10. Proximal point method


 Edward Phelps
 2 years ago
 Views:
Transcription
1 L. Vandenberghe EE236C Spring ) 10. Proximal point method proximal point method augmented Lagrangian method MoreauYosida smoothing 101
2 Proximal point method a conceptual algorithm for minimizing a closed convex function f: x k) = prox tk fx k 1) ) = argmin u fu)+ 1 ) u x k 1) 2 2 2t k can be viewed as proximal gradient method page 62) with gx) = 0 of interest if prox evaluations are much easier than minimizing f directly a practical algorithm if inexact prox evaluations are used step size t k > 0 affects number of iterations, cost of prox evaluations basis of the augmented Lagrangian method Proximal point method 102
3 Convergence assumptions f is closed and convex hence, prox tf x) is uniquely defined for all x) optimal value f is finite and attained at x result fx k) ) f x 0) x 2 2 for k 1 2 k t i i=1 implies convergence if i t i rate is 1/k if t i is fixed or variable but bounded away from zero t i is arbitrary; however cost of prox evaluations will depend on t i Proximal point method 103
4 proof: apply analysis of proximal gradient method lect. 6) with gx) = 0 since g is zero, inequality 1) on page 612 holds for any t > 0 from page 614, fx i) ) is nonincreasing and t i fx i) ) f ) 1 2 ) x i) x 2 2 x i 1) x 2 2 combine inequalities for i = 1 to i = k to get k t i ) i=1 ) fx k) ) f ) k i=1 t i fx i) ) f ) 1 2 x0) x 2 2 Proximal point method 104
5 Accelerated proximal point algorithms FISTA take gx) = 0 on p.78): choose x 0) = x 1) and for k 1 x k) = prox tk f ) x k 1) 1 θ k 1 +θ k x k 1) x k 2) ) θ k 1 Nesterov s 2nd method p. 723): choose x 0) = v 0) and for k 1 v k) = prox tk /θ k )fv k 1) ), x k) = 1 θ k )x k 1) +θ k v k) possible choices of parameters fixed steps: t k = t and θ k = 2/k +1) variable steps: choose any t k > 0, θ 1 = 1, and for k > 1, solve θ k from 1 θ k )t k θ 2 k = t k 1 θ 2 k 1 Proximal point method 105
6 Convergence assumptions f is closed and convex hence, prox tf x) is uniquely defined for all x) optimal value f is finite and attained at x result fx k) ) f 2 x 0) x ) t 1 + k 2 for k 1 ti i=2 implies convergence if i ti rate is 1/k 2 if t i is fixed or variable but bounded away from zero Proximal point method 106
7 proof: follows from analysis in lecture 7 with gx) = 0 since g is zero, first inequalities on p and p hold for any t > 0 therefore the conclusion on p and p holds: fx k) ) f θ2 k 2t k x 0) x 2 2 for fixed step size t k = t, θ k = 2/k +1), θ 2 k 2t k = 2 k +1) 2 t for variable step size, we proved on page 719 that θ 2 k 2t k 2 2 t 1 + k ti ) 2 i=2 Proximal point method 107
8 Outline proximal point method augmented Lagrangian method MoreauYosida smoothing
9 Standard problem form minimize fx) + gax) f : R n R and g : R m R are closed convex functions; A R m n equivalent formulation with auxiliary variable y: minimize fx) + gy) subject to Ax = y examples g is indicator function of {b}: minimize fx) subject to Ax = b g is indicator function of C: minimize fx) subject to Ax C gy) = y b : minimize fx)+ Ax b Proximal point method 108
10 Dual problem Lagrangian of reformulated problem) dual problem Lx,y,z) = fx)+gy)+z T Ax y) maximize inf x,y Lx,y,z) = f A T z) g z) optimality conditions: x, y, z are optimal if x, y are feasible: x domf, y domg, and Ax = y x and y minimize Lx,y,z): A T z fx) and z gy) augmented Lagrangian method: proximal point method applied to dual Proximal point method 109
11 Proximal mapping of dual function proximal mapping of hz) = f A T z)+g z) is defined as prox th z) = argmin u f A T u)+g u)+ 1 ) 2t u z 2 2 dual expression: prox th z) = z +taˆx ŷ) where ˆx,ŷ) = argmin x,y fx)+gy)+z T Ax y)+ t ) 2 Ax y 2 2 ˆx, ŷ minimize augmented Lagrangian Lagrangian + quadratic penalty) Proximal point method 1010
12 proof write augmented Lagrangian minimization as minimize over x, y, w) fx)+gy)+ t 2 w 2 2 subject to Ax y +z/t = w optimality conditions u is multiplier for equality): Ax y + 1 t z = w, AT u fx), u gy), tw = u eliminating x, y, w gives u = z +tax y) and 0 A f A T u)+ g u)+ 1 t u z) this is the optimality condition for problem in definiton of u = prox th z) Proximal point method 1011
13 choose initial z 0) and repeat: Augmented Lagrangian method 1. minimize augmented Lagrangian ˆx,ŷ) = argmin x,y fx)+gy)+ t k 2 Ax y +1/t k )z k 1) 2 2 ) 2. dual update z k) = z k 1) +t k Aˆx ŷ) also known as method of multipliers, Bregman iteration this is the proximal point method applied to the dual problem as variants, can apply the fast proximal point methods to the dual usually implemented with inexact minimization in step 1 Proximal point method 1012
14 Examples minimize fx) + gax) equality constraints g is indicator of {b}): ˆx = argmin x z := z +taˆx b) fx)+z T Ax+ t ) 2 Ax b 2 2 set constraint g indicator of convex set C): ˆx = argmin fx)+ t2 ) dax+z/t)2 z := z +taˆx PAˆx+z/t)) Pu) is projection of u on C, du) = u Pu) 2 is Euclidean distance Proximal point method 1013
15 Outline proximal point method augmented Lagrangian method MoreauYosida smoothing
16 MoreauYosida smoothing MoreauYosida regularization Moreau envelope) of closed convex f is f t) x) = inf u fu)+ 1 ) 2t u x 2 2 = f prox tf x) ) + 1 2t with t > 0) proxtf x) x 2 2 immediate properties f t) is convex infimum over u of a convex function of x, u) domain of f t) is R n recall that prox tf x) is defined for all x) Proximal point method 1014
17 Examples indicator function: smoothed f is squared Euclidean distance fx) = I C x), f t) x) = 1 2t dx)2 1norm: smoothed function is Huber penalty fx) = x 1, f t) x) = n φ t x k ) k=1 φ t z) = { z 2 /2t) z t z t/2 z t φtz) t/2 z t/2 Proximal point method 1015
18 Conjugate of Moreau envelope f t) x) = inf u fu)+ 1 ) 2t u x 2 2 f t) is infimal convolution of fu) and v 2 2/2t) see page 814): f t) x) = inf fu)+ 1 ) u+v=x 2t v 2 2 from page 814, conjugate is sum of conjugates of fu) and v 2 2/2t): f t) ) y) = f y)+ t 2 y 2 2 hence, conjugate is strongly convex with parameter t Proximal point method 1016
19 Gradient of Moreau envelope f t) x) = sup y x T y f y) t ) 2 y 2 2 maximizer in definition is unique and satisfies x ty f y) y fx ty) maximizing y is the gradient of f t) : from pages 67 and 94, f t) x) = 1 t x proxtf x) ) = prox 1/t)f x/t) gradient f t) is Lipschitz continuous with constant 1/t follows from nonexpansiveness of prox; see page 69) Proximal point method 1017
20 Interpretation of proximal point algorithm apply gradient method to minimize Moreau envelope minimize f t) x) = inf u fu)+ 1 ) 2t u x 2 2 this is an exact smooth reformulation of problem of minimizing fx): solution x is minimizer of f f t) is differentiable with Lipschitz continuous gradient L = 1/t) gradient update: with fixed t k = 1/L = t x k) = x k 1) t f t) x k 1) ) = prox tf x k 1) )... the proximal point update with constant step size t k = t Proximal point method 1018
21 Interpretation of augmented Lagrangian algorithm ˆx, ŷ) = argmin x,y z := z +taˆx ŷ) fx)+gy)+ t ) 2 Ax y +1/t)z 2 2 with fixed t, dual update is gradient step applied to smoothed dual if we eliminate y, primal step can be interpreted as smoothing g: ˆx = argmin x fx)+g1/t) Ax+1/t)z) ) example: minimize fx)+ Ax b 1 ˆx = argmin x fx)+φ1/t Ax b+1/t)z) ) with φ 1/t the Huber penalty applied componentwise page 1015) Proximal point method 1019
22 References proximal point algorithm and fast proximal point algorithm O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control and Optimization 1991) O. Güler, New proximal point algorithms for convex minimization, SIOPT 1992) O. Güler, Augmented Lagrangian algorithm for linear programming, JOTA 1992) augmented Lagrangian algorithm D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods 1982) Proximal point method 1020
3. Proximal gradient method
Algorithms for largescale convex optimization DTU 2010 3. Proximal gradient method introduction proximal mapping proximal gradient method convergence analysis accelerated proximal gradient method forwardbackward
More information2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
More informationDuality in General Programs. Ryan Tibshirani Convex Optimization 10725/36725
Duality in General Programs Ryan Tibshirani Convex Optimization 10725/36725 1 Last time: duality in linear programs Given c R n, A R m n, b R m, G R r n, h R r : min x R n c T x max u R m, v R r b T
