MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
|
|
|
- Eileen Blankenship
- 9 years ago
- Views:
Transcription
1 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator L, which is is given by: L u = cosx y u xx + e xy u? c Find the general solution of the PDE + x u x + u y = by using the method of characteristics. d Give a rigorous proof that the solution you found in part c is the general solution to the given PDE. a We note that L =, which implies that the operator is not linear. Namely, for a linear operator T, we know that T = if we substitute a = b = into the definition of linearity. b Given smooth functions u, v and constants a, b, we compute: L au+bv = cosx y au+bv xx +exy au+bv = acosx yu xx +e xy u+bcosx yv xx +e xy v = Hence, L is linear. = al u + bl v. c We use the method of characteristics. The equation can be rewritten as: u x + + x u y =. The characteristic equation can then be written as: dy dx = + x. This ODE has the solution: yx = arctanx + C for some constant C R. Consequently, the general solution to the PDE is given by: for some differentiable function f : R R ux, t = fy arctanx d Let us fix a constant C R. We look at the parametrixed curve z : R R which is defined by: zt = t, arctant + C. We need to show that u is constant along this parametrized curve. In order to do this, we use the Chain Rule in order to compute: d dt uzt = d dt ut, arctant + C = u x t, arctant + C + uy t, arctant + C = + t = u x + + x u y t, arctant + C =. The claim now follows.
2 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. Uniqueness for the heat equation with Neumann boundary conditions Use the energy method to show uniqueness of solutions for the following boundary value problem: u t ku xx = fx, t for < x < l, t > ux, = φx for < x < l u x, t = gt, u x l, t = ht for t >. Here, l > and the functions f, g, h, φ are assumed to be smooth. It suffices to consider the following boundary value problem: w t kw xx = for < x < l, t > wx, = for < x < l w x, t =, w x l, t = for t >. and to show that necessarily w =. We define the energy to be: Et := l wx, t dx. By differentiating under the integral sign, it follows that: d dt Et = By using the equation, this expression equals: l l wx, t w t x, t dx. wx, t kw xx x, t dx. We now integrate by parts in x in order to deduce that this equals: kwx, t w x x, t l x=l l w x= x x, t dx = w x x, t dx. Hence, Et is decreasing in t. In particular, since E = and since Et, it follows that Et = for all t. Hence, w =, as was claimed.. Exercise 3. A maximum principle bound for solutions of Poisson s equation Let Ω R 3 be a bounded domain and suppose that f : Ω R is continuous on Ω and that g : Ω R is continuous on Ω. Suppose that the function u solves the Poisson equation on Ω: u = f on Ω u = g on Ω. a Assuming that the function u exists, is smooth on Ω, and continuous on Ω, show that it is uniquely determined. b Show that for sufficiently large λ >, depending on the function f, the function u + λx is subharmonic, i.e. u + λx. c Use the maximum principle for subharmonic functions from Homework 6 in order to deduce that, there exists a constant C >, depending only on Ω such that, for all x Ω, the following bound holds: ux max Ω g + C max f. Ω
3 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. 3 a We need to prove uniqueness of solutions for the boundary value problem. It suffices to show that, if w solves: w = on Ω w = on Ω. then w = on Ω. This claim follows immediately from the Maximum principle for solutions to the Laplace equation. In Homework 6, Exercise, we saw how to deduce this claim by using the Energy method. b We recall that, on R 3, it is true that: Hence: This quantity is non-negative if x = x + x + x 3 = 6. u + λx = u + λ x = f + 6λ. λ max Ω f. 6 For such a λ, the function u + λx is subharmonic. c Let us take λ as in part b. We note that the function u + λx solves the following boundary value problem: u + λx = f + λx on Ω u + λx = g + λx on Ω. By using the Maximum principle for subharmonic functions Exercise 3 from Homework 6, it follows that for all x Ω, the following bound holds: ux + λx max gy + λy = gy + λy y Ω for some y Ω. In particular, since λ : ux gy + λy x gy + λy. Since Ω is bounded, we can find a constant K > depending only on Ω such that for all y Ω, one has: y K. Hence, it follows that for all x Ω: ux max Ω g + λ K. We now note that, if f, we can take λ = and the claim will follow from the maximum principle for subharmonic functions. If it is not the case that f, we can take λ = max Ω f 6 >, and C = K 6 to obtain that for all x Ω: ux max g + C max f. Ω Ω We note that the constant C > depends only on the domain Ω. Exercise 4. The sign of the Green s function Suppose that Ω R 3 is a bounded domain. Given x Ω, we consider the Green s function Gx, x. We recall from the definitions that then the function: Hx, x := Gx, x + 4π x x
