# Filter Comparison. Match #1: Analog vs. Digital Filters

Save this PDF as:

Size: px
Start display at page:

Download "Filter Comparison. Match #1: Analog vs. Digital Filters"

## Transcription

1 CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select champions from each side and let them fight it out. In the first match, digital filters are pitted against analog filters to see which technology is best. In the second round, the windowed-sinc is matched against the Chebyshev to find the king of the frequency domain filters. In the final battle, the moving average fights the single pole filter for the time domain championship. Enough talk; let the competition begin! Match #1: Analog vs. Digital Filters Most digital signals originate in analog electronics. If the signal needs to be filtered, is it better to use an analog filter before digitization, or a digital filter after? We will answer this question by letting two of the best contenders deliver their blows. The goal will be to provide a low-pass filter at 1 khz. Fighting for the analog side is a six pole Chebyshev filter with db (6%) ripple. As described in Chapter 3, this can be constructed with 3 op amps, 12 resistors, and 6 capacitors. In the digital corner, the windowed-sinc is warming up and ready to fight. The analog signal is digitized at a 1 khz sampling rate, making the cutoff frequency.1 on the digital frequency scale. The length of the windowed-sinc will be chosen to be 129 points, providing the same 9% to 1% roll-off as the analog filter. Fair is fair. Figure 21-1 shows the frequency and step responses for these two filters. Let's compare the two filters blow-by-blow. As shown in (a) and (b), the analog filter has a 6% ripple in the passband, while the digital filter is perfectly flat (within 2%). The analog designer might argue that the ripple can be selected in the design; however, this misses the point. The flatness achievable with analog filters is limited by the accuracy of their resistors and 343

3 Chapter 21- Filter Comparison 345 Analog Filter (6 pole db Chebyshev) Digital Filter (129 point windowed-sinc) 1.25 a. response 1.25 b. response (hertz) c. response (db) 2 d. response (db) (db) (db) (hertz) e. Step response f. Step response Time (milliseconds) FIGURE 21-1 Comparison of analog and digital filters. Digital filters have better performance in many areas, such as: passband ripple, (a) vs. (b), roll-off and stopband attenuation, (c) vs. (d), and step response symmetry, (e) vs. (f). The digital filter in this example has a cutoff frequency of.1 of the 1 khz sampling rate. This provides a fair comparison to the 1 khz cutoff frequency of the analog filter. a linear scale to show their exceptional filter performance, while analog filters need the logarithmic scale to show their huge dynamic range.

4 346 The Scientist and Engineer's Guide to Digital Signal Processing Match #2: Windowed-Sinc vs. Chebyshev Both the windowed-sinc and the Chebyshev filters are designed to separate one band of frequencies from another. The windowed-sinc is an FIR filter implemented by convolution, while the Chebyshev is an IIR filter carried out by recursion. Which is the best digital filter in the frequency domain? We'll let them fight it out. The recursive filter contender will be a % ripple, 6 pole Chebyshev low-pass filter. A fair comparison is complicated by the fact that the Chebyshev's frequency response changes with the cutoff frequency. We will use a cutoff frequency of.2, and select the windowed-sinc's filter kernel to be 51 points. This makes both filters have the same 9% to 1% roll-off, as shown in Fig. 21-2(a). Now the pushing and shoving begins. The recursive filter has a % ripple in the passband, while the windowed-sinc is flat. However, we could easily set the recursive filter ripple to % if needed. No points. Figure 21-2b shows that the windowed-sinc has a much better stopband attenuation than the Chebyshev. One point for the windowed-sinc. Figure 21-3 shows the step response of the two filters. Both are bad, as you should expect for frequency domain filters. The recursive filter has a nonlinear phase, but this can be corrected with bidirectional filtering. Since both filters are so ugly in this parameter, we will call this a draw. So far, there isn't much difference between these two filters; either will work when moderate performance is needed. The heavy hitting comes over two critical issues: maximum performance and speed. The windowed-sinc is a powerhouse, while the Chebyshev is quick and agile. Suppose you have a really tough frequency separation problem, say, needing to isolate a 1 4 a. response 2 b. response (db) windowed-sinc Chebyshev recursive (db) windowed-sinc Chebyshev recursive -8-1 FIGURE 21-2 Windowed-sinc and Chebyshev frequency responses. responses are shown for a 51 point windowed-sinc filter and a 6 pole, % ripple Chebyshev recursive filter. The windowed-sinc has better stopband attenuation, but either will work in moderate performance applications. The cutoff frequency of both filters is.2, measured at an amplitude of for the windowed-sinc, and.77 for the recursive.

