# ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points) On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE VALUES AND UNITS. No credit will be given for numbers that appear without justification. 1 K. A. Connor

2 Question I Diode Rectifier Circuits (20 points) V1 Transformer V2 - + V3 R1 Load Resistor n:1 DIODE BRIDGE 0 The diagram above shows the application of a diode bridge for performing rectification of the voltage from the output of the transformer. The sinusoidal source voltage V1 = 120V RMS and R1 = 5kΩ. 1. (3pt) Knowing that the voltage amplitude is 2 larger than the RMS voltage, what transformer turns ratio n:1 will give as close as possible to a 6V amplitude at V2? (n should be rounded to an integer.) n = (120 x 1.414)/6 = => 28 n:1 = 28:1 2. (3pt) What will the actual peak voltage be on the output of the full wave bridge (across R1). Let the idealized diodes have V on = 0.6V and V2 is the voltage from the turns ratio in question 1? V = (120 x 1.414)/28 2x(0.6) = 4.86V 3. (3pt) Given R1 above, what is the peak current that will flow through any of the 4 diodes? I = V/R = 4.86/5k = 0.972mA 2 K. A. Connor

3 Question I Diode Rectifier Circuits (continued) 4. (3pt) For a 60Hz input voltage V1 a capacitor is added in parallel with R1 to reduce the ripple in the voltage across the load resistance so that the droop is less than 0.25V. Which of the following values is the minimum capacitance necessary to achieve this? a) 1μF b) 17μF c) 33μF d) 100μF Droop = 0.25/4.86 = 0.05 T = 1/120Hz = 8.3ms τ = RC = /0.05 = C = 0.166/5000 = 33μF 5. (3pt) It is decided to use a 680μF capacitor to filter the supply voltage. What 3 digit code will be written on this capacitor to indicate its value? 687 => 68 x 10 7 pf = 68 x 10 7 x = 68 x 10-5 = F 6. (5pt) For a quick calculation of the voltage droop with the 680μF capacitor and 5kΩ load resistance, assume a 5V amplitude 50Hz sine wave has been ideally full wave rectified (V on = 0V). Use the period between adjacent peaks as the maximum droop time and assume the exponential decay can still be modeled as a straight line in this interval. With these simplifications, how much will the voltage droop from its 5V maximum value? 5 T= 1/(2x50Hz) = 1/100Hz = 0.01s τ = RC =3.4s droop/0.01 = 5/3.4 droop = 5x0.01/3.4 = 14.7mV RC = 5000x680u = K. A. Connor

4 Question II - LEDs and Phototransistor Circuits (20 points) A white LED is driven by a standard DC source. The source we have is a 18 Volt wall wart capable of producing up to 20 Watts. We need a forward bias voltage of 3.5V and a current of 50 ma. a) (5pt) Using the 18 Volt supply, determine the resistance R1 necessary to achieve the desired operating conditions for the diode. Also determine the total power dissipated in the circuit =14.5V 18V 10V V1 D1 R1 14.5/50mA=290Ohms 330 Ohms is also correct since that is the nearest available resistor value. Power = 18*50mA=900mW 0 b) (10pt) We now want multiple LEDs like a short string of Christmas lights. For this purpose, we will use four different color LEDs: Red, Amber, Green and Blue. The four LEDs we have are found in the table below. Our Red LED is labeled Super Red in the table and all four LEDs are indicated in bold letters. Determine the resistance to achieve the desired operating conditions for the combination of 4 LEDs. Assume that the current is 25mA, since we have to be limited to the smallest maximum current for any of our four LEDs. Use the typical forward bias voltages from the table. Color Material Wavelength (nm) V-forward Super Red GaAlAs Green GaP Red GaAsP Red AlInGaP Orange AlInGaP Yellow AlInGaP Amber GaAsP Red GaP Green GaP Green AlInGaP Blue SiC Green InGaN Blue InGaN White InGaN 3.5 Green InGaN Green InGaN Blue SiC K. A. Connor

5 DR DY DG DB 18V 12Vdc Vww R 0 18V = V= /25mA=244Ohms 270 Ohms is also correct since you cannot buy a 244 Ohm resistor c) (5pts) Determine the total power dissipated in the circuit and the power dissipated in the blue LED. Total power is 18x25mA=450mW or less than a half watt Power in blue LED is 4.5x25mA=112.5mW While not asked for here, the power in the resistor is 78mW so a quarter Watt resistor, like we use in class, is fine for this application. d) (5pts?) On this quiz, you must solve problems II and III. For one of the other three problems, you can choose to either: Write do not grade on it and you will receive the full 20 points, regardless of your actual answer, or Solve the problem and, if your answer is completely correct, you will receive 25 points Note that you have this option for only one of the other three problems. You must solve the remaining two problems. 5 K. A. Connor

6 Question III Multiple Choice Questions (20 points) Circle the correct answer. (2 points for each question). a. The dc current through each forward-biased diode in a full wave bridge rectifier equals: a. The load current b. Half the dc load current c. Twice the dc load current d. One-fourth the dc load current b. When matching polarity connections have been made and the voltage difference is above 0.7 V, the diode is considered to be: a. Not working b. Forward biased c. Reverse biased d. An open switch c. What is the current through the LED? 330 Ohms a. 0 ma b. 23 ma c. 18 ma d. 13 ma d. A filtered full-wave rectifier voltage has a smaller ripple than does a half-wave rectifier voltage for the same load resistance and capacitor values because: a. There is a shorter time between peaks b. There is a longer time between peaks c. The larger the ripple, the better the filtering action d. None of the above e. Testing a good diode with an ohmmeter should indicate a. High resistance when forward or reverse biased b. Low resistance when forward or reverse biased c. High resistance when reverse biased and low resistance when forward biased d. High resistance when forward biased and low resistance when reverse biased 6 K. A. Connor

7 f. The peak inverse voltage across a nonconducting diode in a bridge rectifier equals approximately: a. Half the peak secondary (output) voltage b. Twice the peak secondary (output) voltage c. The peak value of the secondary (output) voltage d. Four times the peak value of the secondary (output) voltage g. What is the current through the diode? a. 1 ma b ma c ma d. 0.0 ma h. What is the current through the zener diode? a. 0.0 ma b. 7 ma c. 8.3 ma d. 13 ma i. When a diode is forward biased, the voltage across it a. Is directly proportional to the current b. Is inversely proportional to the current c. Is directly proportional to the source voltage d. Remains approximately the same j. When checking a diode, low resistance readings both ways indicate the diode is: a. Open b. Satisfactory c. Faulty d. Not the problem 7 K. A. Connor

8 Question IV Zener Diode Circuits (20 points) R1 C + C - A 50 B V1 = -10 V2 = 10 TD = 0 TR =.5ms TF =.5ms PW = 1e-10 PER = 1ms V1 Most of the source voltage will appear across the diode due to 1000/1050 divider. Input should be triangular wave with p- p amplitude of 20V 0 R2 1k D1 D1N750 The circuit above is a Zener diode voltage regulator. A Zener diode is used to regulate the voltage across the load resistor R2 in the circuit. Shown below are two figures, one of which shows the correct voltages for this configuration. 10V a) (5pts) Identify which of the two figures is correct by crossing out the one that is incorrect. Explain your answer. Most of 10V is enough to turn on the Zener. b) (5pts) On the correct figure, label which plot corresponds to the voltages at points A and B and across resistor R1 (C + to C - ) A 5V C 0V -5V B -10V 0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms V(V1:+) V(R1:2) V(V1:+,R1:2) Time A Zener clamps voltage at about 0.7V forward and about 5V reverse (Zener) 8 K. A. Connor

9 10V 5V 0V -5V -10V 0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms V(R1:1) V(R1:2) V(R1:1,R1:2) Time c) (6pts) From the given information, determine the Zener voltage for this diode V Z and the forward bias voltage necessary to turn the diode on in the forward direction. Exact answers are not required. V Z is a little less than 5V, say about 4.7V, V forward is a little less than 1V, say about 0.8V with a range of answers accepted. It is not necessary to be able to read the graphs precisely but the answers should be reasonable. d) (4pts) Sketch the V-I plot for this diode. Your sketch does not have to be perfect, but it should show the main characteristics of the diode. I V Should have more curvature at the corners, but this is also acceptable. 9 K. A. Connor

10 Question V - Diode Limiter Circuits (20 points) VOFF = 0 A V R1 C + C - 1k D4 D1 B D1N4002 D1N4002 VAMPL = 10 D5 D2 R2 FREQ = 1k D1N4002 D1N4002 1k D6 D3 D1N4002 D1N Six 1N4002 diodes are used to protect a load (in this case R2) from having too large a voltage across it. The 4002 diode has somewhat different properties than the 4148 diode we have studied in class. 10V 5V a) (9pts) This configuration is tested with the sinusoidal voltage source shown in the circuit above. The voltages measured are shown below. Label which plot is the voltage at pt A, at pt B and across resistor R1 (C + to C - ). Explain your answer. A C 0V B -5V -10V 0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms V(V:+,D1:2) V(D1:2) V(V:+) Time A is 10V sinusoid at the input, B cannot be larger than the forward bias of three diodes which is about 2V, C is what is left. 10 K. A. Connor

11 2.0V b) (6 pts) The source voltage amplitude is changed to 2V. Sketch the resulting voltage across resistor R1 (C + to C - ) and at the load (B) on the plot below. Explain your answer. 1.5V 1.0V 0.5V 0.0V -0.5V -1.0V -1.5V -2.0V 0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms 2.2ms 2.4ms 2.6ms 2.8ms 3.0ms V(R1:1) V(R2:1) Time At 2V, the input voltage is not sufficient to turn on the diodes so they remain open and out of the circuit. All that remains is a voltage divider with two 1k resistors, so the voltage observed is a sinusoid at half the input. c) (5pts) Using the given information, determine the forward voltage necessary to turn the 1N4002 diode on. Explain your answer. 3 diodes at about 2V means about 0.67V. A good range for the answer would be 0.6V < 0.67V < 0.7V or the usual range for simple diodes. 11 K. A. Connor

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### ELEC 435 ELECTRONICS I. Rectifier Circuits

ELEC 435 ELECTRONICS I Rectifier Circuits Common types of Transformers The Rectifier Rectification is the conversion of an alternating current to a pulsating direct current. Rectification occurs in both

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES

Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES Objective: The objective of this experiment is to study the performance and characteristic of full-wave rectifiers and DC power supplies utilizing

### Diode Application. WED DK2 9-10am THURS DK6 2-4pm

Diode Application WED DK2 9-10am THURS DK6 2-4pm Simple Diode circuit Series diode configuration Circuit From Kirchoff s Voltage Law From previous lecture E = V I D D + IDR / = I V D nv T S e ( 1) Characteristics

### DEALING WITH AC MAINS

ARTICLE DEALING WITH AC MAINS D.MOHAN KUMAR One of the major problem that is to be solved in an electronic circuit design is the production of low voltage DC power supply from AC mains to power the circuit.

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### The D.C Power Supply

The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

### Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 3 Diodes and Bridge Rectifiers Overview: The purpose of this experiment is to introduce diode

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### electronics fundamentals

electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

### Half-Wave Rectifiers

Half-Wave Rectifiers Important Points of This Lecture Calculation of output voltage using appropriate piecewise models for diode for simple (unfiltered) half-wave rectifier Differences between calculations

### CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

### Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits:

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: (i) Half wave rectifier. (ii) Full wave rectifier.

### Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

### Single phase, uncontrolled rectification (conversion)

Single phase, uncontrolled rectification (conversion) J Charles Lee Doyle C12763425 29 October 2015 Abstract An experiment investigating full wave rectification, for the purposes of producing a steady

### Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

### Robert L. Boylestad Electronic Devices and Circuit Theory, 9e

Fig. 2.44 Half-wave rectifier. Fig. 2.45 Conduction region (0 T/2). Fig. 2.46 Nonconduction region (T/2 T). Fig. 2.47 Half-wave rectified signal. Fig. 2.48 Effect of V K on half-wave rectified signal.

### Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

### Chapter 22 Further Electronics

hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

### EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

### EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit

EE 320L Electronics I Laboratory Laboratory Exercise #4 Diode and Power Supply Circuit Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this

### Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

### Solution Tutorial 1. Diode Basics, Application and Special Diodes

Solution Tutorial 1 Diode Basics, Application and Special Diodes 1. What is the maximum number of electrons that can exist in the 3 rd shell of an atom? 2. A certain atom has four valence electrons. What

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### EET221 Worksheet #3: Diode Circuits and Specialty Diodes

EET221 Worksheet #3: Diode Circuits and Specialty Diodes Help for this worksheet may be found in Chapters 4 and 5 of the textbook. This is not the only place to find help. Don t be afraid to explore. Much

### Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

### Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

### The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### CHAPTER 10. Exercises. E10.1 Solving Equation 10.1 for the saturation current and substituting values, we have

CHAPER 10 Exercises E10.1 Solving Equation 10.1 for the saturation current and substituting values, we have i Is exp( v / nv ) 1 4 10 exp(0.600 / 0.026) 1 15 9.502 10 A hen for v 0.650 V, we have 15 i

### EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

### RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

### LEP 4.4.07. Rectifier circuits

Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple

### Yrd. Doç. Dr. Aytaç Gören

H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

### ENGR-2300 Electronic Instrumentation Quiz 1 Spring 2015

ENGR-2300 Electronic Instrumentation Quiz Spring 205 On all questions: SHOW ALL WORK. BEGIN WITH FORMULAS, THEN SUBSTITUTE ALUES AND UNITS. No credit will be given for numbers that appear without justification.

### OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

### Tutorial 12 Solutions

PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

### 13. Diode Rectifiers, Filters, and Power Supplies

1 13. Diode Rectifiers, Filters, and Power Supplies Introduction A power supply takes Alternating Current or A.C. power from your electric utility (Con Edison) and converts the A.C. electrical current

### Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf

EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load

### LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

### R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

### Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

### Diodes & Power Supplies

Diodes & Power Supplies Diode Basics A diode is a one way valve for electricity. It lets current flow in one direction but not the other. Diodes are used for Converting AC DC Detecting Radio Signals Doing

### LED level meter driver, 12-point, power scale, dot or bar display

LED level meter driver, 12-point, power scale, dot or bar display The is a monolithic IC for LED power meter applications. The display level range is 9mVrms to 380mVrms (Typ.) divided into 12 points with

### APPLICATION NOTES: Dimming InGaN LED

APPLICATION NOTES: Dimming InGaN LED Introduction: Indium gallium nitride (InGaN, In x Ga 1-x N) is a semiconductor material made of a mixture of gallium nitride (GaN) and indium nitride (InN). Indium

### RLC Circuits. OBJECTIVES To observe free and driven oscillations of an RLC circuit.

ircuits It doesn t matter how beautiful your theory is, it doesn t matter how smart you are. If it doesn t agree with experiment, it s wrong. ichard Feynman (1918-1988) OBJETIVES To observe free and driven

### CONSTRUCTING A VARIABLE POWER SUPPLY UNIT

CONSTRUCTING A VARIABLE POWER SUPPLY UNIT Building a power supply is a good way to put into practice many of the ideas we have been studying about electrical power so far. Most often, power supplies are

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### EE 255 ELECTRONICS I LABORATORY EXPERIMENT 2 POWER SUPPLY DESIGN CONSIDERATIONS

EE 55 ELETRONIS I LABORATORY EXPERIMENT POWER SUPPLY ESIGN ONSIERATIONS OBJETIES In this experiment you will Learn how to select the best rectifier circuit for your application Gain experience in designing

### GenTech Practice Questions

GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

### Students will need about 30 minutes to complete these constructed response tasks.

Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of

### 3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

### RC transients. EE 201 RC transient 1

RC transients Circuits having capacitors: At DC capacitor is an open circuit, like it s not there. Transient a circuit changes from one DC configuration to another DC configuration (a source value changes

### EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

### DIODE CIRCUITS CHAPTER 2

CHAPTER 2 DIODE CIRCUITS As discussed in the previous section, diodes are essentially one-way valves. They carry current in one direction, but block current in the other. In addition, in the forward conduction

### Filters and Waveform Shaping

Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

### NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator

NTE923 & NTE923D Integrated Circuit Precision Voltage Regulator Description: The NTE923 and NTE923D are voltage regulators designed primarily for series regulator applications. By themselves, these devices

### Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:

RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a non-conducting material: In the diagram

### Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

### Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

### Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

### April 8. Physics 272. Spring Prof. Philip von Doetinchem

Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 218 L-C in parallel

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

### AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

### 3 Slot Payphone Controller

5A2 3 Slot Payphone Controller The 3 Slot Payphone -- Part of American History Building a Coin Relay Controller Version S1BX Instruction Manual and Safety Precautions It is very important that for your

### Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

### ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Fundamentals of Microelectronics

Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

### Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

### Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

### 7-41 POWER FACTOR CORRECTION

POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

### Chapter 3. Simulation of Non-Ideal Components in LTSpice

Chapter 3 Simulation of Non-Ideal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NON-IDEAL COMPONENTS IN LTSPICE 3.1 Pre-Lab The answers to the following questions are due at the beginning of the lab.

### Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

### Clippers & Clampers. Problem: Design a circuit which clips the voltage output at <6V using an ideal silicon diode. Solution:

NDSU 9: Clippers ECE 321 JSG Clippers & Clampers Clipper Circuits: Problem: Design a circuit which clips the voltage output at

### R C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black - Red + Black -

Sample Lab Report - PHYS 231 The following is an example of a well-written report that might be submitted by a PHYS 231 student. It begins with a short statement of what is being measured, and why. The

### The Electronic Power Supply. 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor

I N T E R D I S C I P L I N A R Y L I V E L Y A P P L I C A T I O N S P R O J E C T M A T E R I A L S 1. Problem Statement ( 4 situations) 2. Sample Solution 3. Notes for the Instructor Computing Requirements:

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose