series

Chapter 7 Function Sequences and Series 7.1 Complex Numbers This is not meant to be a thourogh and completely rigorous construction of complex numbers but rather a quick brush up of things assumed to be

### SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### 1 Norms and Vector Spaces

008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

### FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous

### Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

### Infinite product spaces

Chapter 7 Infinite product spaces So far we have talked a lot about infinite sequences of independent random variables but we have never shown how to construct such sequences within the framework of probability/measure

### Andrew McLennan January 19, Winter Lecture 5. A. Two of the most fundamental notions of the dierential calculus (recall that

Andrew McLennan January 19, 1999 Economics 5113 Introduction to Mathematical Economics Winter 1999 Lecture 5 Convergence, Continuity, Compactness I. Introduction A. Two of the most fundamental notions

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

### Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

### NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

### 9 More on differentiation

Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

### Open and Closed Sets

Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

### Finite dimensional topological vector spaces

Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Math 317 HW #7 Solutions

Math 17 HW #7 Solutions 1. Exercise..5. Decide which of the following sets are compact. For those that are not compact, show how Definition..1 breaks down. In other words, give an example of a sequence

### Topics in weak convergence of probability measures

This version: February 24, 1999 To be cited as: M. Merkle, Topics in weak convergence of probability measures, Zb. radova Mat. Inst. Beograd, 9(17) (2000), 235-274 Topics in weak convergence of probability

### Structure of Measurable Sets

Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### Math 563 Measure Theory Project 1 (Funky Functions Group) Luis Zerón, Sergey Dyachenko

Math 563 Measure Theory Project (Funky Functions Group) Luis Zerón, Sergey Dyachenko 34 Let C and C be any two Cantor sets (constructed in Exercise 3) Show that there exists a function F: [,] [,] with

### Riesz-Fredhölm Theory

Riesz-Fredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A Ascoli-Arzelá Result 18 B Normed Spaces

### Measure Theory. 1 Measurable Spaces

1 Measurable Spaces Measure Theory A measurable space is a set S, together with a nonempty collection, S, of subsets of S, satisfying the following two conditions: 1. For any A, B in the collection S,

### Functional analysis and its applications

Department of Mathematics, London School of Economics Functional analysis and its applications Amol Sasane ii Introduction Functional analysis plays an important role in the applied sciences as well as

### I. Pointwise convergence

MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

ADVANCED CALCULUS Lecture notes for MA 440/540 & 441/541 2015/16 Rudi Weikard log x 1 1 2 3 4 5 x 1 2 Based on lecture notes by G. Stolz and G. Weinstein Version of September 3, 2016 1 Contents First things

### Lecture 12: Sequences. 4. If E X and x is a limit point of E then there is a sequence (x n ) in E converging to x.

Lecture 12: Sequences We now recall some basic properties of limits. Theorem 0.1 (Rudin, Theorem 3.2). Let (x n ) be a sequence in a metric space X. 1. (x n ) converges to x X if and only if every neighborhood

### MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

### Math 317 HW #5 Solutions

Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

### Lecture Notes on Analysis II MA131. Xue-Mei Li

Lecture Notes on Analysis II MA131 Xue-Mei Li March 8, 2013 The lecture notes are based on this and previous years lectures by myself and by the previous lecturers. I would like to thank David Mond, who

### No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

### Our goal first will be to define a product measure on A 1 A 2.

1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ -algebra A 1 A 2 with the unit element is the σ -algebra generated by the

### Separation Properties for Locally Convex Cones

Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

### Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

### Metric and Topological Spaces. Ivan Smith

Metric and Topological Spaces Ivan Smith Summer 2006 L1: Topological spaces The central idea of topology is that it makes sense to talk about continuity without talking about distance. We do this by formalising

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

### CHAPTER 5. Product Measures

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY ALEX KÜRONYA In preparation January 24, 2010 Contents 1. Basic concepts 1 2. Constructing topologies 13 2.1. Subspace topology 13 2.2. Local properties 18 2.3. Product topology

### Sequences of Functions

Sequences of Functions Uniform convergence 9. Assume that f n f uniformly on S and that each f n is bounded on S. Prove that {f n } is uniformly bounded on S. Proof: Since f n f uniformly on S, then given

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

### 4. Expanding dynamical systems

4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,

### Fixed Point Theorems

Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

### Analysis I. 1 Measure theory. Piotr Haj lasz. 1.1 σ-algebra.

Analysis I Piotr Haj lasz 1 Measure theory 1.1 σ-algebra. Definition. Let be a set. A collection M of subsets of is σ-algebra if M has the following properties 1. M; 2. A M = \ A M; 3. A 1, A 2, A 3,...

### BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS. Proof. We shall define inductively a decreasing sequence of infinite subsets of N

BOREL SETS, WELL-ORDERINGS OF R AND THE CONTINUUM HYPOTHESIS SIMON THOMAS 1. The Finite Basis Problem Definition 1.1. Let C be a class of structures. Then a basis for C is a collection B C such that for

### Fourier series. Jan Philip Solovej. English summary of notes for Analysis 1. May 8, 2012

Fourier series Jan Philip Solovej English summary of notes for Analysis 1 May 8, 2012 1 JPS, Fourier series 2 Contents 1 Introduction 2 2 Fourier series 3 2.1 Periodic functions, trigonometric polynomials

### Functional Analysis. Alexander C. R. Belton

Functional Analysis Alexander C. R. Belton Copyright c Alexander C. R. Belton 2004, 2006 Hyperlinked and revised edition All rights reserved The right of Alexander Belton to be identified as the author

### 2 Sequences and Accumulation Points

2 Sequences and Accumulation Points 2.1 Convergent Sequences Formally, a sequence of real numbers is a function ϕ : N R. For instance the function ϕ(n) = 1 n 2 for all n N defines a sequence. It is customary,

### 0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

### Cylinder Maps and the Schwarzian

Cylinder Maps and the Schwarzian John Milnor Stony Brook University (www.math.sunysb.edu) Bremen June 16, 2008 Cylinder Maps 1 work with Araceli Bonifant Let C denote the cylinder (R/Z) I. (.5, 1) fixed

### Real analysis for graduate students

Real analysis for graduate students Second edition Richard F. Bass ii c Copyright 2013 Richard F. Bass All rights reserved. ISBN-13: 978-1481869140 ISBN-10: 1481869140 First edition published 2011. iii

### Lecture Notes for Analysis II MA131. Xue-Mei Li with revisions by David Mond

Lecture Notes for Analysis II MA131 Xue-Mei Li with revisions by David Mond January 8, 2013 Contents 0.1 Introduction............................ 3 1 Continuity of Functions of One Real Variable 6 1.1

### RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

### 5. Convergence of sequences of random variables

5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

### 5.3 Improper Integrals Involving Rational and Exponential Functions

Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

### God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work