4 4 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. is well-defined and harmonic on all of Ω. a Show that, for all x Ω \ x }: Gx, x <. b Does the claim still hold if we assume that Ω is a domain in two-dimensions? a We can assume without loss of generality that Ω is connected. If this is not the case, we just consider each connected component of Ω separately. Let us fix ɛ > small. We define: Ω ɛ := Ω \ Bx, ɛ. If ɛ is sufficiently small, then Ω ɛ is also connected. Let us note that the function Gx, x = Hx, x 4π x x is harmonic on Ω ɛ. We recall that Hx, x is bounded for x Ω and that lim x x x x = +. In particular, it follows that if we choose ɛ > sufficiently small, we obtain that: Gx, x < for x Bx, ɛ. By construction of the Green s function, we know that: Gx, x = for x Ω. We no use the weak Maximum principle for the harmonic function Gx, x on Ω ɛ in order to deduce that: Gx, x for x Ω ɛ. We can say even more if we use the Strong Maximum principle. Namely, since Gx, x is not identically equal to zero on Ω ɛ, it follows that: We can now let ɛ in order to deduce that: Gx, x < for x Ω ɛ. Gx, x < for x Ω \ x }. b In two dimensions, we recall from Exercise on Homework 8 that, in the definition of the Green s function, the function Hx, x := Gx, x π log x x has to be harmonic. The same argument as above applies since we know that lim x x log x x =. In particular, we obtain that Gx, x < for x Ω \ x }. Exercise 5. Finite speed of propagation for the wave equation without using the d Alembert formula Suppose that u : R x R t solves the initial value problem for the wave equation: u tt c u xx = on R x R t u t= = φ, u t t= = ψ on R x. Given x R and t >, we define the cone: Kx, t := x, t R [, t ], x x ct t}. Furthermore, for t t, we define the local energy: et := x+ct t [ u t x, t + c u x x, t] dx. a Show that: x ct t
5 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. 5 x+ct t x ct t u t x, tu tt x, t + c u x x, tu xt x, t dx t x + ct t, t c3 u x x + ct t, t. t x ct t, t c3 u x x ct t, t b Use the equation and integrate by parts to show that: for all t t. e t c Suppose that φ = ψ =. Show that then: for all t t. et = d Deduce that, when φ = ψ =, the function u equals zero on Kx, t. In this way, we can deduce the domain of dependence result from class without having to use the explicit formula for u. Remark: This method of proof, which doesn t rely on the d Alembert formula, can be generalized to show that the principle of finite speed of propagation for the wave equation holds in higher dimensions. a The formula x+ct t x ct t u t x, tu tt x, t + c u x x, tu xt x, t dx t x + ct t, t c3 u x x + ct t, t t x ct t, t c3 u x x ct t, t is obtained by first differentiating under the integral sign in order to obtain the first integral. The remaining four terms are obtained from differentiating the occurrence of t in the boundary of the integral and by using the Fundamental theorem of Calculus. Here, we have an additional factor of c due to the Chain Rule. b We use the equation in order to deduce that: x+ct t c u t x, tu xx x, t + c u x x, tu xt x, t dx x ct t t x + ct t, t c3 u x x + ct t, t. t x ct t, t c3 u x x ct t, t We can now integrate by parts in x in the first term in the integral to deduce that: x+ct t c u tx x, tu x x, t + c u x x, tu xt x, t dx + c u t x, t u x x, t x=x+ct t x=x ct t x ct t
6 6 MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Hence: t x + ct t, t c3 u x x + ct t, t. t x ct t, t c3 u x x ct t, t [c u t x +ct t, t u x x +ct t, t ] u t x +ct t, t c3 u x x +ct t, t + [ c u t x ct t, t u x x ct t, t ] u t x ct t, t c3 u x x ct t, t. We now recall the fact that for all A, B R, the following inequality holds: AB A + B. This inequality follows from the fact that: A B. Consequently: c u t x +ct t, t u x x +ct t, t t x +ct t, t c3 u x x +ct t, t if we take A = c u t x + ct t, t and B = c 3 u x x + ct t, t. Moreover, we can deduce that: c u t x ct t, t u x x ct t, t u t x ct t, t c3 u x x ct t, t if we take A = c u t x ct t, t and B = c 3 u x x ct t, t. It follows that: e t for t t. c If ψ = φ =, it follows that e =. Since et is non-negative and e t is non-increasing, it follows that et = for all t t. d From part c, it follows that u t = x = on Kx, t. Hence, u is constant on Kx, t. Since φ =, it follows that u equals to zero on Kx, t. In particular, we obtain the domain of dependence theorem from class without having to use the explicit formula for ux, t.
College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions
College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use
Class Meeting # 1: Introduction to PDEs
MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
An Introduction to Partial Differential Equations
An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu
8 Hyperbolic Systems of First-Order Equations
8 Hyperbolic Systems of First-Order Equations Ref: Evans, Sec 73 8 Definitions and Examples Let U : R n (, ) R m Let A i (x, t) beanm m matrix for i,,n Let F : R n (, ) R m Consider the system U t + A
Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification
3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Math 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
Differential Operators and their Adjoint Operators
Differential Operators and their Adjoint Operators Differential Operators inear functions from E n to E m may be described, once bases have been selected in both spaces ordinarily one uses the standard
0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup
456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),
FINAL EXAM SOLUTIONS Math 21a, Spring 03
INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic
MATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
Consumer Theory. The consumer s problem
Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).
EXERCISES PDE 31.10.12-02.11.12. v(x)
EXERCISES PDE 31.1.12-2.11.12 1. Exercise Let U R N 2 be a bounded open set. We say that v C (Ū) is subharmonic iff v in U. (a) Prove that subharmonic functions enjoy the following form of the mean-value
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: [email protected] Narvik 6 PART I Task. Consider two-point
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
Second Order Linear Partial Differential Equations. Part I
Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
The two dimensional heat equation
The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.
UNIVERSITETET I OSLO
NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
Inverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that
The one dimensional heat equation: Neumann and Robin boundary conditions
The one dimensional heat equation: Neumann and Robin boundary conditions Ryan C. Trinity University Partial Differential Equations February 28, 2012 with Neumann boundary conditions Our goal is to solve:
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A
RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
15 Kuhn -Tucker conditions
5 Kuhn -Tucker conditions Consider a version of the consumer problem in which quasilinear utility x 2 + 4 x 2 is maximised subject to x +x 2 =. Mechanically applying the Lagrange multiplier/common slopes
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
Lecture Notes on Elasticity of Substitution
Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable
Chapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
Section 2.7 One-to-One Functions and Their Inverses
Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
2.2 Separable Equations
2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
Calculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the
Separable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
1. First-order Ordinary Differential Equations
Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
CHAPTER IV - BROWNIAN MOTION
CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time
1 Calculus of Several Variables
1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined
RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis
RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Week 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
Solutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
An Introduction to Partial Differential Equations in the Undergraduate Curriculum
An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation
7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity
Linear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Solutions to Linear First Order ODE s
First Order Linear Equations In the previous session we learned that a first order linear inhomogeneous ODE for the unknown function x = x(t), has the standard form x + p(t)x = q(t) () (To be precise we
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College
Methods of Solution of Selected Differential Equations Carol A. Edwards Chandler-Gilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
H/wk 13, Solutions to selected problems
H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
Systems with Persistent Memory: the Observation Inequality Problems and Solutions
Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +
tegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
More Quadratic Equations
More Quadratic Equations Math 99 N1 Chapter 8 1 Quadratic Equations We won t discuss quadratic inequalities. Quadratic equations are equations where the unknown appears raised to second power, and, possibly
