# IIR Filter. Dmitry Teytelman and Dan Van Winkle. Student name: RF and Digital Signal Processing US Particle Accelerator School June, 2009

Save this PDF as:

Size: px
Start display at page:

Download "IIR Filter. Dmitry Teytelman and Dan Van Winkle. Student name: RF and Digital Signal Processing US Particle Accelerator School June, 2009"

## Transcription

1 Dmitry Teytelman and Dan Van Winkle Student name: RF and Digital Signal Processing US Particle Accelerator School June, 2009 June 17, 2009

2 Contents 1 Introduction 2 2 IIR Coefficients 2 3 Exercises Measuring Through Response Resonant Response Negative Group Delay Extra Credit Glossary 7 1 of 7

3 1 Introduction Yesterday you have got some experience operating the LLRF4 board, looking at the analog-to-digital converter (ADC) signals and generating some synthesized output waveforms. Today we will connect the ADC to the digitalto-analog converter (DAC) via a digital filter. The filter implemented in the LLRF4 board for this class is a second-order infinite impulse response (IIR) design (biquad). More information on the IIR filter and its implementation can be found in Section 5 of the LLRF4 lab reference manual. 2 IIR Coefficients In this section you will find a short discussion of the relationship between the coefficients of the second-order polynomial and the roots. Let s consider the denominator polynomial of the second-order IIR filter as shown in Eq. 1 D(z) = z 2 + a 1 z + a 2 (1) As you well know, this polynomial has two roots. They can be either both real or both complex. If the roots are complex, then p 1 = p 2, that is one root is the complex conjugate of the other. We will limit our discussion to the case of complex roots. In polar coordinates the roots can be expressed as: p 1,2 = re ±iθ (2) For a stable IIR filter radius r has to be smaller than 1. Let s rewrite the polynomial D(z) as D(z) = (z p 1 )(z p 2 ) = z 2 p 1 z p 2 z + p 1 p 2 (3) Substituting root expressions from Equation 2 into Eq. 3 we get: D(z) = z 2 2r cos θz + r 2 This expression allows one to obtain coefficients a 1 and a 2 from the polar coordinates of the roots. Recall that the frequency response is evaluated at z = e iω, where ω = 2πf/f s is the normalized frequency. When ω = θ the magnitude of the polynomial is minimal, so IIR denominator becomes small, 2 of 7

4 Impulse response Sample number Figure 1: IIR filter impulse response. signifying a gain peak. Pole radius defines the magnitude of the peak for r = 0.9 we expect a gain of 10 (given by 1/ D(z) 1/0.1. Also, the radius is directly related to the damping time of the filter response. Impulse response of an IIR filter with transfer function 1 is given by a sequence H(z) = r sin θz z 2 2r cos θz + r 2 (4) h[n] = r n sin θnu[n] (5) 1 To obtain such a response from LLRF4, set b 1 = r sin θ, a 1 = 2r cos θ, a 2 = r 2 3 of 7

5 where u[n] is a unit step sequence, defined as 0 for n < 0, 1 otherwise. Such response for r = 0.9A and θ = π/3 is plotted in Figure 1 The damping time constant of such impulse response can be expressed as: τ = T s ln r (6) 3 Exercises 3.1 Measuring Through Response Our first measurement is very basic and will help you verify that everything is connected correctly and is operational. Connect the network analyzer stimulus port to ADC0. Connect the response port to DAC1. Set stimulus power level (under Sweep Setup) to +9 dbm. At this point you should be familiar with starting the experimental physics and industrial control system (EPICS) interface and making sure the board was operational. Turn on ADC0 and turn off the other three channels. Turn on the DACs. Select DAC1 signal as IIR. On the IIR coefficient panel, set b 0 and g 0 to 1, all other coefficients to 0. The frequency response of the filter, plotted in the window, should have 0 db gain and zero phase shift we are just passing through the signal. Set up the network analyzer to sweep from 40 to 56 MHz the response band of the ADC input filter. Your magnitude response should show the shape of that filter now. Record peak gain and measure the bandwidth of the filter: 4 of 7

6 3.2 Resonant Response Now configure the filter coefficients for peak response at 48 MHz and the damping time of 75 ns 2. Note, that numerator coefficient b 1 could be considered as an arbitrary gain, so there is no need to compute r sin θ. The resulting filter has a gain of 10 at the peak, so it will probably saturate. Reduce gain G0 to 0.1 or lower to avoid saturation. Record peak gain and measure the bandwidth of this digital filter 3 : Now adjust coefficients to the damping time of 8 µs. Remember to reduce the gain if saturation occurs. At this point you might have to reduce the IF bandwidth on the network analyzer to get the accurate sweep. Record peak gain and measure the bandwidth and quality factor of this digital filter: 2 Hint: use Equations 4 and 6. 3 In all of these measurements, feel free to re-center the network analyzer sweep on the peak and to zoom in for a closer look. Use 1601 points in a sweep for better peak definition. 5 of 7

7 3.3 Negative Group Delay In this exercise we will configure the LLRF4 board for a response with negative group delay. Set the denominator coefficients a 1 and a 2 to 0. Set the gain to 1. Now compute the polynomial coefficients with the roots at the radius of 0.99 and the angle corresponding to 48 MHz. We need to configure the numerator (b 0, b 1, and b 3 ) to this polynomial. However these coefficients cannot exceed 1 and you probably have a value for b 1 larger than one. Scale all three coefficients by 0.5, so that b 0 = 0.5 and so on. Enter the values and observe the response. You should see a notch in S 21 at 48 MHz. Add a trace on the network analyzer displaying the group delay. Measure the minimum group delay observed 4. Change trace format to phase. Does the phase plot look similar to what you see on the EPICS panel? 3.4 Extra Credit Try to adjust IIR filter parameters to generate as sharp a response as possible 5. You will have to reduce the gain as you narrow the response down. At some point severe quantization effects in the filter structure will prevent you from going any further. Measure and record the center frequency, peak gain, bandwidth, and Q: 4 Use averaging and set IF bandwidth to 7 khz or less 5 Hint: get r closer to 1 6 of 7

8 4 Glossary Glossary analog-to-digital converter (ADC) An electronic circuit that converts continuous analog signals to discrete digital numbers. 2, 4 digital-to-analog converter (DAC) A hardware device to convert a sequence of digital codes to corresponding analog voltages or currents. 2, 4 experimental physics and industrial control system (EPICS) A set of software tools and applications used to develop distributed soft real-time control systems. 4, 6 finite impulse response (FIR) A discrete-time filter, output of which only depends on a finite number of previous input samples. 7 infinite impulse response (IIR) A discrete-time filter, output of which depends on an infinite number of previous input samples. Unlike finite impulse response (FIR) filters, IIR structures involve internal feedback. 2, 4, 6 7 of 7

### ADC Familiarization. Dmitry Teytelman and Dan Van Winkle. Student name:

Dmitry Teytelman and Dan Van Winkle Student name: RF and Digital Signal Processing US Particle Accelerator School 15 19 June, 2009 June 16, 2009 Contents 1 Introduction 2 2 Exercises 2 2.1 Measuring 48

### EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 4 IIR Filters written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 6, 05 Objectives:

### LAB 4 DIGITAL FILTERING

LAB 4 DIGITAL FILTERING 1. LAB OBJECTIVE The purpose of this lab is to design and implement digital filters. You will design and implement a first order IIR (Infinite Impulse Response) filter and a second

### What is a Filter? Output Signal. Input Signal Amplitude. Frequency. Low Pass Filter

What is a Filter? Input Signal Amplitude Output Signal Frequency Time Sequence Low Pass Filter Time Sequence What is a Filter Input Signal Amplitude Output Signal Frequency Signal Noise Signal Noise Frequency

### (a) FIR Filter 6. (b) Feedback Filter 1.5. magnitude 4. magnitude omega/pi omega/pi

DSP First Laboratory Exercise #10 The z, n, and ^! Domains 1 Objective The objective for this lab is to build an intuitive understanding of the relationship between the location of poles and zeros in the

### Chapter 4: Problem Solutions

Chapter 4: Problem s Digital Filters Problems on Non Ideal Filters à Problem 4. We want to design a Discrete Time Low Pass Filter for a voice signal. The specifications are: Passband F p 4kHz, with 0.8dB

### This is the 23 rd lecture on DSP and our topic for today and a few more lectures to come will be analog filter design. (Refer Slide Time: 01:13-01:14)

Digital Signal Processing Prof. S.C. Dutta Roy Department of Electrical Electronics Indian Institute of Technology, Delhi Lecture - 23 Analog Filter Design This is the 23 rd lecture on DSP and our topic

### Understand the principles of operation and characterization of digital filters

Digital Filters 1.0 Aim Understand the principles of operation and characterization of digital filters 2.0 Learning Outcomes You will be able to: Implement a digital filter in MATLAB. Investigate how commercial

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### IIR Filter design (cf. Shenoi, 2006)

IIR Filter design (cf. Shenoi, 2006) The transfer function of the IIR filter is given by Its frequency responses are (where w is the normalized frequency ranging in [ π, π]. When a and b are real, the

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 8 DT Filter Design: IIR Filters Reading:

### Introduction p. 1 Digital signal processing and its benefits p. 1 Application areas p. 3 Key DSP operations p. 5 Digital signal processors p.

Preface p. xv Introduction p. 1 Digital signal processing and its benefits p. 1 Application areas p. 3 Key DSP operations p. 5 Digital signal processors p. 13 Overview of real-world applications of DSP

### Lecture 06: Design of Recursive Digital Filters

Lecture 06: Design of Recursive Digital Filters John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Lecture Contents Introduction IIR Filter Design Pole-Zero

### Digital Filter Plus User's Guide. Version January, 2015

Digital Filter Plus User's Guide Version 2.50 3 January, 2015 2014 Numerix Ltd. Email : mailto:numerix@numerix-dsp.com WWW : http://www.numerix-dsp.com/ INTRODUCTION 3 INSTALLATION 4 USING DIGITAL FILTER

### Impedance 50 (75 connectors via adapters)

VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

### Chapter 4: Time-Domain Representation for Linear Time-Invariant Systems

Chapter 4: Time-Domain Representation for Linear Time-Invariant Systems In this chapter we will consider several methods for describing relationship between the input and output of linear time-invariant

### Module 4. Contents. Digital Filters - Implementation and Design. Signal Flow Graphs. Digital Filter Structures. FIR and IIR Filter Design Techniques

Module 4 Digital Filters - Implementation and Design Digital Signal Processing. Slide 4.1 Contents Signal Flow Graphs Basic filtering operations Digital Filter Structures Direct form FIR and IIR filters

### The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1. Spirou et Fantasio

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 14, 2016 Course: EE 445S Evans Name: Spirou et Fantasio Last, First The exam is scheduled to last

### LAB #1: TIME AND FREQUENCY RESPONSES OF SERIES RLC CIRCUITS Updated July 19, 2003

SFSU - ENGR 3 ELECTRONICS LAB LAB #: TIME AND FREQUENCY RESPONSES OF SERIES RLC CIRCUITS Updated July 9, 3 Objective: To investigate the step, impulse, and frequency responses of series RLC circuits. To

### Chapter 4 HW Solution

Chapter 4 HW Solution Review Questions. 1. Name the performance specification for first order systems. Time constant τ. 2. What does the performance specification for a first order system tell us? How

### Outline. FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples

FIR Filter Design Outline FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples FIR Filter Characteristics FIR difference equation

### This is the 31 st lecture and we continue our discussion on Lattice Synthesis. (Refer Slide Time: 01:13)

Digital Signal Processing Prof: S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture 31 Lattice Synthesis (Contd...) This is the 31 st lecture and we continue

### Experiment # 3 Amplitude Modulation and Demodulation

ECE 316 c 2005 Bruno Korst-Fagundes Fall 2005 Experiment # 3 Amplitude Modulation and Demodulation Message Signal + X AM DSB DC Carrier 1 Purpose Amplitude modulation (AM), still widely used in commercial

### First and Second Order Filters

First and Second Order Filters These functions are useful for the design of simple filters or they can be cascaded to form high-order filter functions First Order Filters General first order bilinear transfer

### Why z-transform? Convolution becomes a multiplication of polynomials

z-transform Why z-transform? The z-transform introduces polynomials and rational functions in the analysis of linear time-discrete systems and has a similar importance as the Laplace transform for continuous

### Fourier Series Analysis

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II aboratory Experiment 6 Fourier Series Analysis 1 Introduction Objectives The aim

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

Implementation Techniques for Broadband Radio Channel Simulators Jochen Schütz Elektrobit GmbH Munich / Germany Tommi Jämsä Elektrobit Oy Oulu / Finland OUTLINE general information on radio channel simulators

### ELEC3004/7312: Signals, Systems and Controls

The University of Queensland School of Information Technology and Electrical Engineering ELEC3004/7312: Signals, Systems and Controls EXPERIMENT 4: IIR FILTERING ON THE NEXYS 2 Aims In this laboratory

### 9 Measurements on Transmission Lines

Measurements on Transmission Lines Power and Attenuation Measurements Although a variety of instruments measure power, the most accurate instrument is a power meter and a power sensor. The sensor is an

### A Brief Introduction to Sigma Delta Conversion

A Brief Introduction to Sigma Delta Conversion Application Note May 995 AN954 Author: David Jarman Introduction The sigma delta conversion techniue has been in existence for many years, but recent technological

### Conditioning and Correction of Arbitrary Waveforms Part 2: Other Impairments

From September 2005 High Frequency Electronics Copyright 2005 Summit Technical Media Conditioning and Correction of Arbitrary Waveforms Part 2: Other Impairments By Mike Griffin and John Hansen Agilent

### The Filter Wizard issue 28: Analyze FIR Filters Using High-School Algebra Kendall Castor-Perry

The Filter Wizard issue 28: Analyze FIR Filters Using High-School Algebra Kendall Castor-Perry In this first part of a two-parter, the Filter Wizard looks at some fundamental facts about FIR filter responses,

### FIR and IIR Transfer Functions

FIR and IIR Transfer Functions the input output relation of an LTI system is: the output in the z domain is: yn [ ] = hkxn [ ] [ k] k = Y( z) = H( z). X( z) Where H( z) = h[ n] z n= n so we can write the

### Generating frequency chirp signals to test radar systems

Application Note Generating frequency chirp signals to test radar systems Radar chirp signals can be simulated by the 3410 series signal generator using the internal arbitrary waveform generators, external

### UNIT III & IV. PARTA 2marks. 3. Mention advantages of direct form II and cascade structure? (2)

UNIT III & IV PARTA 2marks 1. Define canonic and non canonic form realizations. (2) 2. Draw the direct form realizations of FIR systems? (2) 3. Mention advantages of direct form II and cascade structure?

### FIR Filter Design. FIR Filters and the z-domain. The z-domain model of a general FIR filter is shown in Figure 1. Figure 1

FIR Filters and the -Domain FIR Filter Design The -domain model of a general FIR filter is shown in Figure. Figure Each - box indicates a further delay of one sampling period. For example, the input to

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Lab 4 Band Pass and Band Reject Filters

Lab 4 Band Pass and Band Reject Filters Introduction During this lab you will design and build three filters. First you will build a broad-band band-pass filter by cascading the high-pass and low-pass

### Understanding Poles and Zeros

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6502 PRINCIPAL OF DIGITAL SIGNAL PROCESSING YEAR / SEMESTER: III / V ACADEMIC

### Department of Electronics and Communication Engineering 1

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III Year ECE / V Semester EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING QUESTION BANK Department of

### CRP718 RF and Microwave Measurements Laboratory

CRP718 RF and Microwave Measurements Laboratory Experiment- MW2 Handout. Updated Jan 13, 2011 SPECTRUM ANALYZER BASED MEASUREMENTS (groups of 2 may omit part 2.1, but are advised to study the procedures

### Lab 2: Filter Design and Implementation

http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 1 of 1 Lab 2: Filter Design and Implementation Objectives of this Lab This lab Professor Deepa Kundur introduces you

### EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter)

EE 311: Electrical Engineering Junior Lab Active Filter Design (Sallen-Key Filter) Objective The purpose of this experiment is to design a set of second-order Sallen-Key active filters and to investigate

### Multiband Digital Filter Design for WCDMA Systems

2011 International Conference on Circuits, System and Simulation IPCSIT vol.7 (2011) (2011) IACSIT Press, Singapore Multiband Digital Filter Design for WCDMA Systems Raweewan Suklam and Chaiyod Pirak The

### ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION

ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION How-to, version: 3.1, Date: 04.05.2016 DEWESoft d.o.o. Gabrsko 11a, 1420 Trbovlje, Slovenia support@dewesoft.com Dewesoft has a possibility to set different

### ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

### 1 1. The ROC of the z-transform H(z) of the impulse response sequence h[n] is defined

A causal LTI digital filter is BIBO stable if and only if its impulse response h[ is absolutely summable, i.e., S h [ < n We now develop a stability condition in terms of the pole locations of the transfer

### An introduction to generalized vector spaces and Fourier analysis. by M. Croft

1 An introduction to generalized vector spaces and Fourier analysis. by M. Croft FOURIER ANALYSIS : Introduction Reading: Brophy p. 58-63 This lab is u lab on Fourier analysis and consists of VI parts.

### AC 2012-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY

AC 212-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY Dr. Tooran Emami, U.S. Coast Guard Academy Tooran Emami received her M.S. and Ph.D.

### 5 Amplitude Modulation

5 Amplitude Modulation 5.1 Summary This laboratory exercise has two objectives. The first is to gain experience in actually programming the USRP to act as a transmitter or a receiver. The second is to

### Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

### Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise

Industrial Health 05, 53, 7 Original Article Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise Andrew N. RIMELL, Neil J. MANSFIELD *

### Labview VI Example Virtual Filters Written by: Dan Lankow 2014

PH-315 Portland State University Labview VI Example Virtual Filters Written by: Dan Lankow 2014 1. ABSTRAT For this lab, you will be introduced to Labview. You will be implementing a Low Pass, High Pass,

### Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

### Master Thesis of 30 Credits

LINNAEUS UNIVERSITY IFE, VÄXJÖ Department of Physics and Electrical Engineering Master Thesis of 30 Credits Finite Precision Error in FPGA Measurement Submitted By: Shoaib Ahmad Registration No: 850302-7578

### The Calculation of G rms

The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

### Digital to Analog Conversion Using Pulse Width Modulation

Digital to Analog Conversion Using Pulse Width Modulation Samer El-Haj-Mahmoud Electronics Engineering Technology Program Texas A&M University Instructor s Portion Summary The purpose of this lab is to

### Estimating Dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum

Estimating Dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum 1 Anton and Pedro Abstract Here the steps done for identification of dynamics for (DC-motor)+(1st Link) of the Furuta Pendulum are described.

### CMOS Analog IC Design Page

CMOS Analog IC Design Page 10.5-4 NYQUIST FREQUENCY ANALOG-DIGITAL CONVERTERS The sampled nature of the ADC places a practical limit on the bandwidth of the input signal. If the sampling frequency is f

### DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

### 12 Converting Between Digital and Analog

12 CONVERTING BETWEEN DIGITAL AND ANALOG 12 Converting Between Digital and Analog For many applications, it is necessary to convert analog signals from a circuit or sensor to digital signals that can be

### SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

### Chapter 15. Active Filter Circuits

hapter 5 Active Filter ircuits 5.0 Introduction Filter is circuit that capable of passing signal from input to put that has frequency within a specified band and attenuating all others side the band. This

### Experiment 16 ANALOG FOURIER ANALYSIS. Experiment setup 4. Prelab problems 6. Experiment procedure 7. Appendix A: an effective high-q filter A-1

16-i Experiment 16 ANALOG FOURIER ANALYI Introduction 1 Theory 1 Experiment setup 4 Prelab problems 6 Experiment procedure 7 Appendix A: an effective high-q filter A-1 16-ii 16-1 1/31/14 INTRODUCTION In

### Difference Equations

Difference Equations Andrew W H House 10 June 004 1 The Basics of Difference Equations Recall that in a previous section we saw that IIR systems cannot be evaluated using the convolution sum because it

### 6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson

Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more

### POLES, ZEROS, and HIGHER ORDER FILTERS By John Ehlers

POLES, ZEROS, and HIGHER ORDER FILTERS By John Ehlers INTRODUCTION Smoothing filters are at the very core of what we technical analysts do. All technicians are familiar with Simple Moving Averages, Exponential

### The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013

The Oscilloscope, the Signal Generator and Your Filter s Test Setup SGM 5/29/2013 1. Oscilloscope A multimeter is an appropriate device to measure DC voltages, however, when a signal alternates at relatively

### Em bedded DSP : I ntroduction to Digital Filters

Embedded DSP : Introduction to Digital Filters 1 Em bedded DSP : I ntroduction to Digital Filters Digital filters are a important part of DSP. In fact their extraordinary performance is one of the keys

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### 2 of 6 09/27/ :42 PM Figure 2: A system that has a sampling frequency at f s (a) will digitize signals with frequencies below f s /2 as well as

1 of 6 09/27/2006 05:42 PM Tutorial: Basics of choosing and designing the best filter for an effective data-acquisition system By Bonnie C. Baker, Senior Applications Engineer, Texas Instruments, Inc.

### Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division. Rho.

Reflection Coefficient Applications in Test Measurements Bernhart A. Gebs Senior Product Development Engineer Belden Electronics Division Reflection coefficient is the basis of several measurements common

### EE4512 Analog and Digital Communications Chapter 2. Chapter 2 Frequency Domain Analysis

Chapter 2 Frequency Domain Analysis Chapter 2 Frequency Domain Analysis Why Study Frequency Domain Analysis? Pages 6-136 Why frequency domain analysis? Allows simple algebra rather than time-domain differential

### EELE445 - Lab 2 Pulse Signals

EELE445 - Lab 2 Pulse Signals PURPOSE The purpose of the lab is to examine the characteristics of some common pulsed waveforms in the time and frequency domain. The repetitive pulsed waveforms used are

### Roundoff Noise in IIR Digital Filters

Chapter 16 Roundoff Noise in IIR Digital Filters It will not be possible in this brief chapter to discuss all forms of IIR (infinite impulse response) digital filters and how quantization takes place in

### CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters

CONVERTERS Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters Filters Filters are used to remove unwanted bandwidths from a signal Filter classification according

### Lab 4 Sampling, Aliasing, FIR Filtering

47 Lab 4 Sampling, Aliasing, FIR Filtering This is a software lab. In your report, please include all Matlab code, numerical results, plots, and your explanations of the theoretical questions. The due

### This is the 39th lecture and our topic for today is FIR Digital Filter Design by Windowing.

Digital Signal Processing Prof: S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 39 FIR Digital Filter Design by Windowing This is the 39th lecture and

### Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions

Digital to Analog Conversions Objective o o o o o To construct and operate a binary-weighted DAC To construct and operate a Digital to Analog Converters Testing the ADC and DAC With DC Input Testing the

### RC Circuits. 1 Introduction. 2 Capacitors

1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review

### FIR Filter For Audio Practitioners

Introduction Electronic correction in the form of Equalization (EQ) is one of the most useful audio tools for loudspeaker compensation/correction, whether it compensates from non linearities in the loudspeaker

### Analogue Filter Design

Analogue Filter Design Module: SEA Signals and Telecoms Lecturer: URL: http://www.personal.rdg.ac.uk/~stsgrimb/ email: j.b.grimbleby reading.ac.uk Number of Lectures: 5 Reference text: Design with Operational

### In modern electronics, it is important to be able to separate a signal into different

Introduction In modern electronics, it is important to be able to separate a signal into different frequency regions. In analog electronics, four classes of filters exist to process an input signal: low-pass,

### R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

### AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

### Using GNU Radio Companion: Tutorial 4. Using Complex Signals and Receiving SSB

Using GNU Radio Companion: Tutorial 4. Using Complex Signals and Receiving SSB This tutorial is a guide to receiving SSB signals. It will also illustrate some of the properties of complex (analytic) signals

### Circuit 1: Half-Wave Rectifier

Circuit : Half-Wave Rectifier /2 Wave Rectifier Behavior R (ideal) (.7V drop).5.5 2 2.5 3 The /2-wave rectifier circuit passes current only when >.7V. In this case, the diode s forward voltage drop is

### One Port Network Analyzer

99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com One Port Network Analyzer 5.4GHz Impendance : 50Ω(75Ωconnectors via adapters) Test

### Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

### Lecture 3: Quantization Effects

Lecture 3: Quantization Effects Reading: 6.7-6.8. We have so far discussed the design of discrete-time filters, not digital filters. To understand the characteristics of digital filters, we need first

### RF Network Analyzer Basics

RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

### Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

### EE 186 LAB 2 FALL 2004. Network Analyzer Fundamentals and Two Tone Linearity

Network Analyzer Fundamentals and Two Tone Linearity Name: Name: Name: Objective: To become familiar with the basic operation of a network analyzer To use the network analyzer to characterize the in-band

### Operational Amplifiers - Configurations and Characteristics

Operational Amplifiers - Configurations and Characteristics What is an Op Amp An Op Amp is an integrated circuit that can be used to amplify both DC and AC signals. One of the most common Op Amps available