More informationGI01/M055 Supervised Learning Proximal Methods
GI01/M055 Supervised Learning Proximal Methods Massimiliano Pontil (based on notes by Luca Baldassarre) (UCL) Proximal Methods 1 / 20 Today s Plan Problem setting Convex analysis concepts Proximal operators
More informationIntroduction to Convex Optimization for Machine Learning
Introduction to Convex Optimization for Machine Learning John Duchi University of California, Berkeley Practical Machine Learning, Fall 2009 Duchi (UC Berkeley) Convex Optimization for Machine Learning
More informationFurther Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
More informationProximal mapping via network optimization
L. Vandenberghe EE236C (Spring 234) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
More informationAdaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
More informationNonlinear Optimization: Algorithms 3: Interiorpoint methods
Nonlinear Optimization: Algorithms 3: Interiorpoint methods INSEAD, Spring 2006 JeanPhilippe Vert Ecole des Mines de Paris JeanPhilippe.Vert@mines.org Nonlinear optimization c 2006 JeanPhilippe Vert,
More informationDownloaded 08/02/12 to 132.68.160.18. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.
SIAM J. OPTIM. Vol. 22, No. 2, pp. 557 580 c 2012 Society for Industrial and Applied Mathematics SMOOTHING AND FIRST ORDER METHODS: A UNIFIED FRAMEWORK AMIR BECK AND MARC TEBOULLE Abstract. We propose
More informationA NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION
1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of
More informationError Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach
Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and
More informationFirst Order Algorithms in Variational Image Processing
First Order Algorithms in Variational Image Processing M. Burger, A. Sawatzky, and G. Steidl today Introduction Variational methods in imaging are nowadays developing towards a quite universal and flexible
More informationSummer course on Convex Optimization. Fifth Lecture InteriorPoint Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.
Summer course on Convex Optimization Fifth Lecture InteriorPoint Methods (1) Michel Baes, K.U.Leuven Bharath Rangarajan, U.Minnesota InteriorPoint Methods: the rebirth of an old idea Suppose that f is
More informationBig Data  Lecture 1 Optimization reminders
Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics
More informationMinimize subject to. x S R
Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such
More informationOptical Flow. Thomas Pock
Optical Flow Thomas Pock 1 Optical Flow (II) Content Global approaches (HornSchunck, TVL1) Coarsetofine warping 2 The Horn and Schunck (HS) Method 3 The Horn and Schunck (HS) Method Global energy to
More informationOnline Learning of Optimal Strategies in Unknown Environments
1 Online Learning of Optimal Strategies in Unknown Environments Santiago Paternain and Alejandro Ribeiro Abstract Define an environment as a set of convex constraint functions that vary arbitrarily over
More informationRegression Using Support Vector Machines: Basic Foundations
Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering
More informationConvex analysis and profit/cost/support functions
CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m
More informationConvex Optimization SVM s and Kernel Machines
Convex Optimization SVM s and Kernel Machines S.V.N. Vishy Vishwanathan vishy@axiom.anu.edu.au National ICT of Australia and Australian National University Thanks to Alex Smola and Stéphane Canu S.V.N.
More informationNonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
More informationOnline Convex Optimization
E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting
More informationSeveral Views of Support Vector Machines
Several Views of Support Vector Machines Ryan M. Rifkin Honda Research Institute USA, Inc. Human Intention Understanding Group 2007 Tikhonov Regularization We are considering algorithms of the form min
More informationDate: April 12, 2001. Contents
2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........
More information1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
More informationDistributed Machine Learning and Big Data
Distributed Machine Learning and Big Data Sourangshu Bhattacharya Dept. of Computer Science and Engineering, IIT Kharagpur. http://cse.iitkgp.ac.in/~sourangshu/ August 21, 2015 Sourangshu Bhattacharya
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationA LagrangianDNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems
A LagrangianDNN Relaxation: a Fast Method for Computing Tight Lower Bounds for a Class of Quadratic Optimization Problems Sunyoung Kim, Masakazu Kojima and KimChuan Toh October 2013 Abstract. We propose
More informationNumerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen
(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained
More information3. Convex functions. basic properties and examples. operations that preserve convexity. the conjugate function. quasiconvex functions
3. Convex functions Convex Optimization Boyd & Vandenberghe basic properties and examples operations that preserve convexity the conjugate function quasiconvex functions logconcave and logconvex functions
More information(Quasi)Newton methods
(Quasi)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable nonlinear function g, x such that g(x) = 0, where g : R n R n. Given a starting
More informationTable 1: Summary of the settings and parameters employed by the additive PA algorithm for classification, regression, and uniclass.
Online PassiveAggressive Algorithms Koby Crammer Ofer Dekel Shai ShalevShwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {kobics,oferd,shais,singer}@cs.huji.ac.il
More informationThe Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
More informationConvex Programming Tools for Disjunctive Programs
Convex Programming Tools for Disjunctive Programs João Soares, Departamento de Matemática, Universidade de Coimbra, Portugal Abstract A Disjunctive Program (DP) is a mathematical program whose feasible
More information1 Fixed Point Iteration and Contraction Mapping Theorem
1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationMATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
More informationVariational approach to restore pointlike and curvelike singularities in imaging
Variational approach to restore pointlike and curvelike singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure BlancFéraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012
More informationOnline Learning. 1 Online Learning and Mistake Bounds for Finite Hypothesis Classes
Advanced Course in Machine Learning Spring 2011 Online Learning Lecturer: Shai ShalevShwartz Scribe: Shai ShalevShwartz In this lecture we describe a different model of learning which is called online
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More information24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NPcomplete. Then one can conclude according to the present state of science that no
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationQuasistatic evolution and congested transport
Quasistatic evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed
More informationMathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationMathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
More information1 Homogenous and Homothetic Functions
1 Homogenous and Homothetic Functions Reading: [Simon], Chapter 20, p. 483504. 1.1 Homogenous Functions Definition 1 A real valued function f(x 1,..., x n ) is homogenous of degree k if for all t > 0
More informationPractice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
More informationA Simple Introduction to Support Vector Machines
A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Largemargin linear
More informationModern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
More informationconstraint. Let us penalize ourselves for making the constraint too big. We end up with a
Chapter 4 Constrained Optimization 4.1 Equality Constraints (Lagrangians) Suppose we have a problem: Maximize 5, (x 1, 2) 2, 2(x 2, 1) 2 subject to x 1 +4x 2 =3 If we ignore the constraint, we get the
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More information(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationMOSEK modeling manual
MOSEK modeling manual August 12, 2014 Contents 1 Introduction 1 2 Linear optimization 3 2.1 Introduction....................................... 3 2.1.1 Basic notions.................................. 3
More informationHøgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin email: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider twopoint
More information1 Formulating The Low Degree Testing Problem
6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationLAGRANGIAN RELAXATION TECHNIQUES FOR LARGE SCALE OPTIMIZATION
LAGRANGIAN RELAXATION TECHNIQUES FOR LARGE SCALE OPTIMIZATION Kartik Sivaramakrishnan Department of Mathematics NC State University kksivara@ncsu.edu http://www4.ncsu.edu/ kksivara SIAM/MGSA Brown Bag
More informationBIG DATA PROBLEMS AND LARGESCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION
BIG DATA PROBLEMS AND LARGESCALE OPTIMIZATION: A DISTRIBUTED ALGORITHM FOR MATRIX FACTORIZATION Ş. İlker Birbil Sabancı University Ali Taylan Cemgil 1, Hazal Koptagel 1, Figen Öztoprak 2, Umut Şimşekli
More informationSMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI. (B.Sc.(Hons.), BUAA)
SMOOTHING APPROXIMATIONS FOR TWO CLASSES OF CONVEX EIGENVALUE OPTIMIZATION PROBLEMS YU QI (B.Sc.(Hons.), BUAA) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF MATHEMATICS NATIONAL
More informationSolutions Of Some NonLinear Programming Problems BIJAN KUMAR PATEL. Master of Science in Mathematics. Prof. ANIL KUMAR
Solutions Of Some NonLinear Programming Problems A PROJECT REPORT submitted by BIJAN KUMAR PATEL for the partial fulfilment for the award of the degree of Master of Science in Mathematics under the supervision
More informationTECHNICAL NOTE. Proof of a Conjecture by Deutsch, Li, and Swetits on Duality of Optimization Problems1
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 102, No. 3, pp. 697703, SEPTEMBER 1999 TECHNICAL NOTE Proof of a Conjecture by Deutsch, Li, and Swetits on Duality of Optimization Problems1 H. H.
More informationSTORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University. (Joint work with R. Chen and M. Menickelly)
STORM: Stochastic Optimization Using Random Models Katya Scheinberg Lehigh University (Joint work with R. Chen and M. Menickelly) Outline Stochastic optimization problem black box gradient based Existing
More informationOptimal shift scheduling with a global service level constraint
Optimal shift scheduling with a global service level constraint Ger Koole & Erik van der Sluis Vrije Universiteit Division of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationPractical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationNo: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More information3 Does the Simplex Algorithm Work?
Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances
More informationLecture 4: Equality Constrained Optimization. Tianxi Wang
Lecture 4: Equality Constrained Optimization Tianxi Wang wangt@essex.ac.uk 2.1 Lagrange Multiplier Technique (a) Classical Programming max f(x 1, x 2,..., x n ) objective function where x 1, x 2,..., x
More informationLecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
More informationCost Minimization and the Cost Function
Cost Minimization and the Cost Function Juan Manuel Puerta October 5, 2009 So far we focused on profit maximization, we could look at a different problem, that is the cost minimization problem. This is
More informationRecovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
More informationt := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
More informationThe Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
More informationIntegrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
More informationBasics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
More informationPattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University
Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationA Distributed Line Search for Network Optimization
01 American Control Conference Fairmont Queen Elizabeth, Montréal, Canada June 7June 9, 01 A Distributed Line Search for Networ Optimization Michael Zargham, Alejandro Ribeiro, Ali Jadbabaie Abstract
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More informationThe pnorm generalization of the LMS algorithm for adaptive filtering
The pnorm generalization of the LMS algorithm for adaptive filtering Jyrki Kivinen University of Helsinki Manfred Warmuth University of California, Santa Cruz Babak Hassibi California Institute of Technology
More informationIncreasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
More informationProperties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a nonnegative BMOfunction w, whose reciprocal is also in BMO, belongs to p> A p,and
More informationLABEL PROPAGATION ON GRAPHS. SEMISUPERVISED LEARNING. Changsheng Liu 10302014
LABEL PROPAGATION ON GRAPHS. SEMISUPERVISED LEARNING Changsheng Liu 10302014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph
More informationChapter 3 Nonlinear Model Predictive Control
Chapter 3 Nonlinear Model Predictive Control In this chapter, we introduce the nonlinear model predictive control algorithm in a rigorous way. We start by defining a basic NMPC algorithm for constant reference
More informationLecture 6: Logistic Regression
Lecture 6: CS 19410, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,
More informationLinear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
More informationMassive Data Classification via Unconstrained Support Vector Machines
Massive Data Classification via Unconstrained Support Vector Machines Olvi L. Mangasarian and Michael E. Thompson Computer Sciences Department University of Wisconsin 1210 West Dayton Street Madison, WI
More informationSupport Vector Machines
Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric
More informationDynamic Network Energy Management via Proximal Message Passing
Foundations and Trends R in Optimization Vol. 1, No. 2 (2013) 70 122 c 2013 M. Kraning, E. Chu, J. Lavaei, and S. Boyd DOI: xxx Dynamic Network Energy Management via Proximal Message Passing Matt Kraning
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationNotes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
More informationAlternative proof for claim in [1]
Alternative proof for claim in [1] Ritesh Kolte and Ayfer Özgür Aydin The problem addressed in [1] is described in Section 1 and the solution is given in Section. In the proof in [1], it seems that obtaining
More information