5 Chapter 21- Filter Comparison a. Windowed-sinc step response b. Chebyshev step response FIGURE 21-3 Windowed--sinc and Chebyshev step responses. The step responses are shown for a 51 point windowed-sinc filter and a 6 pole, % ripple Chebyshev recursive filter. Each of these filters has a cutoff frequency of.2. The windowed-sinc has a slightly better step response because it has less overshoot and a zero phase. millivolt signal at 61 hertz that is riding on a 12 volt power line at 6 hertz. Figure 21-4 shows how these two filters compare when you need maximum performance. The recursive filter is a 6 pole Chebyshev with % ripple. This is the maximum number of poles that can be used at a 5 cutoff frequency with single precision. The windowed-sinc uses a 11 point filter kernel, formed by convolving a 51 point windowed-sinc filter kernel with itself. As shown in Chapter 16, this provides greater stopband attenuation. How do these two filters compare when maximum performance is needed? The windowed-sinc crushes the Chebyshev! Even if the recursive filter were improved (more poles, multistage implementation, double precision, etc.), it is still no match for the FIR performance. This is especially impressive when you consider that the windowed-sinc has only begun to fight. There are strong limits on the maximum performance that recursive filters can provide. The windowed-sinc, in contrast, can be pushed to incredible levels. This is, of course, provided you are willing to wait for the result. Which brings up the second critical issue: speed. 2 FIGURE 21-4 Maximum performance of FIR and IIR filters. The frequency response of the windowed-sinc can be virtually any shape needed, while the Chebyshev recursive filter is very limited. This graph compares the frequency response of a six pole Chebyshev recursive filter with a 11 point windowed-sinc filter. (db) Chebyshev (IIR) Windowed-sinc (FIR) -1

6 348 The Scientist and Engineer's Guide to Digital Signal Processing 5 FIGURE 21-5 Comparing FIR and IIR execution speeds. These curves shows the relative execution times for a windowed-sinc filter compared with an equivalent six pole Chebyshev recursive filter. Curves are shown for implementing the FIR filter by both the standard and the FFT convolution algorithms. The windowed-sinc execution time rises at low and high frequencies because the filter kernel must be made longer to keep up with the greater performance of the recursive filter at these frequencies. In general, IIR filters are an order of magnitude faster than FIR filters of comparable performance. Relative execution time standard convolution FFT convolution Recursive Comparing these filters for speed is like racing a Ferrari against a go-cart. Figure 21-5 shows how much longer the windowed-sinc takes to execute, compared to a six pole recursive filter. Since the recursive filter has a faster roll-off at low and high frequencies, the length of the windowed-sinc kernel must be made longer to match the performance (i.e., to keep the comparison fair). This accounts for the increased execution time for the windowed-sinc near frequencies and. The important point is that FIR filters can be expected to be about an order of magnitude slower than comparable IIR filters (go-cart: 15 mph, Ferrari: 15 mph). Match #3: Moving Average vs. Single Pole Our third competition will be a battle of the time domain filters. The first fighter will be a nine point moving average filter. Its opponent for today's match will be a single pole recursive filter using the bidirectional technique. To achieve a comparable frequency response, the single pole filter will use a sample-to-sample decay of x '.7. The battle begins in Fig where the frequency response of each filter is shown. Neither one is very impressive, but of course, frequency separation isn't what these filters are used for. No points for either side. Figure 21-7 shows the step responses of the filters. In (a), the moving average step response is a straight line, the most rapid way of moving from one level to another. In (b), the recursive filter's step response is smoother, which may be better for some applications. One point for each side. These filters are quite equally matched in terms of performance and often the choice between the two is made on personal preference. However, there are

