Frequency response and stability of feedback amplifiers () ()
|
|
|
- Roy Thompson
- 9 years ago
- Views:
Transcription
1 Frequency response and stability of feedback amplifiers The stability problem Source X p + X n X - Σ X f Load B (s): open loop transfer function B(s): feedback transfer function f () s + () s () () s B s We assume the amplifier is direct coupled with dc gain and with poles & zeros in the high frequency band. We assume that at low frequency B(s) reduces to a constant value. (s)b(s) becomes a constant, which should be positive otherwise the feedback would not be negative. For S f ( ) + ( ) ( ) ( ) B 7//3
2 The loop gain ( ) B( ) is a complex number that can be represented by its magnitude and phase: jφ L B B e ( ) ( ) ( ) ( ) ( ) ( ) The manner in which the loop gain values with frequency determines the stability of a system, here a feedback amplifier. Consider the frequency at which the phase angle becomes 8 o i.e. ( 8 ) 8. Now the loop gain will be a real negative number and ( ) B( ) the feedback will be positive. φ Let us now examine 3 cases: Case - Stable system: If, B ( 8 ) ( 8 ) < Then f >, the amplifier will still be stable. Case Oscillator: B, ( ) ( ) 8 8 The amplifier will have an output for zero input oscillator with frequency of oscillation equal 8. For the oscillating case a non-linearity may be introduces into the circuit to hold the amplitude of the oscillations at some predetermined and fixed amplitude. Case 3 Unstable System B ( 8 ) ( 8 ) > The system is unstable. Oscillations will occur at the circuit output with increased magnitude of the output voltage will increase rapidly and without oscillations. f 7//3
3 The Nyquist plot The Nyquist Plot is a formalized approach to testing the Stabilityof a system. It is simply a Polar plot of Loop Gain with frequency used as parameter. If the intersection of the Nyquist plot with the negative real axis occurs as shown to the left of the plot (-,), we know that the magnitude of the loop gain at 8 is ( ) B( ) > and the amplifier will be unstable. If the intersection occurs to the right of the point (-,) the amplifier will be stable. It follows that, if the Nyquist plot encircles the point (-,) then the amplifier will be unstable. 7//3 3
4 Example: Consider a feedback amplifier for which the open-loop transfer function (s) is given by: () s 4 + s / ssuming that B is a constant and is independent of frequency.. Find the frequency ( 8 ) at which the phase shift is 8 o.. Show that the amplifier will be stable if the feedback factor B<B cr and unstable of B Bcr. 3. Find a value for B cr. 3 Solution:. ( ) + / 4 4 Thus φ 3tan ( / ), 8 t 8 3 tan / 6 4 φ thus ( ) rad/s. The feedback amplifier will be stable if at 8, B <. t boundary BB cr, thus B cr ( ) 8 B cr 3. / ( H ( 3) ) 3 /.8 7//3 4
5 Effect of feedback in the amplifier poles mplifier frequency response and stability are determined by its poles: For an amplifier or any other system to be stable its poles should lie in the left half of the s plane. pair of complex conjugate poles on the j axis gives rise to sustained sinusoidal oscillations. Poles in right half side of the s plane will give rise to growing oscillations Consider an amplifier with a poles pair at s ± If this amplifier is subjected to a disturbance such as that caused by closure of the power-supply switch, its transient response will contain terms of the form: V () [ ] t t t t t t t e e e e cos( t) + + This is a sinusoidal signal with an envelope n n n e t If the poles are in the left half of the s-plane, then will be negative and the oscillations will decay exponentially to zero. If the poles are in the right half, then will be positive and the oscillations increase exponentially. If the poles are on the j axis, is zero and oscillations are sustained at a fixed amplitude.. n 7//3 5
6 S plane Time S plane (a) Time S plane (b) Time Relationship between pole location and transient response (c) f () s + () s () () B s s The poles of f (s) are the zeros of + () s B() s, thus the feedback amplifier poles are obtained by solving the characterised equation: + s B s () () Consider first an amplifier with B independent of frequency. The single-pole open-loop transfer function characterized by: () s + s / p p real negative. 7//3 6
7 The closed loop transfer function is given by ( ) () ( ) / + B f s + s / p + B Feedback moves the pole along the negative real axis ( + B) pf p This is shown below: Note that at low frequency and f differ by log ( + B ) while at high frequencies the two curves coincide. p For >> p ( + B ) f () s () s no feedback s db log(+ β) S plane p f pf p (+ β) p pf (log scale) (a) (b) Effect of feedback on (a) the pole location, and (b) the frequency response of an amplifier having a single-pole open-loop response We can see from the diagram above that applying negative feedback to an amplifier extends its bandwidth at the expense of gain. Since the pole of the closed-loop amplifier never enters the right half of the s-plane, the single pole amplifier is stable for any value of B. the amplifier is unconditionally stable. This is for such an amplifier never exceeds 9 o. (8 o is necessary for the feedback to become positive). 7//3 7
