EXPERIMENT NO: 1. APPARATUS REQUIRED : Diode Characteristics Kit, Power Supply, Ammeter (0-20mA), Voltmeter (0-20V), Connecting Leads.

Size: px
Start display at page:

Download "EXPERIMENT NO: 1. APPARATUS REQUIRED : Diode Characteristics Kit, Power Supply, Ammeter (0-20mA), Voltmeter (0-20V), Connecting Leads."

Transcription

1 AIM : Study of V-I Characteristics of a Diode. EXPERIMENT NO: 1 APPARATUS REQUIRED : Diode Characteristics Kit, Power Supply, Ammeter (0-20mA), Voltmeter (0-20V), Connecting Leads. BRIEF THEORY : A P-N junction is known as Semiconductor diode or Crystal diode. It is the combination of P-type & N-type Semiconductor. Which offers Nearly zero resistance to current on forward biasing & nearly infinite Resistance to the flow of current when in reverse biased. Forward biasing : When P-type semiconductor is connected to the +ve terminal and N-type to ve terminal of voltage source. Nearly zero resistance is offered to the flow of current. Reverse biasing : +ve When P-type semiconductor is connected to the ve terminal and N-type to Terminal. Nearly zero current flow in this condition. CIRCUIT DIGRAM : (1) When diode is forward biased (2) When diode is reverse biased WHEN A DIODE IS FORWARD BIASED WHEN A DIODE IS REVERSE BIASED R 15K Ohm ma R 1.5K Ohm ma ET V + DIODE V ET 12V + DIODE V - ET - PROCEDURE : (1) Connect the ckt. as shown in fig. (2) Switch on the power supply. (3) Vary the value of input dc supply in steps. (4) Note down the ammeter & voltmeter readings for each step. (5) Plot the graph of Voltage Vs Current. (6) Connect the ckt. as shown in fig.

2 OBSERVATION TABLE : PROCEDURE : When Diode Is Forward Biased When Diode Is Reverse Biased Current(mA) Voltage(V) Current Voltage(V) [µa) GRAPH : I (m)a VK KNEE VOLTAGE V RESULT : The graph has been ploted between voltage and current. DISCUSSION: The diode donot conduct in RB state and conduct in FB state. PRECAUTIONS : (1)Always connect the voltmeter in parallel & ammeter in series as shown in fig. (2)Connection should be proper & tight. (3)Switch ON the supply after completing the ckt. (4)DC supply should be increased slowly in steps (5)Reading of voltmeter & Ammeter should be accurate. QUIZ : Q.1 Define semiconductor diode? A. A PN junction is called semiconductor diode. Q.2 Define depilation layer? A. The region having uncompensated acceptor and donor ions. Q.3 What do you mean by forward biased? A. When +ve terminal of battery is connected to P side & -ve terminal to N side of diode. Q.4 What do you mean by reverse biased? A. When +ve terminal of battery is connected to N side & -ve terminal to P side of diode. Q.5 Define Knee voltage? A. The forward voltage at which current through the junction starts increasing rapidly. Q.6 Define breakdown voltage? A. Reverse voltage at which PN junction breaks down with sudden rise in reverse current. Q.7 Define threshold voltage? A. Q.8 Write threshold voltage for Ge & Si?

3 Q.9 Define max. forward current? A. It is highest instantaneous forward current that a PN junction can conduct without damage to Junction. Q.10 Define max. power rating? A. Max. power that can be dissipated at junction without damage to it.

4 AIM : Study of Half Wave Rectifier. EXPERIMENT NO : 2 APPARATUS REQUIRED : Power supply, rectifier kit., CRO, Connecting Leads. BRIEF THEORY : Rectification is a process of conversion of AC to DC. In half-wave rectifier, only one diode is used. During +ve half Cycle the diode is forward biased &, it conducts current through the load resistor R.During ve half cycle diode is reverse biased Hence, no current flow through the circuit. Only +ve half cycle appears across the load, whereas, the ve half Cycle is suppressed. CIRCUIT DIGRAM : + DIODE D1N4448 1/P 230V RL O/P - PROCEDURE : (a) Connect the ckt. as shown in fig. (b) Supply the input AC signal to the circuit. (c) Output signal is obtained on CRO which shows the DC( pulsating output). (d) Draw the wave form. WAVE FORM : Input wave Output wave Vi Vm 0 π 2π 3π Vo Vm 0 Wt π 2π 3π Wt

5 RESULT : Input and output waveform of half wave rectifier is as shown. Discussion: The output obtained is unidirectional, pulsating DC. but ripple factor is large. PRECAUTIONS : (a) Connection should be proper & tight. (b) Switch ON the supply after completing the ckt. (c) Note down the input & output wave accurately. QUIZ : Q.1 Define Rectifier? A. A circuit used to convert a.c. voltage into the pulsating d.c. voltage. Q.2 What is Half-Wave Rectifier? A. Rectifier in which diode conduct only for half cycle of waveform. Q.3 Define PIV? A. Max. voltage which a diode can withstand without breakdown in reverse bias conditon. Q.4 What type of output we get from H-W Rectifier? A. In output we get unidirectional pulsating voltage. Q.5 Write its Disadvantage? A. Rectification efficiecy is less & ripple factor is more. Q.6 Define efficiency. A. Ratio of d.c. power delivered to the load to the a.c. i/p power from sec. wdg. of transformer. Q.7 Define Ripple Factor? A. It is a measure of purity of output of a rectifier. Q.8 What is the value of Rf for H-W Rectifier? A Q. 9 What is Transformer utilization factor? A. Ratio of d.c. power delivered to the load to the a.c. rating of transformer secondary. Q.10 What is the value of Irms for HW Rectifier? A. Im/2.

6 AIM : Study of Full Wave Rectifier. EXPERIMENT NO : 3 APPARATUS REQUIRED : Power Supply, Rectifier kit., CRO, Connecting Leads. BRIEF THEORY : In full-wave rectification, When A.C supplied at the input, both the half cycles current flows through the load in the same direction. The following two circuits are commonly employed. Centre-tap full-wave Rectifier : In this rectifier, two diodes & a center-tap transformer is used. During +ve half cycle the diode D1 is forward biased & D2 is reverse biased.output will be obtained across load resistor R.During ve half cycle diode D1 is reverse biased &D2 is forward biased. Output will be obtained across load resistor R again & the direction of output is same i.e, DC output is obtained. Bridge Rectifier : The ckt. contains four diodes connected to form a bridge. In this an ordinary Transformer is used. During +ve half cycle of secondary voltage, diodes D1 & D3 are forward biased & diodes D2& D4 are reverse biased & vice versa. CIRCUIT DIGRAM : A DIODE D /P 230V - + O/P RL B DIODE D PROCEDURE : (d) Connect the ckt. as shown in fig. (e) Supply the input AC signal to the circuit. (f) Output signal is obtained on CRO which shows the DC( pulsating output). (g) Draw the wave form.

7 WAVE FORM : Input wave Output wave Vi Vo 0 π 2π 0 π 2π 3π RESULT: The input and output waveforms of full wave rectifier has been drawn. Discussion : The output is unidirectional, pulsating dc. But ripple factor is less than half wave rectifier. PRECAUTIONS : (a)connection should be proper & tight. (b)switch ON the supply after completing the ckt. (c)note down the input & output wave accurately. QUIZ : Q.1 Define Full wave rectifier? A. In which diode conducts for both half cycles of waveform. Q.2 Different types of FW rectifier? A. Center tapped & Bridge Rectifier. Q.3 Write PIV of Center tapped rectifier. A. 2Vm. Q.4 Define Form Factor? A. It is ratio of r.m.s. value to average value. Q.5 Write ripple factor for FW rectifier? A Q.6 What is the efficiency of FW rectifier? A. 81.2% Q.7 Write advantages of bridge rectifier? A. Diode s PIV rating is Vm & it does not require Centre-tapped secondary winding. Q.8 Write disadvantage of bridge rectifier? A. It requires 4 diodes so it can not be used for low voltage applications. Q.9 Write output frequency for FW rectifier? A. 100 hz. Q.10 Write value for DC current? A Im.

8 EXPERIMENT NO : 4 AIM: To Study the characteristics of transistor in Common Base configuration. APPARATUS REQUIRED : Power supply, Transistor characteristics Kit, Connecting Leads, Voltmeter, Ammeter. BRIEF THEORY : Transistor is a semiconductor device consist of two p-n junctions. It has three terminals, to handle I/P and O/P four terminals are needed. Therefore, one terminal is made common. A transistor can be connected in three Ways CB, CE, CC. Common base : Base is made common. I/P is connected between base & emitter and O/P is taken between base & collector. Input charact. The curve plotted between emitter current I & the emitter-base voltage constant collector-base voltage V. Output charact. The curve plotted between collector current I & collector-base voltage V constant emitter current I.. CIRCUIT DIAGRAM : R1 1k + E C - ma - B ma + R 12V VEB VEB VCB 12V PROCEDURE : Input charact. (a) Make the connection as per circuit diagram. (b) Switch ON the supply & set V = 0V (c) Vary V in step & note down the emitter current I at each step. (d) Set V = 1V & again repeat the same procedure. (e) Draw the graph. Output charact. (a) Make the connection as per circuit diagram. (b) Set the value of I = 1mA (c) Vary V in step & note down the collector current I at each step. (d) Set I = 2mA & repeat the same procedure. (e) Draw the graph.

9 OBSERVATION TABLE : Input charact.(vcb=cons.) Output charact. (Ie = Const.) S.No Ie(mA) Veb(Volts) Ic(mA) Vcb(Volts) GRAPH : Input charact. Output charact. IE VCB=CONSTANT IC IE = CONSTANT VEB VCB RESULT : The input and output charactrtistics of transformer in CB configuration has been ploted. DISCUSSION:With the help of output characteristics we can calculate ac & dc current gain in CB configuration. PRECAUTIONS : (1) Always connect the voltmeter in parallel & ammeter in series as shown in fig. (2) Connection should be proper & tight. (3) Switch ON the supply after completing the ckt. (4) DC supply should be increased slowly in steps (5) Reading of voltmeter & Ammeter should be accurate. QUIZ: Q1: What do you mean by biasing of transistor? A. When dc voltages are applied across the different terminals of transistor, it is called biasing. Q2: What is d.c. current gain in common base configuration? A. It is ratio of collector current(ic) to emitter current (Ie). Q3: What is typical value for d.c. current gain? A Q4: What is a.c. current gain in CB confifuration? A. It is ratio of change in collector current to change in emitter current. Q5: What are input characteristics? A. These curves relate i/p current & i/p voltage for a given value of o/p voltage. Q6: What are output characteristics? A. Thes curves relate o/p voltage & o/p current for a given value of input current. Q7: Which configuration has highest voltage gain? A. Common Emitter.

10 Q8: Which configuration is most widely used? A. Common Emitter. Q9: What is operating point? A. The zero signal values of Ic & Vce. Q10: Which reigon is heavily doped in Transistot? A. Emitter.

11 EXPERIMENT NO :5 AIM : Study of characteristics of JFET in Common Source Configuration. APPARATUS REQUIRED : Power Supply, FET Characteristics Kit, Connecting Leads, Voltmeter, Ammeter. BRIEF THEORY : A FET is a three terminal semiconductor device in which current Conduction is by one type of carriers & is controlled by the effect of electric field. There are two types of FET namely JFET & MOSFET. Again, a JFET can either have N-channel or P-channel. A N-channel JFET has a N-type semiconductor bar, the two ends of which make the Drain & source terminal. On the two sides of this bar, P-N junction are made. These P region makes gate. Usually, these two gates are connected together to form a single gate.the gate is given a ve bias w.r.t Source. Drain is given +ve potential w.r.t Source. CIRCUIT DIGRAM : 2 D ma 3 G VGS S 1 VDS 2 PROCEDURE : Drain characteristic (a) Connect the circuit as shown in fig. Keep V & V supplies at minimum. (b) Switch ON power, Increase V gradually & note the max. current as I while the V =0V (c) Repeat the step for different values of V, & note corresponding I & V for increment. (d) Tabulate the results. Transfer characteristic (a) Keep V fixed at 4V. (b) Increase V in small steps & note corresponding I for each step. (c) Repeat step 2 for different values of V. (d) Tabulate the results.

12 OBSERVATION TABLE : GRAPH : Transfer charact.(vds=cons.) Drain charact. (Vgs= Const.) S.No Id(mA) Vgs(Volts) Id(mA) Vds(Volts) RESULT : Transfer & Drain characteristics of JFET in common source configuration has been plotted. DISCUSSION: We obseve that characteristics has 4 regions: Ohmic region, curve AB, Pinch off region& Breakdown region. PRECAUTIONS : (6) Always connect the voltmeter in parallel & ammeter in series as shown in fig. (7) Connection should be proper & tight. (8) Switch ON the supply after completing the ckt. (9) DC supply should be increased slowly in steps (10) Reading of voltmeter & Ammeter should be accurate. QUIZ : Q.1 Define FET? A It is a 3 terminal device in which current conduction is by only one type of mazority carriers. Q.2 Define pinch off Voltage? A. The value of Vds at which all the free charge carriers are removed from channel. Q.3 What is unipolar device? A. In which conduction is by only one type of mazority carriers. Q.4 What is bipolar device? A. In which conduction is by both types of carriers. Q.5 Write advantages of FET over conventional Transistor? A. It provides extremely high input impedance as compared to BJT. Q.6 Define drain Characteristics? A. The curve b/w drain current & Vds with Vgs as a parameter.

13 Q.7 Define transfer Characteristics? A. The curve b/w Id & Vgs keeping Vds constt. Q.8 Write applications of a FET? A. FETs are used in ICs, voltage variable resistor in operational amplifier etc. Q.9 Input impedance of a FET is more than a BJT, Why? A Because it always work in reverse biasing situation. Q.10 Define amplification factor? A. Ratio of change in drain-source voltage to change in gate to source voltage at constt. Id.

14 EXPERIMENT NO: 6 AIM: To study the operation of clipping and clamping circuit. APPARATUS REQUIRED CRO, Function Generator, Power supply, connecting leads, clipping and clamping circuit kit. THEORY: Clipping circuit: In this circuit, the shape of the input wave changed, by clipping or removing a portion of it. The output obtained will be a clipped or limited portion of the input signal. Positive clipper A circuit that removes positive half cycle of the signal (input voltage) is called a positive clipper. The out put voltage has the entire positive half cycles clipped off. During the positive half cycle of input voltage, the diode is forward biased and conducting heavily. Ideally, it acts as a closed switch and hence the voltage across the diode or the load is zero and hence the positive half cycle clipped off. During the negative half cycle the diode is reverse biased and behaves as an open switch. Then the current flows through the load and the out put (negative half cycle) is available across load. When the diode polarity is changed in the same circuit, it becomes a negative clipper. The output will have only positive half cycles. Clamping circuit A circuit that shifts either positive or negative peak of the signal at a desired DC level is known as clamper. In fact, the circuit adds DC component (+ve or ve) to the signal in such a way that it pushes the signal either on the positive side or the negative side. When the circuit pushes the signal on the + ve side, then negative peak of the signal falls on the zero level. This circuit is called a positive clamper. On the other hand, when the circuit pushes the signal on the negative side then positive peak of the signal falls on the zero level. This circuit is called a negative clamper. The clamper circuit contains a diode and a capacitor. In case of + ve clamper, the diode conducts during the negative half cycle. The capacitor which is charged to the peak voltage will behave like a charged battery which adds to the signal voltage during the positive half cycle. CIRCUIT DIAGRAM: 2 D 1 V1 I/P VOLTAGE CLIPPER O/P C 1 2 D RL CLIPPER CLAMPER

15 PROCEDURE: 1. Connect the circuit according to the diagram and switch on the power supply. 2. Supply the input square wave to the input terminal of the integrator circuit. 3. Set the out put voltage at 1 V peak and frequency at 1 KHz. 4. Observe the out put waveform on the CRO. GRAPH +Vp Vp 0 0 -Vp OUTPUT WAVE +Vp<+Vp OUTPUT WAVE +2Vp 0 -Vp +Vp 0 CLIPPER CLAMPER RESULT The output waveform (triangular shape) is obtained and observed on the CRO. PRECAUTIONS 1. Connect the circuit properly as shown in fig. 2. Set the input waveform of correct amplitude and frequency. 3. Connect the CRO to the output terminal. QUIZ 1. What is the voltage gain of an ideal OP-AMP? 2. What is CMRR? 3. What is a voltage follower? 4. What do you understand by slew rate of an OP-AMP?

16 EXPERIMENT NO: 7 AIM: To study the operation of OP- AMP as an integrator circuit. APPARATUS REQUIRED CRO, Function Generator, Power supply, connecting leads, Integrator circuit kit. THEORY: In this circuit, the feed back resistor of an OP-AMP is replaced by a capacitor. The output obtained will be an integral of the input wave. I (t) = v (t) /R Out put Voltage= 1/C v(t)/r dt = -1/RC V(t) dt The circuit therefore provides an out put voltage proportional to the integral of the input voltage. If the input voltage is a constant, v=v, then the output will be a ramp, Out put voltage=-vt /RC CIRCUIT DIAGRAM: C=0.1uf 10k 7 I/P 1k O/P 4 PROCEDURE: INTEGRATOR CIRCUIT 1. Connect the circuit according to the diagram and switch on the power supply. 2. Supply the input square wave to the input terminal of the integrator circuit. 3. Set the out put voltage at 1 V peak and frequency at 1 KHz. 4. Observe the out put waveform on the CRO.

17 GRAPH V I/P O/P V t t INPUT WAVE OUTPUT WAVE RESULT The output waveform (triangular shape) is obtained and observed on the CRO. PRECAUTIONS 1. Connect the circuit properly as shown in fig. 2. Set the input waveform of correct amplitude and frequency. 3. Connect the CRO to the output terminal. QUIZ 1. What is the voltage gain of an ideal OP-AMP? 2. What is CMRR? 3. What is a voltage follower? 4. What do you understand by slew rate of an OP-AMP?

18 EXPERIMENT NO: 8 AIM: To study the operation of OP- AMP as a Differentiator circuit. APPARATUS REQUIRED: CRO, Function Generator, Power supply, connecting leads, Differentiator circuit kit. THEORY: In this circuit, the capacitor is connected in series with the input resistor. It is an electronic circuit in which the OP-Amp is employed in such a way that the output voltage comes out to be as a derivative of the input voltage. This type of circuit is called an OP-AMP differentiator. The output is proportional to the time derivative of the input wave. Out put Voltage = -R I = -RC d/dt Vin CIRCUIT DIAGRAM: 1K I/P 0.1uf O/P 4 PROCEDURE: DIFFERENTIATOR CIRCUIT 1. Connect the circuit according to the diagram and switch on the power supply. 2. Supply the input square wave to the input terminal of the differentiator circuit. 3. Set the out put voltage at 1 V peak and frequency at 1 KHz. 4. Observe the out put waveform on the CRO.

19 GRAPH V I/P V O/P t t INPUT WAVE OUTPUT WAVE RESULT The output waveform (Spikes) is obtained and observed on the CRO. PRECAUTIONS 1. Connect the circuit properly as shown in fig. 2. Set the input waveform of correct amplitude and frequency. 3. Connect the CRO to the output terminal. QUIZ 1. What is the input impedence of an ideal OP-AMP? 2. What is CMRR? 3. What is meant by virtual ground? 4. What do you understand by input offset voltage of an OP-AMP?

20 EXPERIMENT NO: 9 AIM: To study the operation of OP- AMP as a Square Wave generator. APPARATUS REQUIRED CRO, Function Generator, Power supply, connecting leads, Square wave generator circuit kit. THEORY: In this circuit, a square wave out put waveform is generated. It is also known as a free running multi vibrator or astable multi vibrator. As soon as the input supply is given to the circuit, both the transistors in the OP-AMP start conducting. Because of a small difference in their operating characteristics, one of the transistors conducts slightly more than the other. Therefore conduction of one transistor drives the other transistor in to cut off state. This means that one transistor is in saturation and the other in cut off state. After some time the capacitor gets charged to supply voltage Vcc. This changes the conduction of transistors and switching action takes place. CIRCUIT DIAGRAM: C 0.05uf R 10k 7 10k R O/P R PROCEDURE: SQUARE WAVE GENERATOR 1. Connect the circuit according to the diagram and switch on the power supply. 2. No input signal is required to be fed to the input terminal of the circuit, as it is self generating. 3. Frequency can be varied by changing the value of RC combination. 4. Observe the out put waveform on the CRO.

21 GRAPH V t RESULT The output waveform is obtained and observed on the CRO. PRECAUTIONS 1. Connect the circuit properly as shown in fig. 2. Connect the CRO to the output terminal. QUIZ 1. What is faithful amplification of a transistor? 2. What is a differential amplifier? 3. What is meant by biasing of transistors? 4. What do you understand by input offset voltage of an OP-AMP?

22 AIM: To study NAND, NOR, EX-OR Gates EXPERIMENT NO: 10 APPARATUS REQUIRED: Power Supply, Digital Trainer Kit, Connecting Leads, IC s (7400, 7402,7486) BRIEF THEORY: NAND GATE: The IC no. for NAND gate is The NOT-AND operation is known as NAND operation. If all inputs are 1 then output produced is 0. NAND gate is inverted AND gate. Y = A. B NOR GATE: The NOR gate has two or more input signals but only one output signal. IC 7402 is two I/P IC. The NOT- OR operation is known as NOR operation. If all the inputs are 0 then the O/P is 1. NOR gate is inverted OR gate. Y = A + B EX-OR GATE: The EX-OR gate can have two or more inputs but produce one output is two input IC. EX-OR gate is not a basic operation & can be performed using basic gates. Y = A+ B PROCEDURE: (a) Fix the IC s on breadboard & give the input supply. (b) Connect the +ve terminal of supply to pin 14 & -ve to pin 7. (c) Give input at pin 1, 2 & take output from pin 3. It is same for all except NOT & NOR IC. (d) For NOR, pin 1 is output & pin 2&3 are inputs. (e) For NOT, pin 1 is input & pin 2 is output. (f) Note the values of output for different combination of inputs & draw the TRUTH TABLE. RESULT: We have learnt all the gates ICs according to the IC pin diagram. PRECAUTIONS: 1) Make the connections according to the IC pin diagram. 2) The connections should be tight. 3) The Vcc and ground should be applied carefully at the specified pin only.

23 QUIZ: QUESTION Q.1. Define gates? Q.2. Define IC? Q.3. Explain Demorgan s theorem. Q.4. (A+A) A =? ANSWER A1. Gates are the digital circuits, which perform a specific type of logical operation A2. IC means integrated circuit. It is the integration of no. of components on a common substrate. A3. (AB)=A+B (A+B)=A.B A4. A Q5. Define Universal gates. A5. Universal gates are those gates by using which we can design any type of logical expression. Q6. When will the output of a NAND Gate be 0? A06. When all the inputs are 1...

24 AIM: To study AND, OR, NOT Gates EXPERIMENT NO: 11 APPARATUS REQUIRED: Power Supply, Digital Trainer Kit. Connecting Leads, IC s (7404, 7408, 7432) BRIEF THEORY: AND Gate: The AND operation is defined as the output as one if and only if all the inputs are one is the two Input AND gate IC.A&B are the Input Terminals &Y is the Output terminal. Y = A.B OR Gate: The OR operation is defined as the output as one if one or more than one inputs are one is the two Input OR gate IC. A&B are the input terminals & Y is the Output terminal. Y = A + B NOT GATE: The NOT gate is also known as Inverter. It has one input (A) & one output (Y). IC No. is Its logical equation is, Y = NOT A Y = A ` PROCEDURE: OBSERVATION TABLE: (g) Fix the IC s on breadboard & give the input supply. (h) Connect the +ve terminal of supply to pin 14 & -ve to pin 7. (i) Give input at pin 1, 2 & take output from pin 3. It is same for all except NOT & NOR IC. (j) For NOR, pin 1 is output & pin 2&3 are inputs. (k) For NOT, pin 1 is input & pin 2 is output. (l) Note the values of output for different combination of inputs & draw the TRUTH TABLE. SL NO AND OR NOT INPUT OUTPUT OUTPUT OUTPUT INPUT INPUT RESULT: We have learnt all the gates ICs according to the IC pin diagram.

25 PRECAUTIONS: 1) Make the connections according to the IC pin diagram. 2) The connections should be tight. 3) The Vcc and ground should be applied carefully at the specified pin only. QUIZ: QUESTION ANSWER Q.1 Define gates? A1. Gates are the digital circuits, which perform a specific type of logical operation Q.2 Define IC? A2. IC means integrated circuit. It is the integration of no. of components on a common substrate. Q.3 Explain Demorgan s theorem. A3. (AB)=A+B (A+B)=A.B Q.4 (A+A) A =? A4. A Q5 Define Universal gates. Q6.Write the logical equation for AND gate. Q7 How many no. of input variables can a NOT Gate have? Q8.Under what conditions the output of a two input AND gate is one? Q9.1+0 =? A5. Universal gates are those gates by using which we can design any type of logical expression. A6.Y=A.B A7. One A8. Both the inputs are one A9. One..

Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3. Diodes and Applications. Introduction [5], [6] Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

More information

Properties of electrical signals

Properties of electrical signals DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics 76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

More information

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes. by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-218 Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

More information

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Field Effect Transistors

Field Effect Transistors 506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS 1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a

More information

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

More information

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

More information

Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

The D.C Power Supply

The D.C Power Supply The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

More information

Silicon Controlled Rectifiers

Silicon Controlled Rectifiers 554 20 Principles of Electronics Silicon Controlled Rectifiers 20.1 Silicon Controlled Rectifier (SCR) 20.2 Working of SCR 20.3 Equivalent Circuit of SCR 20.4 Important Terms 20.5 V-I Characteristics of

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

More information

Operational Amplifier - IC 741

Operational Amplifier - IC 741 Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

More information

Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

Homework Assignment 03

Homework Assignment 03 Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

Series and Parallel Circuits

Series and Parallel Circuits Direct Current (DC) Direct current (DC) is the unidirectional flow of electric charge. The term DC is used to refer to power systems that use refer to the constant (not changing with time), mean (average)

More information

Precision Diode Rectifiers

Precision Diode Rectifiers by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

More information

Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

See Horenstein 4.3 and 4.4

See Horenstein 4.3 and 4.4 EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

More information

OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS. o/p OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

More information

Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

More information

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated

More information

Lab 3 Rectifier Circuits

Lab 3 Rectifier Circuits ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

CHAPTER 2 POWER AMPLIFIER

CHAPTER 2 POWER AMPLIFIER CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 Class B Amplifier (Push-Pull Emitter Follower) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- , Raj Kamal, 1 EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

More information

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.

Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Introduction to Power Supplies

Introduction to Power Supplies Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

More information

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs

AN105. Introduction: The Nature of VCRs. Resistance Properties of FETs Introduction: The Nature of s A voltage-controlled resistor () may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

Power Amplifiers. Introduction to Power Amplifiers. Amplifiers. Module 5

Power Amplifiers. Introduction to Power Amplifiers. Amplifiers. Module 5 Module 5 Amplifiers Introduction to What you ll learn in Module 5. Section 5.0 Introduction to. Understand the Operation of. Section 5.1 Power Transistors & Heat Sinks. Power Transistor Construction. Power

More information

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier

TL082 Wide Bandwidth Dual JFET Input Operational Amplifier TL082 Wide Bandwidth Dual JFET Input Operational Amplifier General Description These devices are low cost high speed dual JFET input operational amplifiers with an internally trimmed input offset voltage

More information

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits

The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits EET140/ET1 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

More information

An FET Audio Peak Limiter

An FET Audio Peak Limiter 1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: mleach@ee.gatech.edu Copyright

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

More information

Experiment 2 Diode Applications: Rectifiers

Experiment 2 Diode Applications: Rectifiers ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

More information

Common Base BJT Amplifier Common Collector BJT Amplifier

Common Base BJT Amplifier Common Collector BJT Amplifier Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances

More information

GenTech Practice Questions

GenTech Practice Questions GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

More information

MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

More information

Operational Amplifier as mono stable multi vibrator

Operational Amplifier as mono stable multi vibrator Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

More information

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier

Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Regulated D.C. Power Supply

Regulated D.C. Power Supply 442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Zero voltage drop synthetic rectifier

Zero voltage drop synthetic rectifier Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic vratislav.michal@gmail.com,

More information

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Questions and Answers for Units III, IV & V I B.Tech I Sem BASIC ELECTRICAL AND ELECTRONICS ENGINEERING N. Madhusudhana Rao Department of ECE GRIET Syllabus UNIT I: ELECTRICAL and SINGLE PHASE AC CIRCUITS

More information

Chip Diode Application Note

Chip Diode Application Note Chip Diode Application Note Introduction The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components.

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers

More information

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations

GRADE 11A: Physics 5. UNIT 11AP.5 6 hours. Electronic devices. Resources. About this unit. Previous learning. Expectations GRADE 11A: Physics 5 Electronic devices UNIT 11AP.5 6 hours About this unit This unit is the fifth of seven units on physics for Grade 11 advanced. The unit is designed to guide your planning and teaching

More information

COMMON-SOURCE JFET AMPLIFIER

COMMON-SOURCE JFET AMPLIFIER EXPERIMENT 04 Objectives: Theory: 1. To evaluate the common-source amplifier using the small signal equivalent model. 2. To learn what effects the voltage gain. A self-biased n-channel JFET with an AC

More information

6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier 6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

More information

AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

More information

Op Amp and Comparators Don t Confuse Them!

Op Amp and Comparators Don t Confuse Them! Application Report SLOA067 September 200 Op Amp and Comparators Don t Confuse Them! Bruce Carter High Performance Linear ABSTRACT Operational amplifiers (op amps) and comparators look similar; they even

More information