DESIGN OF BASIC SEQUENTIAL CIRCUITS USING REVERSIBLE LOGIC

Size: px
Start display at page:

Download "DESIGN OF BASIC SEQUENTIAL CIRCUITS USING REVERSIBLE LOGIC"

Transcription

1 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) DESIGN OF BASIC SEQUENTIAL CIRCUITS USING REVERSIBLE LOGIC Rohini H Dr. Rajashekar S Dr. PriyatamKumar Electronics & Communication Electronics & Communication Electronics & Communication BVBCET BVBCET BVBCET Hubli, India Hubli, India Hubli, India rohini_sh@bvb.edu raj@bvb.edu priyatam@bvb.edu Abstract Reversible logic is an emerging research area. Its ability to reduce the power dissipation has made these circuits lossless circuits. Irreversible circuits or classical circuits have energy dissipation is proportional to the number of bits lost during computation. The reversible circuits do not lose information and can generate unique outputs from specified inputs and vice versa. It has application in diverse fields such as low power CMOS design, optical information processing, cryptography, quantum computation and nanotechnology. This paper proposes a reversible design of Flip Flops, Counters and Universal shift register. Universal shift register is an important memory element of the sequential circuit family. In this paper we proposed efficient design of reversible universal shift register that is optimized in terms of quantum cost, delay, garbage outputs. Each module has been coded using Verilog then simulated using Modelsim and prototyped in Xilinx-Spartan 3. Keywords Reversible, Garbage, Quantum cost I. INTRODUCTION Energy dissipation is one of the major issues in present day technology. Energy dissipation due to information loss in high technology circuits and systems constructed using irreversible hardware was demonstrated by R. Landauer in the year According to Landauers principle, the loss of one bit of information lost, will dissipate kt*ln (2) joules of energy where, k is the Boltzmanns constant and k=1.38x10-23 J/K, T is the absolute temperature in Kelvin [1]. The primitive combinational logic circuits dissipate heat energy for every bit of information that is lost during the operation. This is because according to second law of thermodynamics, information once lost cannot be recovered by any methods. In 1973, Bennett, showed that in order to avoid ktln2 joules of energy dissipation in a circuit it must be built from reversible circuits [2]. According to Moores law the numbers of transistors will double every 18 months. Thus energy conservative devices are the need of the day. The amount of energy dissipated in a system bears a direct relationship to the number of bits erased during computation. Reversible circuits are those circuits that do not lose information. The most prominent application of reversible logic lies in quantum computers [3]. A quantum computer will be viewed as a quantum network composed of quantum logic gates, it has applications in various research areas such as Low Power CMOS design, quantum computing, nanotechnology and DNA computing. Reversible computation in a system can be performed only when the system comprises of reversible gates. A circuit/gate is said to be reversible if the input vector can be uniquely recovered from the output vector and there is a one-to-one correspondence between its input and output assignments [4-5].The main challenges of designing reversible circuits are to reduce the number of gates, garbage outputs, constant inputs and quantum cost. While designing the proposed universal shift register, we optimized the quantum cost and number of garbage outputs of the proposed design. A. Basic Definitions pertaining to reversible logic Reversible logic gate : Reversible Gates are circuits in which number of outputs is equal to the number of inputs and there is a one to one correspondence between the vector of inputs and outputs [7]. It not only helps us to determine the outputs from the inputs but also helps us to uniquely recover the inputs from the outputs Constant inputs : This refers to the number of inputs that are to be maintaining constant at either 0 or 1 in order to synthesize the given logical function [8]. Garbage outputs : Additional inputs or outputs can be added so as to make the number of inputs and outputs equal whenever necessary. This also refers to the number of outputs which are not used in the synthesis of a given function. Garbage is the number of outputs added to make an n-input k-output function reversible. We use the words constant inputs to /16/$ IEEE

2 denote the present value inputs that were added to an (n:k) function to make it reversible. The following simple formula shows the relation between the number of garbage outputs and constant inputs. Input + constant input = output + garbage. [6] Quantum cost : Quantum cost refers to the cost of the circuit in terms of the cost of a primitive gate. It is calculated knowing the number of primitive reversible logic gates (1*1 or 2*2) required to realize the circuit. The quantum cost of a circuit is the minimum number of 2*2 unitary gates to represent the circuit keeping the output unchanged. The quantum cost of a 1*1 gate is 1 and that of any 2*2 gate is the same, which is 1 [10]. So, the quantum cost of a 2*2 Feynman gate is 1. Again, the quantum cost of a 3*3 Toffoli, Fredkin, Peres and New gate is 5, 5, 4 and 11 respectively [11][12][13]. TABLE I. List Of Reversible Gates Reversible Size Quantum Functionality Gates cost NOT 1X1 1 P=A CNOT(Feynman) 2X2 1 P=A Q=AxorB Fredkin 3X3 5 P=A Q=A B+AC R=AB+A C Toffoli 3X3 5 P=A Q=B R=ABxorC Pears 3X3 4 P=A Q=AxorB R=AB xor C Double Feynman 3X3 2 NG 3X3 11 P=A Q=AB xor C R=A C xor B Fig. 1. Methodology A. SEQUENTIAL CIRCUITS USING REVERSIBLE GATES Fig. 2. Fredkin gate II. IMPLIMENTATION METHODOLOGY In order to design the sequential circuits, the conventional logic gates are appropriately designed from the reversible gates. The reversible gates used to design the conventional logic are so chosen to minimize the number of reversible gates used and garbage outputs produced. List of reversible gates and their functionality is shown in talbe I. Figure 2 shows fredkin gate definition and Figure 3 shows the how AND operation is realized using Fredkin gate. Figure 4 shows the realization of OR function using fredkin gate. Feynman Gates can be used for copying the outputs and to avoid the fan out problem in reversible logic[8]. In the Feynman gate, there are exactly two outputs corresponding to the inputs and a 0 in the second input will copy the first input to both the outputs of that gate. Hence it can be concluded that Feynman gate is the most suitable gate for single copy of bit since it does not produces any garbage output Fig 3. Fredkin gate as AND gate Fig.4. Fredkin gate as OR gate

3 B. RS FLIP FLOP The clocked RS flip flop consists of a basic NOR and AND gates. Figure 5 shows the RS flip flop designed from conventional irreversible gates. Figure 6 shows the RS flipflop designed from the reversible equivalent gates. Fig.7. Conventional D FLIP FLOP Fig.5. Conventional SR FLIP FLOP Fig.8. Reversible D FLIP FLOP Fig.6. Reversible SR FLIP FLOP The proposed circuit of the flip flop is evaluated in terms of number of reversible gates used and garbage outputs produced. Table II shows the evaluation of the proposed RS flip flop. TABLE II. Comparison w.r.t RS FF Fig.9. Reversible D FLIP FLOP The proposed circuit of the flip flop is evaluated in terms of number of reversible gates used and garbage outputs produced. TableIII shows the evaluation of the proposed D flip flop. Table III. Comparison w.r.t D FF C. D FLIP FLOP The D flip flop is a modification of the clocked RS flip flop. In the D flip flop, the D input goes directly to the S input and its complement is applied as an R input. Figure 7 shows the D flip flop designed from irreversible gates. Figure 8 shows the D flip flop designed from the reversible equivalent gates. Figure 9 shows proposed reversible DFF using 2X2 CNOT gate having quantum cost of only 1.

4 D. UP COUNTER The counter is one of the most intensively used functional devices in digital systems. The counter is basically a group of flipflops connected together in such a way that the combined output will perform the counting operation. The reversible design of the 4-bit Up-Counter is shown in Figure 10. At the output of each reversible D Flip- op, the complemented Q output is produced using Feynman Gate with the input B=1. These complemented Q outputs of each D Flipflop reversible design performs the Up-Counter operation. Fig.11. Block diagram of Universal shift register1 Fig.10. Reversible UP COUNTER TABLE IV. Comparison w.r.t Universal Shift Register III. Each D Flipflop contains 1 reversible gate, 1 constant input and 0 garbage output. Hence the proposed reversible counter design contains 4 reversible gates, 4 constant inputs and produces 0 garbage output. DESIGN OF REVERSIBLE UNIVERSAL SHIFT REGISTER In this section we presented novel designs of reversible universal shift register and its components that are optimized in terms of quantum cost and garbage outputs. A. Proposed Universal Shift Register 1 Universal shift registers store binary data and can be shifted left or right when a clock signal is applied. All modes of operation such as serial-in serial-out (SISO), parallel-in parallel-out (PIPO) are performed upon the occurrence of clock. Figure11 shows our proposed universal shift register consists of 4 D flipflop blocks and one 1 to 4 demultiplexer. The multiplexer have two common selection inputs S1 and S0. Input 0 in each multiplexer is selected when SIPO-LEFT = 00, when SIPO-RIGHT =01, when SISO-LEFT = 10, when SISO-RIGHT =11 the present value of the register is applied to the D inputs of the flip flops. This condition forms a path from the output of each flip flop into the input of the same flipflop so that the output recalculates to the input in this mode of operation. B. Proposed Universal Shift Register 2 The universal shift register store binary data and its data can be shifted left or right when a clock signal is applied. All modes of operation such as SISO (serial-in-serial output), SIPO (serial-in-parallel output), PISO (parallelin-serial output) and PIPO (parallel-in-parallel output) can also be performed upon the occurrence of clock. TABLE V. Modes of Universal Shift Register Figure 12 shows the propose universal shift register. Thus, serial data parallel data can be loaded into shift register. The values of the select lines determine the operation to be performed as given in table 5. The existing design of Reversible Universal Shift Register in reference [24] is basically built from basic cells comprising of DFF, Feynman gate (FG) and Fredkin gates. In the existing design fan-out circuits are not used for any of the signals. The four multiplexers have two common selection inputs S1 and S0.Input 0 in each multiplexer is selected when S1S0 = 00, input 1 is

5 selected when S1S0 = 01 and similarly for other two inputs. Fig.14. D FLIP FLOP Fig bit COUNTER Fig.12. Block diagram of Universal shift register2 The proposed design of Universal Shift Register shown in Figure 12 consist of flip flops blocks using Master slave D FF, D FF with synchronous or asynchronous set/rest and 4:1 Multiplexer design. IV. RESULTS AND DISCUSSIONS SR Flip Flop based on reversible logic simulation waveform shown in Figure 13. When clock is high the then the operation of SR Flip Flop is enable when SR inputs are 00 output Q is 0, SR=01 output Q=0, SR=10 output Q=1 and output Qb= Q. When the clock is low outputs not responding to inputs. Universal shift registers store binary data and can be shifted left or right when a clock signal is applied. Simulated waveforms of universal shift register shown in Figures 16,17,18 and 19. Fig.16. SIPO-LEFT Universal shift register Fig. 13. SR Flip Flop D Flip Flop based on reversible logic simulation waveform shown in Figure 14. When clock is high the then the operation of D Flip Flop is enable when output follows the input and output Qb= Q. When the clock is low outputs not responding to input. 4bit Up-counter using eversible D Flip Flops simulation waveform shown in Figure 15. When clock is high the then the operation of Counter is enable to count the 4bit data when output is 1111 then it reset to 0000, again counting is started. Fig.17. SIPO-RIGHT Universal shift register All modes of operation such as serial-in serial-out (SISO), parallel-in parallel-out (PIPO) can also be performed upon the occurrence of clock. Figure shows our proposed universal shift register consists of 4 D flip flop blocks and four 4-to-1 Demultiplexer Fig.18. SISO-LEFT Universal shift register

6 The multiplexer have two common selection inputs S1 and S0. Input 0 in each multiplexer is selected when SIPO- LEFT = 00, when SIPO-RIGHT =01, when SISO-LEFT = 10, when SISO-RIGHT =11 the present value of the register is applied to the D inputs of the flip flops. This condition forms a path from the output of each flip flop into the input of the same flip flop, so that the output recalculates to the input in this mode of operation. outputs ACMJournal of Emerging Technologies in Computing Systems, vol. 6, no.4, Article 14, pp. 14:114:35, Dec [9] J.Smoline and David P.DiVincenzo, \Five two-qubit gates are su cient to implement the quantum fredkin gate Physics Review A, vol. 53, no.4, pp ,1996. [10] Yang G., Song X, Hung WNN, and Marek Perkowski, \Bidirection Synthesis for Reversible circuits IEEE Computer Society Annua; Sym-posium on VLSI New Frontiers in VLSI Design, [11] D. Maslov and G.W. Dueck, \Reversible cascades with Minimal Garbage IEEE Transactions on CAD, vol. 23(11), pp , November [12] Richard P.Feynman, \Quantum mechanical computers Foundations of Physics, vol.16, no. 6, pp ,1986. Fig.19. SISO-RIGHT Universal shift register V. CONCLUSION In this paper a novel design of RS and D Flip Flops,4 bit up counter and reversible universal shift register using reversible logics are proposed. A feynman gate that acts as a D Flip Flop is proposed in this paper whose quantum cost is one. The proposed design can also be extended to a 4-bit Reversible Universal shift Register. The proposed design is realized using Xilinx ISE14.2 and shows reduction in. quantum cost and garbage outputs. References [1] R. Landauer, \Irreversibility and Heat Generation in the Computational Process, IBM Journal of Research and Development, 5, pp , [2] C.H. Bennett, \Logical Reversibility of Computation,IBM J.Research and Development, pp , November [3] Vlatko Vedral, Adriano Bareno and Artur Ekert, \QUANTUM Net-works for Elementary Arithmetic Operations, arxiv:quantph/ v1, nov [4] A. Mishchenko, M. Azad Khan, A. Coppola, S.Yanushkevich, \A gen-eral decomposition for reversible logic IEEE transactions Proc. RM2001, Starkville, pp: , [5] Ha z Md. Hasan and A.R. Chowdhury, \Design of Reversible Binary Coded decimal Adder by using Reversible 4 bit Parallel Adder, IEEE Trans. Very Large Scale Integr. (VLSI) Jan [6] B.Raghu kanth, B.Murali Krishna, M. Sridhar, \A DISTINGUISH BE-TWEEN REVERSIBLE AND CONVENTIONAL LOGIC GATES, In-ternational Journal of Engineering Research and Applications (IJERA) ISSN: Vol. 2, Issue 2,Mar-Apr 2012, pp [7] Abu Sadat Md. Sayem, Masashi Ueda, \Optimization of reversible se-quential circuits Journal of Computing Volume 2, Issue 6, June 2010, ISSN [8] H.Thapliyal and N. Ranganathan, \Design of reversible sequentialcir-cuits optimizing quantum cost, delay and garbage [13] H. Thapliyal and M. B. Srinivas, \A Beginning in the Reversible Logic Synthesis of Sequential Circuits Proceedings of Military and Aerospace Programmable Logic Devices International Conference, [14] SKS Hari, S Shro, \E cient Building Blocks for Reversible Sequential Circuit designproceedings of the International Midwest Symposium on Circuits and Systems, [15] J.E. Rice, \A New Look at Reversible Memory ElementsProceedings of IEEE International Symposium on Circuits and Systems, [16] V. Rajmohan, \ Design of Counters Using Reversible LogicMember IACSIT IEEE [17] H. Thapliyal and A. P. Vinod, \Design of reversible sequential elements with feasibility of transistor implementationin Proc. the 2007 IEEE Intl. Symp. On Cir.and Sys., pages , New Orleans, USA, May [18] Ashis Kumer Biswas, La fa Jamal, M. A. Mottalib1, Ha z Md. Hasan Babu, \Design of a Reversible Parallel Loading Shift RegisterDhaka Univ. J.Eng and Tech. vol 1(2) 1-5,2011. [19] D. Krishnaveni, M. Geetha Priya, \A Novel Design of Reversible Uni-versal Shift Register with Reduced Delay and Quantum CostJournal of Computing, Volume 4, Issue 2, February 2012, Issn l [20] 1Md. Selim Al Mamun, 2Indrani Mandal, 3Md. Hasanuzzaman, \De-sign of Universal Shift Register Using Reversible Logic IJET Publica-tions UK. All rights reserved September, [21] Himanshu Thapliyal and M.B Srinivas, \ A Beginning in the Reversible Logic Synthesis of Sequential CircuitsMAPLD 2005 [22] Md. Belayet Ali 1, Md. Mosharof Hossin1 and Md. Eneyat Ullah1, \Design of Reversible Sequential Circuit Using Reversible Logic Synthe-sisDecember 2011 [23] Raghava Garipelly1, P.Madhu Kiran2, A.Santhosh Kumar, \A Review on Reversible Logic Gates and their ImplementationVolume 3, Issue 3, March 2013 [24] Rashid Anwar et al, \A Novel Design of Reversible Universal Shift Reg-isterInternational Journal of Computer Science and Mobile Computing, Vol.3 Issue.3, March- 2014, pg

A Beginning in the Reversible Logic Synthesis of Sequential Circuits

A Beginning in the Reversible Logic Synthesis of Sequential Circuits A Beginning in the Reversible Logic Synthesis of Sequential s Himanshu Thapliyal and M.B Srinivas Centre for VLSI and Embedded System Technologies International Institute of Information Technology, Hyderabad,

More information

A New Reversible TSG Gate and Its Application For Designing Efficient Adder Circuits

A New Reversible TSG Gate and Its Application For Designing Efficient Adder Circuits A New Reversible TSG Gate and Its Application For Designing Efficient Adder s Himanshu Thapliyal Center for VLSI and Embedded System Technologies International Institute of Information Technology Hyderabad-500019,

More information

An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates

An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates An Extension to DNA Based Fredkin Gate Circuits: Design of Reversible Sequential Circuits using Fredkin Gates Himanshu Thapliyal and M.B Srinivas (thapliyalhimanshu@yahoo.com, srinivas@iiit.net) Center

More information

COMPARATIVE ANALYSIS OF 4-BIT AND 8-BIT REVERSIBLE BARREL SHIFTER DESIGNS USING REVKIT

COMPARATIVE ANALYSIS OF 4-BIT AND 8-BIT REVERSIBLE BARREL SHIFTER DESIGNS USING REVKIT COMPARATIVE ANALYSIS OF 4-BIT AND 8-BIT REVERSIBLE BARREL SHIFTER DESIGNS USING REVKIT Hariprasad R. 1, Ganesh R. 1, Ravi S. 2, Marimuthu R. 1 and Balamurugan S. 1 1 School of Electrical Engineering, VIT

More information

AN IMPROVED DESIGN OF REVERSIBLE BINARY TO BINARY CODED DECIMAL CONVERTER FOR BINARY CODED DECIMAL MULTIPLICATION

AN IMPROVED DESIGN OF REVERSIBLE BINARY TO BINARY CODED DECIMAL CONVERTER FOR BINARY CODED DECIMAL MULTIPLICATION American Journal of Applied Sciences 11 (1): 69-73, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.69.73 Published Online 11 (1) 2014 (http://www.thescipub.com/ajas.toc) AN IMPROVED

More information

Counters & Shift Registers Chapter 8 of R.P Jain

Counters & Shift Registers Chapter 8 of R.P Jain Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Design of Reversible Random Access Memory

Design of Reversible Random Access Memory International Journal of omputer pplications (975 8887) Volume 56 No.15, October 212 esign of Reversible Random ccess Memory Md. Selim l Mamun epartment of omputer Science and Engineering, Jatiya Kabi

More information

Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

CpE358/CS381. Switching Theory and Logical Design. Class 10

CpE358/CS381. Switching Theory and Logical Design. Class 10 CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer- 24 Copyright 24-373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

FEASIBLE METHODOLOGY FOR OPTIMIZATION OF A NOVEL REVERSIBLE BINARY COMPRESSOR

FEASIBLE METHODOLOGY FOR OPTIMIZATION OF A NOVEL REVERSIBLE BINARY COMPRESSOR FEASIBLE METHODOLOGY FOR OPTIMIZATION OF A NOVEL REVERSIBLE BINARY COMPRESSOR ABSTRACT Neeraj Kumar Misra, Mukesh Kumar Kushwaha, Subodh Wairya and Amit Kumar Department of Electronics Engineering, Institute

More information

Modeling Registers and Counters

Modeling Registers and Counters Lab Workbook Introduction When several flip-flops are grouped together, with a common clock, to hold related information the resulting circuit is called a register. Just like flip-flops, registers may

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

More information

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer

Keywords Quantum logic gates, Quantum computing, Logic gate, Quantum computer Volume 3 Issue 10 October 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Introduction

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

Flip-Flops, Registers, Counters, and a Simple Processor

Flip-Flops, Registers, Counters, and a Simple Processor June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8. Sequential Circuits for Registers and Counters Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28. ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.

NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell. CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache

More information

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

Design and FPGA Implementation of a Novel Square Root Evaluator based on Vedic Mathematics

Design and FPGA Implementation of a Novel Square Root Evaluator based on Vedic Mathematics International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 15 (2014), pp. 1531-1537 International Research Publications House http://www. irphouse.com Design and FPGA

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

Floating Point Fused Add-Subtract and Fused Dot-Product Units

Floating Point Fused Add-Subtract and Fused Dot-Product Units Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,

More information

FPGA Implementation of an Advanced Traffic Light Controller using Verilog HDL

FPGA Implementation of an Advanced Traffic Light Controller using Verilog HDL FPGA Implementation of an Advanced Traffic Light Controller using Verilog HDL B. Dilip, Y. Alekhya, P. Divya Bharathi Abstract Traffic lights are the signaling devices used to manage traffic on multi-way

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

ONLINE TESTING IN TERNARY REVERSIBLE LOGIC

ONLINE TESTING IN TERNARY REVERSIBLE LOGIC ONLINE TESTING IN TERNARY REVERSIBLE LOGIC MD. RAQIBUR RAHMAN Bachelor of Science, University of Dhaka, 2004 Master of Science, University of Dhaka, 2005 A Thesis Submitted to the School of Graduate Studies

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Theory of Logic Circuits. Laboratory manual. Exercise 3

Theory of Logic Circuits. Laboratory manual. Exercise 3 Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

More information

Counters are sequential circuits which "count" through a specific state sequence.

Counters are sequential circuits which count through a specific state sequence. Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Design and analysis of flip flops for low power clocking system

Design and analysis of flip flops for low power clocking system Design and analysis of flip flops for low power clocking system Gabariyala sabadini.c PG Scholar, VLSI design, Department of ECE,PSNA college of Engg and Tech, Dindigul,India. Jeya priyanka.p PG Scholar,

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447).

List of Experiment. 8. To study and verify the BCD to Seven Segments DECODER.(IC-7447). G. H. RAISONI COLLEGE OF ENGINEERING, NAGPUR Department of Electronics & Communication Engineering Branch:-4 th Semester[Electronics] Subject: - Digital Circuits List of Experiment Sr. Name Of Experiment

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift

More information

High Speed Gate Level Synchronous Full Adder Designs

High Speed Gate Level Synchronous Full Adder Designs High Speed Gate Level Synchronous Full Adder Designs PADMANABHAN BALASUBRAMANIAN and NIKOS E. MASTORAKIS School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UNITED

More information

International Journal of Electronics and Computer Science Engineering 1482

International Journal of Electronics and Computer Science Engineering 1482 International Journal of Electronics and Computer Science Engineering 1482 Available Online at www.ijecse.org ISSN- 2277-1956 Behavioral Analysis of Different ALU Architectures G.V.V.S.R.Krishna Assistant

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

More information

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN

TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN TRUE SINGLE PHASE CLOCKING BASED FLIP-FLOP DESIGN USING DIFFERENT FOUNDRIES Priyanka Sharma 1 and Rajesh Mehra 2 1 ME student, Department of E.C.E, NITTTR, Chandigarh, India 2 Associate Professor, Department

More information

Using reverse circuit execution for efficient parallel simulation of logic circuits

Using reverse circuit execution for efficient parallel simulation of logic circuits Using reverse circuit execution for efficient parallel simulation of logic circuits Kalyan Perumalla *, Richard Fujimoto College of Computing, Georgia Tech, Atlanta, Georgia, USA ABSTRACT A novel technique

More information

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications

Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications Efficient Interconnect Design with Novel Repeater Insertion for Low Power Applications TRIPTI SHARMA, K. G. SHARMA, B. P. SINGH, NEHA ARORA Electronics & Communication Department MITS Deemed University,

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Modeling Latches and Flip-flops

Modeling Latches and Flip-flops Lab Workbook Introduction Sequential circuits are digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs. In effect,

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

Cascaded Counters. Page 1 BYU

Cascaded Counters. Page 1 BYU Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop

More information

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives,

DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, DC/DC BUCK Converter for Renewable Energy Applications Mr.C..Rajeshkumar M.E Power Electronic and Drives, Mr.C.Anandaraj Assistant Professor -EEE Thiruvalluvar college of Engineering And technology, Ponnur

More information

NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6

NAME AND SURNAME. TIME: 1 hour 30 minutes 1/6 E.T.S.E.T.B. MSc in ICT FINAL EXAM VLSI Digital Design Spring Course 2005-2006 June 6, 2006 Score publication date: June 19, 2006 Exam review request deadline: June 22, 2006 Academic consultancy: June

More information

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem A Novel Low Power, High Speed 4 Transistor CMOS Full Adder Cell with 5% Improvement in Threshold Loss Problem T. Vigneswaran, B. Mukundhan, and P. Subbarami Reddy Abstract Full adders are important components

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

Standart TTL, Serie 74... Art.Gruppe 13.15. 1...

Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... Art.Gruppe 13.15. 1... Standart TTL, Serie 74... 7400 Quad 2-Input Nand Gate (TP) DIL14 7402 Quad 2 Input Nor Gate (TP) DIL14 7403 Quad 2 Input Nand Gate (OC) DIL14 7404 Hex Inverter

More information

Master/Slave Flip Flops

Master/Slave Flip Flops Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave

More information

Layout of Multiple Cells

Layout of Multiple Cells Layout of Multiple Cells Beyond the primitive tier primitives add instances of primitives add additional transistors if necessary add substrate/well contacts (plugs) add additional polygons where needed

More information

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

FPGA Implementation of System-on-chip (SOC) Architecture for Spacecraft Application

FPGA Implementation of System-on-chip (SOC) Architecture for Spacecraft Application The International Journal Of Engineering And Science (IJES) Volume 3 Issue 6 Pages 17-24 2014 ISSN (e): 2319 1813 ISSN (p): 2319 1805 FPGA Implementation of System-on-chip (SOC) Architecture for Spacecraft

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

Design and Implementation of Vending Machine using Verilog HDL

Design and Implementation of Vending Machine using Verilog HDL 2011 2nd International Conference on Networking and Information Technology IPCSIT vol.17 (2011) (2011) IACSIT Press, Singapore Design and Implementation of Vending Machine using Verilog HDL Muhammad Ali

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells

Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Design of Low Power One-Bit Hybrid-CMOS Full Adder Cells Sushil B. Bhaisare 1, Sonalee P. Suryawanshi 2, Sagar P. Soitkar 3 1 Lecturer in Electronics Department, Nagpur University, G.H.R.I.E.T.W. Nagpur,

More information

A New Paradigm for Synchronous State Machine Design in Verilog

A New Paradigm for Synchronous State Machine Design in Verilog A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital

More information

Combinational Logic Design Process

Combinational Logic Design Process Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

More information

Wiki Lab Book. This week is practice for wiki usage during the project.

Wiki Lab Book. This week is practice for wiki usage during the project. Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice

More information

High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers

High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers High Speed and Efficient 4-Tap FIR Filter Design Using Modified ETA and Multipliers Mehta Shantanu Sheetal #1, Vigneswaran T. #2 # School of Electronics Engineering, VIT University Chennai, Tamil Nadu,

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();

More information

10 BIT s Current Mode Pipelined ADC

10 BIT s Current Mode Pipelined ADC 10 BIT s Current Mode Pipelined ADC K.BHARANI VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA kothareddybharani@yahoo.com P.JAYAKRISHNAN VLSI DEPARTMENT VIT UNIVERSITY VELLORE, INDIA pjayakrishnan@vit.ac.in

More information

An Open Architecture through Nanocomputing

An Open Architecture through Nanocomputing 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore An Open Architecture through Nanocomputing Joby Joseph1and A.

More information

Sequential Logic: Clocks, Registers, etc.

Sequential Logic: Clocks, Registers, etc. ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information