8 mplifier with a two pole response Consider an amplifier whose open-loop transfer function is characterised by real poles: () s ( + s / )( + ) p s / p the closed loop poles are obtained from + B() s s + s( p + p ) + ( + B ) p p thus the closed loop poles are given by: s ( p + p ) ± ( p + p ) 4( + B ) p p s the loop gain B is increased from zero the poles are brought closer together as shown below, until a value of loop gain B is reached at which the poles become coincident. If the loop gain is further increased, the poles become complex conjugate and have along a vertical line as shown below: The diagram become blow shows the locus of the poles for increasing loop gain this plot is called a root-locus diagram where root refers to root of the characteristic equation. From the diagram we see that this amplifier is unconditionally stable. The maximum phase shift of (s) is in this case 8 o (9 o /pole) where φ 8 is reached for. Thus there is no finite frequency at which the phase shift reaches 8 o. + p p - p - p S plane 7//3 8
9 The characteristic equation of a second order network can be written as s s + + Q - pole frequency Q pole Q factor The poles are complex id Q>.5. geometric interpretation for is the radial distance of the poles from the axis. Poles on the axis have Q. By comparing the p, p quadratic to s and the s equation above: ( + B ) ( ) o p p Q p + p S plane Q The normalised magnitude response V s frequency for a second order system is shown below: the response is maximally flat for Q.77 (poles at 45 o angles). 7//3 9
10 Exercise : n amplifier with a low frequency gain of and poles at 4 and 6 rad/s is incorporated in a negative feedback loop with feedback factor B. For what value of B of the poles of the closed loop amplifier coincide? What is the corresponding Q of the resulting second-order system? For what value of B is s maximally flat response achieved? What is the lowfrequency closed loop gain in the maximally flat case? Solution: From s ( p + p ) ± ( p + p ) 4( + B ) p p the poles coincide at the value of B, which makes ( ) ( + ) + p 4 p p p B 4 substituting o, p and p 4 6 ( + ) 4( + B ) B.45 and Q.5 maximally flat response is obtained when Q.77 ( + B ) p p.77 p + B.5 p in this case the low frequency gain is.96 V/V + B //3
11 Exercise: Consider the positive feedback circuit shown in Fig(a) below. Find the loop transmission L(s) and the characteristic equation. Sketch a rootlocus diagram for varying k, find k for a maximally flat response, and for circuit oscillation. K.586 Q.77 K3 Q K Q/3 45 s plane K Q.5 45 K.586 Q.77 K3 Q To obtain the loop transmission we short circuit the signal source and break loop at the amplifier input. We then apply a test voltage V t and find the returned voltage V r as indicated in Fig(b) above. The loop transmission is given by 7//3
12 Vr L( s) ( s) B( s) k kt( s) Vt Vr s(/ RC) T( s) Vt s + s(3/ RC) + (/ RC) k s( ) thus L( s) RC s + s(3/ RC) + (/ RC) The characteristic eqn. is: + L ( s) 3 k i.e. s + s + s RC RC RC 3 k s + s + RC RC Hence from s + s + Q, Q RC 3 k For k the poles have Q/3 and are (s)b(s) located on the negative real axis. s k increased the poles are brought closer together and eventually coincide (Q.5, k) Further increasing k results in the poles becoming complex and conjugate. The root locus is then a circle because the radial distance remains constant independent of k. The maximally flat response is obtained when Q.77 (with k.586). the poles are at 45 o angles. The poles cross the axis into the right half of the s plane at the valu of k that results in Q, that is at k3. For k 3 the circuit becomes unstable. This is a nd order system but in this case the amplifier has positive gain k, and a feedback network whose transfer feedback is frequency dependent T(s). Thus the feedback is positive and the circuit oscillates at the frequency for which the phase T(s) is zero. 7//3
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Σ _. Feedback Amplifiers: One and Two Pole cases. Negative Feedback:
Feedback Amplifiers: One and Two Pole cases Negative Feedback: Σ _ a f There must be 180 o phase shift somewhere in the loop. This is often provided by an inverting amplifier or by use of a differential
Root Locus. E(s) K. R(s) C(s) 1 s(s+a) Consider the closed loop transfer function:
Consider the closed loop transfer function: Root Locus R(s) + - E(s) K 1 s(s+a) C(s) How do the poles of the closed-loop system change as a function of the gain K? The closed-loop transfer function is:
S-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS
S-DOMAIN ANAYSIS: POES, ZEROS, AND BODE POTS The main objectiveis to find amplifier voltage gain as a transfer function of the complex frequency s. In this s-domain analysis a capacitance С is replaced
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
ECE 3510 Final given: Spring 11
ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the time-domain signals shown, draw the poles of the signal's Laplace transform on the
Chapter 9: Controller design
Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Understanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
Chapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide necessary direct current to the field winding of the synchronous generator.