7 Chapter 21- Filter Comparison FIGURE 21-6 Moving average and single pole frequency responses. Both of these filters have a poor frequency response, as you should expect for time domain filters Single pole recursive Moving average two cases where one filter has a slight edge over the other. These are based on the trade-off between development time and execution time. In the first instance, you want to reduce development time and are willing to accept a slower filter. For example, you might have a one time need to filter a few thousand points. Since the entire program runs in only a few seconds, it is pointless to spend time optimizing the algorithm. Floating point will almost certainly be used. The choice is to use the moving average filter carried out by convolution, or a single pole recursive filter. The winner here is the recursive filter. It will be slightly easier to program and modify, and will execute much faster. The second case is just the opposite; your filter must operate as fast as possible and you are willing to spend the extra development time to get it. For instance, this filter might be a part of a commercial product, with the potential to be run millions of times. You will probably use integers for the highest possible speed. Your choice of filters will be the moving average a. Moving average b. Bidirectional recursive FIGURE 21-7 Step responses of the moving average and the bidirectional single pole filter. The moving average step response occurs over a smaller number of samples, while the single pole filter's step response is smoother.

8 35 The Scientist and Engineer's Guide to Digital Signal Processing carried out by recursion, or the single pole recursive filter implemented with look-up tables or integer math. The winner is the moving average filter. It will execute faster and not be susceptible to the development and execution problems of integer arithmetic.

### Transition Bandwidth Analysis of Infinite Impulse Response Filters

Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor

### SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

### Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in

### Using the Texas Instruments Filter Design Database

Application Report SLOA062 July, 2001 Bruce Carter Using the Texas Instruments Filter Design Database High Performance Linear Products ABSTRACT Texas Instruments applications personnel have decades of

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### Impedance 50 (75 connectors via adapters)

VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

### Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

### LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

### Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 46 Per-pin Signal Generator

Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 46 Per-pin Signal Generator Advantest Corporation, Tokyo Japan August 2012 Preface to the Series ADC and DAC are the most typical

### Considerations When Specifying a DC Power Supply

Programming Circuit White Paper Considerations When Specifying a DC Power Supply By Bill Martin, Sales/Applications Engineer Every automated test system that tests electronic circuit boards, modules or

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

### A Basic Introduction to Filters Active Passive and Switched-Capacitor

A Basic Introduction to Filters Active Passive and Switched-Capacitor 1 0 INTRODUCTION Filters of some sort are essential to the operation of most electronic circuits It is therefore in the interest of

### isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTI-STAGE ACTIVE FILTER DESIGN TOOL

isim ACTIVE FILTER DESIGNER NEW, VERY CAPABLE, MULTI-STAGE ACTIVE FILTER DESIGN TOOL Michael Steffes Sr. Applications Manager 12/15/2010 SIMPLY SMARTER Introduction to the New Active Filter Designer Scope

### Application Note Noise Frequently Asked Questions

: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

### Automatic Gain Control (AGC) in Receivers

Automatic Gain Control (AGC) in Receivers Iulian Rosu, YO3DAC / VA3IUL http://www.qsl.net/va3iul/ AGC was implemented in first radios for the reason of fading propagation (defined as slow variations in

### The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

### Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing

### Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008

Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase

### Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc.

Sampling Theory Page Copyright Dan Lavry, Lavry Engineering, Inc, 24 Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc. Credit: Dr. Nyquist discovered the sampling theorem, one of

### Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

### FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

### Understanding CIC Compensation Filters

Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response

### RF Network Analyzer Basics

RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

### Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

### This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

### GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy

GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement

### Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)

Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques

### Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

### MATRIX TECHNICAL NOTES

200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

### chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

### Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Learning Objectives Name the major measurement strengths of a swept-tuned spectrum analyzer Explain the importance of frequency

### Chebyshev Filter at 197.12 MHz Frequency for Radar System

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676 Volume 5, Issue 1 (Mar. - Apr. 013), PP 8-33 Chebyshev Filter at 197.1 MHz Frequency for Radar System Denny Permana 1,

### Statistics, Probability and Noise

CHAPTER Statistics, Probability and Noise Statistics and probability are used in Digital Signal Processing to characterize signals and the processes that generate them. For example, a primary use of DSP

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### An Adjustable Audio Filter System for the Receiver - Part 1

1 of 7 An Adjustable Audio Filter System for the Receiver - Part 1 The audio response is shaped as required using Switched Capacitor Filters Lloyd Butler VK5BR Front panel view of the original receiver

### Digital vs. Analog Volume Controls

Digital vs. Analog Volume Controls October 2011 AMM ESS 10/11 Summary of this Presentation In a Digital Audio System what is the trade-off between using a digital or an analog volume control? To answer

### Anatech Electronics, Inc.

Like all types of RF and microwave filters, ceramic filters have unique characteristics that differentiate them from their counterparts and make them useful for specific applications. Ceramic filters are

### Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

### 73M2901CE Programming the Imprecise Call Progress Monitor Filter

A Maxim Integrated Products Brand 73M2901CE Programming the Imprecise Call Progress Monitor Filter APPLICATION NOTE AN_2901CE_042 March 2009 Introduction The Teridian 73M2901CE integrated circuit modem

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Frequency response. Chapter 1. 1.1 Introduction

Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred

### What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

Audio Filters What you will do Build a 3-band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies

### MEASUREMENT SET-UP FOR TRAPS

Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

### Application Note 58 Crystal Considerations with Dallas Real Time Clocks

www.dalsemi.com Application Note 58 Crystal Considerations with Dallas Real Time Clocks Dallas Semiconductor offers a variety of real time clocks (RTCs). The majority of these are available either as integrated

### DRIVING LOOOONG CABLES

DRIVING LOOOONG CABLES INTRODUCTION Microphone or line level cables may appear to be foolproof compared to loudspeaker cables. However, they are not. In particular you can easily encounter high frequency

### Selected Filter Circuits Dr. Lynn Fuller

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Selected Filter Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585) 4752035

### Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

### Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP

Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### A DESIGN OF DSPIC BASED SIGNAL MONITORING AND PROCESSING SYSTEM

ISTANBUL UNIVERSITY JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING YEAR VOLUME NUMBER : 2009 : 9 : 1 (921-927) A DESIGN OF DSPIC BASED SIGNAL MONITORING AND PROCESSING SYSTEM Salih ARSLAN 1 Koray KÖSE

### USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

### ANIMA: Non-Conventional Interfaces in Robot Control Through Electroencephalography and Electrooculography: Motor Module

Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,

### Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

### Introduction to Receivers

Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range

### Jeff Thomas Tom Holmes Terri Hightower. Learn RF Spectrum Analysis Basics

Jeff Thomas Tom Holmes Terri Hightower Learn RF Spectrum Analysis Basics Agenda Overview: Spectrum analysis and its measurements Theory of Operation: Spectrum analyzer hardware Frequency Specifications

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### CLOCK AND SYNCHRONIZATION IN SYSTEM 6000

By Christian G. Frandsen Introduction This document will discuss the clock, synchronization and interface design of TC System 6000 and deal with several of the factors that must be considered when using

### FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS. UIUC Physics 193 POM

FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS Fanbo Xiang UIUC Physics 193 POM Professor Steven M. Errede Fall 2014 1 Introduction Chords, an essential part of music, have long been analyzed. Different

### RECOMMENDATION ITU-R BO.786 *

Rec. ITU-R BO.786 RECOMMENDATION ITU-R BO.786 * MUSE ** system for HDTV broadcasting-satellite services (Question ITU-R /) (992) The ITU Radiocommunication Assembly, considering a) that the MUSE system

### TDA2040. 20W Hi-Fi AUDIO POWER AMPLIFIER

20W Hi-Fi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power

### HP 8970B Option 020. Service Manual Supplement

HP 8970B Option 020 Service Manual Supplement Service Manual Supplement HP 8970B Option 020 HP Part no. 08970-90115 Edition 1 May 1998 UNIX is a registered trademark of AT&T in the USA and other countries.

### Lab 1: Introduction to PSpice

Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software

### Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note

Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?

### MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

### Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration

NI K HEF NATIONAL INSTITUTE FOR NUCLEAR AND HIGH ENERGY PHYSICS Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration Find the most recent files and related files

### Basics of Floating-Point Quantization

Chapter 2 Basics of Floating-Point Quantization Representation of physical quantities in terms of floating-point numbers allows one to cover a very wide dynamic range with a relatively small number of

### AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

### Design of Bidirectional Coupling Circuit for Broadband Power-Line Communications

Journal of Electromagnetic Analysis and Applications, 2012, 4, 162-166 http://dx.doi.org/10.4236/jemaa.2012.44021 Published Online April 2012 (http://www.scirp.org/journal/jemaa) Design of Bidirectional

### Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.

School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. Cesar Augusto Azurdia

### Class D Audio Amplifier

Class D Audio Amplifier The design of a live audio Class D audio amplifier with greater than 90% efficiency and less than 1% distortion. A Major Qualifying Project Submitted to the Faculty of the WORCESTER

### Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

### 2. The Vector Network Analyzer

ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission

### A Guide to Calibrating Your Spectrum Analyzer

A Guide to Calibrating Your Application Note Introduction As a technician or engineer who works with electronics, you rely on your spectrum analyzer to verify that the devices you design, manufacture,

### ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER

ECE 435 INTRODUCTION TO THE MICROWAVE NETWORK ANALYZER Latest revision: October 1999 Introduction A vector network analyzer (VNA) is a device capable of measuring both the magnitude and phase of a sinusoidal

### Measuring Temperature withthermistors a Tutorial David Potter

NATIONAL INSTRUMENTS The Software is the Instrument Application Note 065 Measuring Temperature withthermistors a Tutorial David Potter Introduction Thermistors are thermally sensitive resistors used in

### Optimizing IP3 and ACPR Measurements

Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.

### Command-induced Tracking Jitter Study I D. Clark November 24, 2009

Command-induced Tracking Jitter Study I D. Clark November 24, 2009 Introduction Reports of excessive tracking jitter on the MMT elevation axis have lately been theorized to be caused by the input command

### INTRODUCTION. Please read this manual carefully for a through explanation of the Decimator ProRackG and its functions.

INTRODUCTION The Decimator ProRackG guitar noise reduction system defines a new standard for excellence in real time noise reduction performance. The Decimator ProRackG was designed to provide the maximum

### Understanding Dynamic Range in Acceleration Measurement Systems. February 2013 By: Bruce Lent

in Acceleration Measurement Systems February 2013 By: Bruce Lent Topics to discuss Definition of dynamic range The effective range Making full use of the high level Using filters to improve dynamic range

### Spectrum Level and Band Level

Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

### Agilent Time Domain Analysis Using a Network Analyzer

Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005

### AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE

BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended

### AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com

APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon

Application Report SLOA093 December 2001 Filter Design in Thirty Seconds Bruce Carter High Performance Analog ABSTRACT Need a filter fast? No theory, very little math just working filter designs, and in

### Amplified High Speed Fiber Photodetectors

Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 sales@eotech.com www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified

### DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain

Rec. ITU-R BS.644-1 1 RECOMMENDATION ITU-R BS.644-1 *,** Audio quality parameters for the performance of a high-quality sound-programme transmission chain (1986-1990) The ITU Radiocommunication Assembly,

### Balanced vs. Unbalanced Audio Interconnections

Revised 7/2/08 Balanced vs. Unbalanced Audio Interconnections In discussing the characteristics and performance of various interconnect systems; two points should be kept in mind. Balance is defined in

### The Membrane Equation

The Membrane Equation Professor David Heeger September 5, 2000 RC Circuits Figure 1A shows an RC (resistor, capacitor) equivalent circuit model for a patch of passive neural membrane. The capacitor represents

### VCO Phase noise. Characterizing Phase Noise

VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

### Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.

Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet