# Analog and Digital Signals, Time and Frequency Representation of Signals

Size: px
Start display at page:

Transcription

1 1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic

2 2 Data vs. Signal Analog vs. Digital Analog Signals Simple Analog Signals Composite Analog Signals Digital Signals

3 Data vs. Signal 3 Data information formatted in human/machine readable form examples: voice, music, image, file Signal electric or electromagnetic representation of data transmission media work by conducting energy along a physical path; thus, to be transmitted, data must be turned into energy in the form of electro-magnetic signals Transmission communication of data through propagation and processing of signals Idea, Feeling, Knowledge Data Coding Signal Signal Decoding Data Sender Channel or Communication Medium Receiver

4 Signal Representation 4 Signal Representation typically in 2D space, as a function of time, space or frequency when horizontal axis is time, graph displays the value of a signal at one particular point in space as a function of time when horizontal axis is space, graph displays the value of a signal at one particular point in time as a function of space time space The time- and space- representation of a signal often resemble each other, though the signal envelope in the space-representation is different (signal attenuates over distance).

5 Signal Representation (cont.) 5 Example [ signal in time and space ]

6 6 Data vs. Signal Analog vs. Digital Analog Signals Simple Analog Signals Composite Analog Signals Digital Signals

7 Analog vs. Digital 7 Analog vs. Digital Data analog data representation variable takes on continuous values in some interval, e.g. voice, temperature, etc. digital data representation variable takes on discrete (a finite & countable number of) values in a given interval, e.g. text, digitized images, etc. Analog vs. Digital Signal analog signal analog signal signal that is continuous in time and can assume an infinite number of values in a given range (continuous in time and value) discrete (digital) signal signal that is continuous in time and assumes only a limited number of values (maintains a constant level and then changes to another constant level)

8 Analog vs. Digital (cont.) 8 Both analog and digital data can be transmitted using either analog or digital signals. example: analog signaling of analog and digital data will talk more about this later

9 Analog vs. Digital (cont.) 9 Periodic vs. Aperiodic Signals periodic signal completes a pattern within some measurable time frame, called a period (T), and then repeats that pattern over subsequent identical periods T R s. t. s(t + T) = s(t), t -, + T - smallest value that satisfies the equation T is (typically) expressed in seconds aperiodic signal changes without exhibiting a pattern that repeats over time t t+t t+2t periodic analog signal periodic digital signal

10 10 Data vs. Signal Analog vs. Digital Analog Signals Simple Analog Signals Composite Analog Signals Digital Signals

11 11

12 Analog Signals 12 Classification of Analog Signals (1) Simple Analog Signal cannot be decomposed into simpler signals sinewave most fundamental form of periodic analog signal mathematically described with 3 parameters s(t) = A sin(2πft + ϕ) (1.1) peak amplitude (A) absolute value of signal s highest intensity unit: volts [V] (1.2) frequency (f) number of periods in one second unit: hertz [Hz] = [1/s] inverse of period (T)! The origin is usually taken as the last previous passage through zero from the negative to the positive direction. (1.3) phase (φ) absolute position of the waveform relative to an arbitrary origin unit: degrees [º] or radians [rad] A T = 1/f 0[s] 1[s] (2) Composite Analog Signal composed of multiple sinewaves

13 Simple Analog Signals 13 Phase in Simple Analog Signals measured in degrees or radians 360º = 2π rad 1º = 2π/360 rad 1 rad = (360/2π)º = phase shift of 360º = shift of 1 complete period phase shift of 180º = shift of 1/2 period phase shift of 90º = shift of 1/4 period 5V 1s φ = 0º or 360º φ = 90º φ = 180º

14 Analog Signals 14 Example [ period and frequency ] Unit Equivalent Unit Equivalent seconds (s) 1 s hertz (Hz) 1 Hz milliseconds (ms) 10 3 s kilohertz (KHz) 10 3 Hz microseconds (μs) 10 6 s megahertz (MHz) 10 6 Hz nanoseconds (ns) 10 9 s gigahertz (GHz) 10 9 Hz picoseconds (ps) s terahertz (THz) Hz units of period and respective frequency (a) Express a period of 100 ms in microseconds. 100 ms = s = μs = 10 5 μs (b) Express the corresponding frequency in kilohertz. 100 ms = s = 10-1 s f = 1/10-1 Hz = KHz = 10-2 KHz

15 Simple Analog Signals 15 Frequency in Simple Analog Signals rate of signal change with respect to time change in a short span of time high freq. change over a long span of time low freq. signal does not change at all zero freq. signal never completes?? a cycle T= f=0, DC sig. signal changes instantaneously freq. signal completes a cycle?? in T=0 f= Time Domain Plot specifies signal amplitude at each instant of time does NOT express explicitly signal s phase and frequency Frequency Domain Plot specifies peak amplitude with respect to freq. phase CANNOT be shown in the frequency domain

16 Simple Analog Signals 16 One spike in frequency domain shows two characteristics of the signal: spike position = signal frequency, spike height = peak amplitude. Analog signals are best represented in in the frequency domain.