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
ROUTH S STABILITY CRITERION
ECE 680 Modern Automatic Control Routh s Stability Criterion June 13, 2007 1 ROUTH S STABILITY CRITERION Consider a closed-loop transfer function H(s) = b 0s m + b 1 s m 1 + + b m 1 s + b m a 0 s n + s
Engineering Sciences 22 Systems Summer 2004
Engineering Sciences 22 Systems Summer 24 BODE PLOTS A Bode plot is a standard format for plotting frequency response of LTI systems. Becoming familiar with this format is useful because: 1. It is a standard
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
Loop Analysis. Chapter 7. 7.1 Introduction
Chapter 7 Loop Analysis Quotation Authors, citation. This chapter describes how stability and robustness can be determined by investigating how sinusoidal signals propagate around the feedback loop. The
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,
Design of a TL431-Based Controller for a Flyback Converter
Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used
EE 402 RECITATION #13 REPORT
MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEAD-LAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators
Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Frequency response. Chapter 1. 1.1 Introduction
Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Lecture 24: Oscillators. Clapp Oscillator. VFO Startup
Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson
Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary
First, we show how to use known design specifications to determine filter order and 3dB cut-off
Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
Design of op amp sine wave oscillators
Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
Application Note 148 September 2014. Does Your Op Amp Oscillate? AN148-1. Barry Harvey, Staff Design Engineer, Linear Technology Corp.
September 2014 Does Your Op Amp Oscillate? Barry Harvey, Staff Design Engineer, Linear Technology Corp. Well, it shouldn t. We analog designers take great pains to make our amplifiers stable when we design
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
MATLAB Control System Toolbox Root Locus Design GUI
MATLAB Control System Toolbox Root Locus Design GUI MATLAB Control System Toolbox contains two Root Locus design GUI, sisotool and rltool. These are two interactive design tools for the analysis and design
QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT)
Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #06: HVAC Proportional- Integral (PI) Temperature Control Heating, Ventilation, and Air Conditioning Trainer (HVACT) Student Manual Table of Contents
Chapter 11 Current Programmed Control
Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock
Low Pass Filter Rise Time vs Bandwidth
AN121 Dataforth Corporation Page 1 of 7 DID YOU KNOW? The number googol is ten raised to the hundredth power or 1 followed by 100 zeros. Edward Kasner (1878-1955) a noted mathematician is best remembered
RF Network Analyzer Basics
RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),
EECE 460 : Control System Design
EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control
Cancellation of Load-Regulation in Low Drop-Out Regulators
Cancellation of Load-Regulation in Low Drop-Out Regulators Rajeev K. Dokania, Student Member, IEE and Gabriel A. Rincόn-Mora, Senior Member, IEEE Georgia Tech Analog Consortium Georgia Institute of Technology
12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*
+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A
hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
Testing a power supply for line and load transients
Testing a power supply for line and load transients Power-supply specifications for line and load transients describe the response of a power supply to abrupt changes in line voltage and load current.
*For stability of the feedback loop, the differential gain must vary as
ECE137a Lab project 3 You will first be designing and building an op-amp. The op-amp will then be configured as a narrow-band amplifier for amplification of voice signals in a public address system. Part
Constant Current Control for DC-DC Converters
Constant Current Control for DC-DC Converters Introduction... Theory of Operation... Power Limitations... Voltage Loop Stability...2 Current Loop Compensation...3 Current Control Example...5 Battery Charger
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
Application of network analyzer in measuring the performance functions of power supply
J Indian Inst Sci, July Aug 2006, 86, 315 325 Indian Institute of Science Application of network analyzer in measuring the performance functions of power supply B SWAMINATHAN* AND V RAMANARAYANAN Power
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note
Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
APPLICATION BULLETIN
APPLICATION BULLETIN Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111 Telex: 066-6491 FAX (520) 889-1510 Product Info: (800) 548-6132
SERIES-PARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)
Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function
VCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP
1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
ADS Tutorial Stability and Gain Circles ECE145A/218A
ADS Tutorial Stability and Gain Circles ECE145A/218A The examples in this tutorial can be downloaded from xanadu.ece.ucsb.edu/~long/ece145a as the file: stab_gain.zap The first step in designing the amplifier
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp
Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040)
UNDERSTANDING NOISE PARAMETER MEASUREMENTS (AN-60-040 Overview This application note reviews noise theory & measurements and S-parameter measurements used to characterize transistors and amplifiers at
Motor Control. Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Power supply.
Motor Control Suppose we wish to use a microprocessor to control a motor - (or to control the load attached to the motor!) Operator Input CPU digital? D/A, PWM analog voltage Power supply Amplifier linear,
Introduction to Control Systems
CHAPTER 1 Introduction to Control Systems 1.1 INTRODUCTION In this Chapter, we describe very briefly an introduction to control systems. 1.2 CONTROL SYSTEMS Control systems in an interdisciplinary field
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
A wave lab inside a coaxial cable
INSTITUTE OF PHYSICS PUBLISHING Eur. J. Phys. 25 (2004) 581 591 EUROPEAN JOURNAL OF PHYSICS PII: S0143-0807(04)76273-X A wave lab inside a coaxial cable JoãoMSerra,MiguelCBrito,JMaiaAlves and A M Vallera
Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero
Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban
CHAPTER 8 ANALOG FILTERS
ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments
UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics
MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:
MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex
Copyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.
Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.
THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS
Proceedings of IMECE: International Mechanical Engineering Congress and Exposition Nov. 7-22, 2002, New Orleans, LA. THE EDUCATIONAL IMPACT OF A GANTRY CRANE PROJECT IN AN UNDERGRADUATE CONTROLS CLASS
RC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output
CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output
Performance. 13. Climbing Flight
Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:
CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis
CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the
Stability of Linear Control System
Stabilit of Linear Control Sstem Concept of Stabilit Closed-loop feedback sstem is either stable or nstable. This tpe of characterization is referred to as absolte stabilit. Given that the sstem is stable,
Sophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
Agilent AN 154 S-Parameter Design Application Note
Agilent AN 154 S-Parameter Design Application Note Introduction The need for new high-frequency, solid-state circuit design techniques has been recognized both by microwave engineers and circuit designers.
AC 2012-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY
AC 212-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY Dr. Tooran Emami, U.S. Coast Guard Academy Tooran Emami received her M.S. and Ph.D.
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
Analysis of Common-Collector Colpitts Oscillator
Analysis of Common-Collector Colpitts Oscillator H R Pota May 20, 2005 Introduction Murphy s rule when paraphrased for oscillators reads [], Amplifiers will oscillate but oscillators won t. As we all know,
EDUMECH Mechatronic Instructional Systems. Ball on Beam System
EDUMECH Mechatronic Instructional Systems Ball on Beam System Product of Shandor Motion Systems Written by Robert Hirsch Ph.D. 998-9 All Rights Reserved. 999 Shandor Motion Systems, Ball on Beam Instructional
Physics 221 Experiment 5: Magnetic Fields
Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found
Microcontroller-based experiments for a control systems course in electrical engineering technology
Microcontroller-based experiments for a control systems course in electrical engineering technology Albert Lozano-Nieto Penn State University, Wilkes-Barre Campus, Lehman, PA, USA E-mail: [email protected]
S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004
S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +
