Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Size: px
Start display at page:

Transcription

1 Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering Version 4 (February 7, 2013) This document provides some background information on GFSK modulation on behalf of student exercises for the course Implementation of Digital Signal Processing as taught at the University of Twente 1. 1 Principle Gaussian frequency shift keying (GFSK) is a modulation method for digital communication found in many standards such as Bluetooth, DECT and Wavenis. Digital communication amounts to translating symbols from a discrete alphabet into a signal that the transmitting side can send into a transmission medium and from which the receiving side can recover the original symbols. In the context of this example, the alphabet has only two symbols 0 and 1. When the alphabet consists of just two symbols, the symbols are called bits. The modulation method is a variant of frequency modulation (FM) of some carrier frequency ω c. 2 Frequency shift keying (FSK) conveys information by decreasing the carrier frequency for the duration of a 0 symbol and increasing the frequency for the duration of a 1 symbol. If one applies Gaussian filtering to the square-wave signal that would shift the carrier frequency, one gets GFSK. The models presented here are restricted to the digital part of the entire communication system using an intermediate frequency ω IF as carrier frequency. In a real-life system, the signals traveling between antennas have a (much) higher carrier frequency, the so-called radio frequency ω RF. Analog circuits are normally used for upconversion to RF at the transmitter and downconversion to IF at the receiver. An analog-to-digital converter (ADC) at the receiver side, brings the signal back to the digital domain. The discussion below leaves out the RF part of the signal processing chain and pretends that the communication takes place at IF. 1 gerezsh/vlsidsp/index.html 2 In this document the term frequency is sloppily used for what is actually the angular frequency ω: ω = 2πf. 1

2 2 Transmitter The transmitted signal s(t) can be described by a cosine at ω IF with a time-dependent phase: s(t) = A cos(ω IF t + φ(t)) (1) In this formula, A is the signal s amplitude which is constant as the modulation only affects phase. φ(t) is derived from the bits that are transmitted: t φ(t) = hπ a i γ(τ it)dτ h is the modulation index: the larger the value, the wider the bandwidth occupied around the carrier. A frequently encountered case is: h = 0.5. Note that the case h = 0 represents an unmodulated carrier. a i is a sequence of numbers: +1 if the ith bit is 1 and 1 if that bit is 0. γ(t) is the frequency pulse. If no Gaussian filter would be applied (FSK instead of GFSK), the frequency pulse would be rectangular: 1 in the interval [0, ] and 0 outside this interval, where is the duration of one symbol. So, ignoring the sign of a i, the phase contribution of one symbol would be hπ. Continuing the reasoning, transmitting a continuous series of 1 s during 1 second would amount to a total phase shift of hπ. Note that the total phase shift in one second is equal to the angular frequency shift. The real frequency shift is then h. This means that the instantaneous frequency of an FSK signal is either f IF h or f IF + h ignoring the effects of switching between the two frequencies (f IF = ω IF 2π ). The Gaussian filter smoothens the shape of the frequency pulse and makes it wider than one symbol period (this causes intersymbol interference). The goal is to avoid the high frequencies caused by switching. When the sequence to be transmitted contains multiple equal bits, the effect of filtering dies out and the extreme instantaneous frequencies mentioned for FSK are reached. Otherwise, the frequency swing around ω IF is smaller. i The Gaussian filter is given by: g(t) = 1 2πσ e 1 2 ( t σ )2 where σ is related to the filter s 3-dB bandwidth B: ln2 σ = 2πB Note that the Gaussian filter s impulse response spans from to. For practical implementations, the span has to be limited. 3 Noise, SNR, and BER The communication channel is the connection between transmitter and receiver. Distortion of the signal by the channel affects the quality of the received signal. The considered design models so-called 2

3 additive white Gaussian noise (AWGN) as the only source of distortion. If n(t) is the noise signal, the noisy signal s n (t) can simply be expressed as: s n (t) = s(t) + n(t) Note that the model does not introduce any attenuation to the signal. The noise is parameterized by the signal-to-noise ratio (SNR) which is the quotient of the signal power and the noise power (often expressed in db). In the model, the signal strength is kept constant and the noise power is chosen that corresponds to the given SNR. When designing the GFSK receiver, the bit-error rate (BER), viz. the number of wrongly detected bits divided by the total number of transmitted bits, is the measure of quality. The design goal is to make the receiver as cheap as possible, for example in terms of logic gates in an ASIC realization, while satisfying the BER requirements. 4 Receiver A common method to extract the transmitted bits from the modulated signal is to shift the signal to baseband (to reduce the carrier frequency to zero), to filter the signal and then apply a so-called delay and multiply transformation. These steps will be explained in short below. First, the signal as described in Equation 1 will be rewritten to: s(t) = A cos((ω IF + ω d )t) Here, ω d is the instantaneous frequency offset due to modulation (remember that frequency is the time derivative of phase, so ω d = d dt φ(t)). So, if one would be able to know ω d for a specific symbol period, one would be able to know the value of the bit from the sign of ω d : ω d > 0 would mean that a 1 was received and ω d < 0 that a 0 was received. In order to eliminate ω IF, one can multiply s(t) with an unmodulated sine and cosine: i m (t) = s(t) cos(ω IF t) q m (t) = s(t) sin(ω IF t) This is called mixing. The two signals i m (t) and q m (t) are called the in-phase and quadrature components of the new signal. Following the product rules of trigonometry, one then gets: i m (t) = A 2 (cos((2ω IF + ω d )t) + cos(ω d t)) q m (t) = A 2 ( sin((2ω IF + ω d )t) + sin(ω d t)) The interpretation of these formulae is that both i m (t) and q m (t) will now contain the original signal twice: once around center frequency 2ω IF and once around center frequency 0. The signal component around 2ω IF can be removed by low-pass filtering to obtain: i l (t) = A 2 cos(ω dt) q l (t) = A 2 sin(ω dt) 3

4 Parameter Value symbol rate 500 khz modulation index h 0.5 input sample frequency (ADC output) 8 MHz hardware clock frequency 8 MHz ω IF 1 MHz bandwidth low-pass filter 1 MHz Figure 1: Problem specification. The delay-and-multiply operation is a classical technique for FM demodulation [1]. It amounts to computing: d(t) = q l (t) i l (t T) i l (t) q l (t T) Applying once again the product rules for sines and cosines, one finds: d(t) = A2 4 sin(ω d T) If T = (one could also choose other values) and h = 0.5, remembering that the maximal frequency deviation for GFSK is hπ, the value of d(t) will be at most A2 4 sin π 2 = A2 4. Similarly, the minimum value of d(t) will be A2 4. Actually, d(t) > 0 for ω d > 0 and d(t) < 0 for ω d < 0. This means that the sequence of mixing, low-pass filtering and delay and multiply has resulted in a signal from which the original sequence of bits can be extracted by sampling at the right moment. 5 Facts on the Reference Designs This section presents some numeric information about the reference GFSK designs and discusses its implications. Some specifications for the GFSK project are given in Figure 1. Modulation uses 16 samples for each symbol. For this reason, a symbol rate of 0.5 MHz results in a sample rate of 8 MHz (so, using the Nyquist criterion, the maximum frequency representable in the system is 4 MHz). A hardware clock of 8 MHz implies a one-to-one implementation. It was mentioned in Section 2, that the Gaussian filter has an infinite span in theory, but that the span needs to be limited in practice. In the reference design, the span has been limited to 4 symbol periods. It is therefore implemented as a 64-tap FIR filter. The low-pass filter has a bandwidth of 1 MHz, meaning that all signals with a higher frequency are suppressed. This has consequences for the noise added in the channel. As the bandwidth of the simulated system is 4 times as large as the bandwidth considered after filtering, the SNR is corrected by a factor of 4. This can be seen as follows: the added noise is white, meaning that all frequencies are equally present; the filter removes three quarters of the noise; so, to have the correct noise energy in the frequency band of interest, a correction with 4 is necessary. 4

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

MODULATION Systems (part 1)

Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

5 Signal Design for Bandlimited Channels

225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g

Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

Appendix D Digital Modulation and GMSK

D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used

Lezione 6 Communications Blockset

Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications

0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS

A WEB BASED TRAINING MODULE FOR TEACHING DIGITAL COMMUNICATIONS Ali Kara 1, Cihangir Erdem 1, Mehmet Efe Ozbek 1, Nergiz Cagiltay 2, Elif Aydin 1 (1) Department of Electrical and Electronics Engineering,

AM/FM/ϕM Measurement Demodulator FS-K7

Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FS-K7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters

Time and Frequency Domain Equalization

Time and Frequency Domain Equalization Presented By: Khaled Shawky Hassan Under Supervision of: Prof. Werner Henkel Introduction to Equalization Non-ideal analog-media such as telephone cables and radio

Vector Signal Analyzer FSQ-K70

Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

Chap#5 (Data communication)

Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

EECC694 - Shaaban. Transmission Channel

The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com

MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions

Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

A SIMULATION STUDY ON SPACE-TIME EQUALIZATION FOR MOBILE BROADBAND COMMUNICATION IN AN INDUSTRIAL INDOOR ENVIRONMENT

A SIMULATION STUDY ON SPACE-TIME EQUALIZATION FOR MOBILE BROADBAND COMMUNICATION IN AN INDUSTRIAL INDOOR ENVIRONMENT U. Trautwein, G. Sommerkorn, R. S. Thomä FG EMT, Ilmenau University of Technology P.O.B.

Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description

APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

Duobinary Modulation For Optical Systems

Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the

The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

HD Radio FM Transmission System Specifications Rev. F August 24, 2011

HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.

1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz

Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298

Agilent Digital Modulation in Communications Systems An Introduction Application Note 1298 Introduction This application note introduces the concepts of digital modulation used in many communications systems

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

Maximizing Receiver Dynamic Range for Spectrum Monitoring

Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

1.6 Gbit/s Synchronous Optical QPSK Transmission with Standard DFB Lasers in Realtime

1 1.6 Gbit/s Synchronous Optical QPSK Transmission with Standard DFB Lasers in Realtime S. Hoffmann, T. Pfau, R. Peveling, S. Bhandare, O. Adamczyk, M. Porrmann, R. Noé Univ. Paderborn, EIM-E Optical Communication

DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development

The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels

Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [An system for Mobile Multi-Gb/s at Hz, concept, application and implementation] Date Submitted: [17 September,

Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43

Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver

NRZ Bandwidth - HF Cutoff vs. SNR

Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

Interpreting the Information Element C/I

Prepared Date Rev Document no pproved File/reference 1(17) 2000-04-11 Interpreting the Information Element C/I This document primarily addresses users of TEMS Investigation. 2(17) 1 Introduction Why is

Radio Transmission Performance of EPCglobal Gen-2 RFID System

Radio Transmission Performance of EPCglobal Gen-2 RFID System Manar Mohaisen, HeeSeok Yoon, and KyungHi Chang The Graduate School of Information Technology & Telecommunications INHA University Incheon,

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

Simple SDR Receiver. Looking for some hardware to learn about SDR? This project may be just what you need to explore this hot topic!

Michael Hightower, KF6SJ 13620 White Rock Station Rd, Poway, CA 92064; kf6sj@arrl.net Simple SDR Receiver Looking for some hardware to learn about SDR? This project may be just what you need to explore

Revision of Lecture Eighteen

Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

Analog Representations of Sound

Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

INTERNATIONAL TELECOMMUNICATION UNION \$!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+

INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU \$!4! #/--5.)#!4)/. /6%2 4(% 4%,%(/.%.%47/2+ ")43 %2 3%#/.\$ -/\$%- 34!.\$!2\$):%\$ &/2 53% ). 4(% '%.%2!, 37)4#(%\$

ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors

International Journal of Engineering and Management Research, Volume-3, Issue-3, June 2013 ISSN No.: 2250-0758 Pages: 24-29 www.ijemr.net ISI Mitigation in Image Data for Wireless Wideband Communications

Propagation Channel Emulator ECP_V3

Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links

Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.

Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data

:-------------------------------------------------------Instructor---------------------

Yarmouk University Hijjawi Faculty for Engineering Technology Computer Engineering Department CPE-462 Digital Data Communications Final Exam: A Date: 20/05/09 Student Name :-------------------------------------------------------Instructor---------------------

'Possibilities and Limitations in Software Defined Radio Design.

'Possibilities and Limitations in Software Defined Radio Design. or Die Eierlegende Wollmilchsau Peter E. Chadwick Chairman, ETSI ERM_TG30, co-ordinated by ETSI ERM_RM Software Defined Radio or the answer

(1) (2) (3) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):

Angle Modulation, II. Lecture topics FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation

Angle Modulation, II EE 179, Lecture 12, Handout #19 Lecture topics FM bandwidth and Carson s rule Spectral analysis of FM Narrowband FM Modulation Wideband FM Modulation EE 179, April 25, 2014 Lecture

Coexistence Tips the Market for Wireless System Simulation Chris Aden, MathWorks

Coexistence Tips the Market for Wireless System Simulation Chris Aden, MathWorks Introduction From time to time, marshalling events occur in stable markets placing difficult new requirements on established

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION )454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU \$!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.\$ \$50,%8 -/\$%- 34!.\$!2\$):%\$ &/2 53% ). 4(% '%.%2!,

AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One

Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

INTERNATIONAL TELECOMMUNICATION UNION DATA COMMUNICATION OVER THE TELEPHONE NETWORK

INTERNATIONAL TELEOMMUNIATION UNION ITT V.7 THE INTERNATIONAL TELEGRAPH AN TELEPHONE ONSULTATIVE OMMITTEE ATA OMMUNIATION OVER THE TELEPHONE NETWORK A 2-WIRE MOEM FOR FASIMILE APPLIATIONS WITH RATES UP

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers

Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION )454 6 TER TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU \$!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ ")43 0%2 3%#/.\$ \$50,%8 -/\$%- 53).' 4(% %#(/ #!.#%,,!4)/. 4%#(.)15%

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption

Achieving New Levels of Channel Density in Downstream Cable Transmitter Systems: RF DACs Deliver Smaller Size and Lower Power Consumption Introduction By: Analog Devices, Inc. (ADI) Daniel E. Fague, Applications

Optical Communications Analysis of transmission systems 2007-2008 Henrique Salgado hsalgado@fe.up.pt 1 Point-to-point system The project of a point-to-point link involves, in general, many interrelated

Introduction to FM-Stereo-RDS Modulation

Introduction to FM-Stereo-RDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely

CIRCUITS AND SYSTEMS Circuits and Systems for Radiofrequency and Telecommunications Dente Del Corso

CIRCUITS AND SYSTEMS FOR RADIOFREQUENCY AND TELECOMMUNICATIONS Dante Del Corso Politecnico di Torino, Torino, Italy. Keywords: Heterodyne, direct conversion, ZIF, image frequency, mixer, SDR, LNA, PA,

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

Communication Systems

AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)

Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement

Digital Transmission (Line Coding)

Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation.

Demonstration of a Software Defined Radio Platform for dynamic spectrum allocation. Livia Ruiz Centre for Telecommunications Value-Chain Research Institute of Microelectronic and Wireless Systems, NUI

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science

A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

The Islamic University of Gaza Faculty of Engineering Computer Engineering Department Data Communications ECOM 4314 Solution (Chapters 5-6-7-8) Dr. Hasan Qunoo Eng. Wafaa Audah Eng. Waleed Mousa 1. A cable

Introduction to IQ-demodulation of RF-data

Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced

From baseband to bitstream and back again: What security researchers really want to do with SDR. Andy Davis, Research Director NCC Group

From baseband to bitstream and back again: What security researchers really want to do with SDR Andy Davis, Research Director NCC Group Agenda Signals basics Modulation schemes Information sources Receiving

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

Acoustic Processor of the MCM Sonar

AUTOMATYKA/ AUTOMATICS 2013 Vol. 17 No. 1 http://dx.doi.org/10.7494/automat.2013.17.1.73 Mariusz Rudnicki*, Jan Schmidt*, Aleksander Schmidt*, Wojciech Leœniak* Acoustic Processor of the MCM Sonar 1. Introduction

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS

PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE

What s The Difference Between Bit Rate And Baud Rate?

What s The Difference Between Bit Rate And Baud Rate? Apr. 27, 2012 Lou Frenzel Electronic Design Serial-data speed is usually stated in terms of bit rate. However, another oftquoted measure of speed is

Evolution from Voiceband to Broadband Internet Access

Evolution from Voiceband to Broadband Internet Access Murtaza Ali DSPS R&D Center Texas Instruments Abstract With the growth of Internet, demand for high bit rate Internet access is growing. Even though

IN current film media, the increase in areal density has

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 1, JANUARY 2008 193 A New Read Channel Model for Patterned Media Storage Seyhan Karakulak, Paul H. Siegel, Fellow, IEEE, Jack K. Wolf, Life Fellow, IEEE, and