17 Simple Analog Signals 17 Example [ time vs. frequency domain ]

18 Composite Analog Signals 18 Fourier Analysis any composite signal can be represented as a combination of simple sine waves with different frequencies, phases and amplitudes s(t) = A sin(2πf1t + ϕ1) + A 2sin(2πf2t + ϕ2 ) 1 + periodic composite signal (period=t, freq. = f 0 =1/T) can be represented as a sum of simple sines and/or cosines known as Fourier series:... s(t) = A 0 + t) n 0 n 0 2 n= 1 [ A cos(2πnf t) + B sin(2πnf ] With the aid of good table of integrals, it is easy to determine the frequency-domain nature of many signals. A B n n T 2 = s(t)cos(2 nf T π 0 T 2 = s(t)sin(2 nf T π t)dt, n = 0,1,2, t)dt, n = 1,2,3, f 0 is referred to as fundamental frequency integer multiples of f 0 are referred to as harmonics

19 Composite Analog Signals (cont.) 19 Angular Frequency aka radian frequency number of 2π revolutions during a single period of a given signal ω = 2π T = 2π f simple multiple of ordinary frequency s(t) = A 0 + t) n 0 n 0 2 n= 1 [ A cos(nω t) + B sin(nω ] T 2 An = s(t)cos n 0t)dt n = 0,1,2,... T ( ω, 0 T 2 Bn = s(t)sin n 0t)dt n = 1,2,... T ( ω, 0

20 Composite Analog Signals (cont.) 20 Example [ periodic square wave ] No DC component!!! 4A 4A 4A s(t) = sin(2πft) + sin(2π(3f)t) + sin(2π(5f)t) +... π 3π 5π three harmonics adding three harmonics With three harmonics we get an approximation of of a square wave. To get the actual square, all harmonics up to to should be added.

21 Composite Analog Signals (cont.) 21 Example [ composite analog signal ]

22 Composite Analog Signals (cont.) 22 Frequency Spectrum of Analog Signal Absolute Bandwidth of Analog Signal Effective Bandwidth of Analog Signal range (set) of frequencies that signal contains width of signal spectrum: B = f highest -f lowest range of frequencies where signal contains most of its power/energy square wave 3-harmonic representation

23 Composite Analog Signals (cont.) 23 Example [ frequency spectrum and bandwidth of analog signal ] A periodic signal is composed of five sinewaves with frequencies of 100, 300, 500, 700 and 900 Hz. What is the bandwidth of this signal? Draw the frequency spectrum, assuming all components have a max amplitude of 10V. Solution: B = f highest -f lowest = = 800 Hz The spectrum has only five spikes, at 100, 300, 500, 700, and 900.

24 Composite Analog Signals (cont.) 24 Example [ frequency spectrum of a data pulse ] 2Aτ sin πn T T πnτ T ( τ ) sin( π f τ ) π f τ or sin(x) x envelope of frequency spectrum periodic signal discrete freq. spectrum aperiodic signal continuous freq. spectrum What happens if τ 0???

25 Composite Analog Signals (cont.) 25 Composite Signals and Transmission Medium no transmission medium is perfect each medium passes some frequencies and blocks or weakens others composite signal sent at one end of transmiss. medium (comm. channel), may not be received in the same form at the other end passing a square wave through any medium will always deform the signal!!! communication channel Channel Bandwidth range of frequencies passed by the channel difference between highest and lowest frequency that channel can satisfactorily pass

26 26 Data vs. Signal Analog vs. Digital Analog Signals Simple Analog Signals Composite Analog Signals Digital Signals

27 Digital Signals 27 Digital Signals sequence of voltage pulses (DC levels) each pulse represents a signal element binary data are transmitted using only 2 types of signal elements ( 1 = positive voltage, 0 = negative voltage ) key digital-signals terms: bit interval time required to send a single bit, unit: [sec] bit rate number of bit intervals per second unit: [bps] Most digital signals are aperiodic, so it it is is not appropriate // correct to to talk about their period.

28 Digital Signals (cont.) 28 Digital Signal as a Composite Analog Signal digital signal, with all its sudden changes, is actually a composite signal having an infinite number of frequencies a digital signal is a composite signal with an infinite bandwidth if a medium has a wide bandwidth, a digital signal can be sent through it some frequencies will be weakened or blocked; still, enough frequencies will be passed to preserve a decent signal shape what is the minimum required bandwidth B [Hz] of a band-limited medium if we want to send n [bps]?

29 Digital Signals (cont.) 29 Example [ approximation of digital signal s spectrum using 1 st harmonic ] Assume our computer generates 6 bps. Possibilities (periodic combinations) : , , , etc. 1. Best case: min # of changes min freq. of substitute analog signal 2. Worst case max # of changes max freq. of substitute analog signal bit rate: n = 6 [bps] frequency: B = 3 [Hz] n B 2

30 Exercise Before data can be transmitted, they must be transformed to. (a) periodic signals (b) electromagnetic signals (c) aperiodic signals (d) low-frequency sinewaves 2. In a frequency-domain plot, the vertical axis measures the. (a) peak amplitude (b) frequency (c) phase (d) slope 3. In a time-domain plot, the vertical axis measures the. (a) peak amplitude (b) amplitude (c) frequency (d) time 4. If the bandwidth of a signal is 5 KHz and the lowest frequency is 52 KHz, what is the highest frequency. (a) 5 KHz (b) 10 KHz (c) 47 KHz (d) 57 KHz

31 Exercise If one of the components of a signal has a frequency of zero, the average amplitude of the signal. (a) is greater than zero (b) is less than zero (c) is zero (d) (a) or (b) 6. Give two sinewaves A and B, if the frequency of A is twice that of B, then the period of B is that of A. (a) one-half (b) twice (c) the same as (d) indeterminate from 7. A device is sending out data at the rate of 1000 bps. (a) How long does it take to send out 10 bits? (b) How long does it take to send out a single character (8 bits)? (c) How long does it take to send a file of 100,000 characters?

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

### The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

### Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

### L and C connected together. To be able: To analyse some basic circuits.

circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals

### EECC694 - Shaaban. Transmission Channel

The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd Chapter 1 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Analog Quantities Most natural quantities that we see

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### Basic Acoustics and Acoustic Filters

Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors

### PCM Encoding and Decoding:

PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth

### Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

### USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Lab 1. The Fourier Transform

Lab 1. The Fourier Transform Introduction In the Communication Labs you will be given the opportunity to apply the theory learned in Communication Systems. Since this is your first time to work in the

### BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

### Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

### Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

### Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

### Auto-Tuning Using Fourier Coefficients

Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### Trigonometric functions and sound

Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

### Scientific Programming

1 The wave equation Scientific Programming Wave Equation The wave equation describes how waves propagate: light waves, sound waves, oscillating strings, wave in a pond,... Suppose that the function h(x,t)

### Physical Layer, Part 2 Digital Transmissions and Multiplexing

Physical Layer, Part 2 Digital Transmissions and Multiplexing These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

### Experiment 3: Double Sideband Modulation (DSB)

Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict

### TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

### NRZ Bandwidth - HF Cutoff vs. SNR

Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

### Agilent Time Domain Analysis Using a Network Analyzer

Agilent Time Domain Analysis Using a Network Analyzer Application Note 1287-12 0.0 0.045 0.6 0.035 Cable S(1,1) 0.4 0.2 Cable S(1,1) 0.025 0.015 0.005 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (GHz) 0.005

### RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

### Amplitude Modulation Fundamentals

3 chapter Amplitude Modulation Fundamentals In the modulation process, the baseband voice, video, or digital signal modifies another, higher-frequency signal called the carrier, which is usually a sine

### INTERFERENCE OF SOUND WAVES

2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Acceleration levels of dropped objects

Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration

### Laboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2

Laboratory Manual and Supplementary Notes CoE 494: Communication Laboratory Version 1.2 Dr. Joseph Frank Dr. Sol Rosenstark Department of Electrical and Computer Engineering New Jersey Institute of Technology

### APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

### INTERFERENCE OF SOUND WAVES

1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.

### CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Followings do not contain the solutions of the multiple choices from the web on the publisher site. You should visit the site to get the solutions.

Exam1 Chapters: 1, 2, 3, 4, 5, 9, 23. Type of questions: multiple choices, Fill in the gaps, short answer questions YOU MUST BRING SCANTRON sheets for the multiple choices (4.5 x 11 ) (also available in

1 25. AM radio receiver The chapter describes the programming of a microcontroller to demodulate a signal from a local radio station. To keep the circuit simple the signal from the local amplitude modulated

### Selected Radio Frequency Exposure Limits

ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 50: Non-ionizing Radiation Selected Radio Frequency Exposure Limits Product ID: 94 Revision ID: 1736 Date published: 30 June 2015 Date effective: 30 June 2015

### VCO Phase noise. Characterizing Phase Noise

VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

### Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

### Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

### SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying

### 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

### Digital Baseband Modulation

Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated

### The continuous and discrete Fourier transforms

FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

### Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

### The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

### LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

### Lecture 2 Outline. EE 179, Lecture 2, Handout #3. Information representation. Communication system block diagrams. Analog versus digital systems

Lecture 2 Outline EE 179, Lecture 2, Handout #3 Information representation Communication system block diagrams Analog versus digital systems Performance metrics Data rate limits Next lecture: signals and

### APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

### Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.

Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor

### Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance

The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020

### Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc.

Sampling Theory Page Copyright Dan Lavry, Lavry Engineering, Inc, 24 Sampling Theory For Digital Audio By Dan Lavry, Lavry Engineering, Inc. Credit: Dr. Nyquist discovered the sampling theorem, one of

### TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION

TCOM 370 NOTES 99-6 VOICE DIGITIZATION AND VOICE/DATA INTEGRATION (Please read appropriate parts of Section 2.5.2 in book) 1. VOICE DIGITIZATION IN THE PSTN The frequencies contained in telephone-quality

### Statistics, Probability and Noise

CHAPTER Statistics, Probability and Noise Statistics and probability are used in Digital Signal Processing to characterize signals and the processes that generate them. For example, a primary use of DSP

### Chapter 15, example problems:

Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

### Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

### chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

### SIGNAL PROCESSING & SIMULATION NEWSLETTER

1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

### 16.2 Periodic Waves Example:

16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

### DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

### Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Teaching Fourier Analysis and Wave Physics with the Bass Guitar Michael Courtney Department of Chemistry and Physics, Western Carolina University Norm Althausen Lorain County Community College This article

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### Objectives. Electric Current

Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

### Voltage. Oscillator. Voltage. Oscillator

fpa 147 Week 6 Synthesis Basics In the early 1960s, inventors & entrepreneurs (Robert Moog, Don Buchla, Harold Bode, etc.) began assembling various modules into a single chassis, coupled with a user interface

### Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

### Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

### B3. Short Time Fourier Transform (STFT)

B3. Short Time Fourier Transform (STFT) Objectives: Understand the concept of a time varying frequency spectrum and the spectrogram Understand the effect of different windows on the spectrogram; Understand

### physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

### Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

### :-------------------------------------------------------Instructor---------------------

Yarmouk University Hijjawi Faculty for Engineering Technology Computer Engineering Department CPE-462 Digital Data Communications Final Exam: A Date: 20/05/09 Student Name :-------------------------------------------------------Instructor---------------------

### The Phase Modulator In NBFM Voice Communication Systems

The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called

### HOW TO SELECT VARISTORS

HOW TO SELECT VARISTORS We have three alternatives: - selection of the varistors suitable for the operating voltage of the application - calculating the surge current, energy absorption and average power

### Lock - in Amplifier and Applications

Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

### E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

### Unit 1. Introduction to data communications and networking NETWORKING FUNDAMENTALS

1 Unit 1. Introduction to data communications and networking 1 NETWORKING FUNDAMENTALS Unit Structure 1.0 Objectives 1.1 Introduction 1.2 Data & Information 1.3 Data Communication 1.3.1 Characteristics

### Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

### SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION

1 SIGNAL GENERATORS and OSCILLOSCOPE CALIBRATION By Lannes S. Purnell FLUKE CORPORATION 2 This paper shows how standard signal generators can be used as leveled sine wave sources for calibrating oscilloscopes.

### CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

### Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

### 1995 Mixed-Signal Products SLAA013

Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

### Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

### SR2000 FREQUENCY MONITOR

SR2000 FREQUENCY MONITOR THE FFT SEARCH FUNCTION IN DETAILS FFT Search is a signal search using FFT (Fast Fourier Transform) technology. The FFT search function first appeared with the SR2000 Frequency

### Periodic wave in spatial domain - length scale is wavelength Given symbol l y

1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic

### AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design