SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 18. Filtering

Save this PDF as:

Size: px
Start display at page:

Transcription

1 SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 18. Filtering By Tom Irvine Introduction Filtering is a tool for resolving signals. Filtering can be performed on either analog or digital signals. Furthermore, filtering can be used for a number of purposes. For example, analog signals are typically routed through a lowpass filter prior to analogto-digital conversion. The lowpass filter in this case is designed to prevent an aliasing error. This is an error whereby high frequency spectral components are added to lower frequencies. Another purpose of filtering is to clarify resonant behavior by attenuating the energy at frequencies away from the resonance. Filtering theory is discussed in Reference 1. The student may read this reference at his or her own leisure. This Unit is concerned with practical application and examples. It covers filtering in the time domain using a digital Butterworth filter. This filter is implemented using a digital recursive equation in the time domain. Highpass and Lowpass Filters A highpass filter is a filter which allows the high-frequency energy to pass through. It is thus used to remove low-frequency energy from a signal. A lowpass filter is a filter which allows the low-frequency energy to pass through. It is thus used to remove high-frequency energy from a signal. A bandpass filter may be constructed by using a highpass filter and lowpass filter in series. Butterworth Filter Characteristics A Butterworth filter is one of several common infinite impulse response (IIR) filters. Other filters in this group include Bessel and Chebyshev filters. In addition, these filters are classified as feedback filters. The Butterworth filter can be used either for highpass, lowpass, or bandpass filtering. 1

2 A Butterworth filter is characterized by its cut-off frequency. The cut-off frequency is the frequency at which the corresponding transfer function magnitude is 3 db, equivalent to A Butterworth filter is also characterized by its order. A sixth-order Butterworth filter is the filter of choice for this Unit. Further details on the significance of order are given in Reference 1. A property of Butterworth filters is that the transfer magnitude is 3 db at the cut-off frequency regardless of the order. Other filter types, such as Bessel, do not share this characteristic, however. Consider a lowpass, sixth-order Butterworth filter with a cut-off frequency of 100 Hz. The corresponding transfer function magnitude is given in Figure 1. TRANSFER MAGNTUDE SIXTH ORDER BUTTERWORTH FILTER 100 Hz LOWPASS TRANSFER MAGNITUDE (100 Hz, 0.707) FREQUENCY (Hz) Figure 1.

3 Note that the curve in Figure 1 has a gradual roll-off beginning at about 70 Hz. Ideally, the transfer function would have a rectangular shape, with a corner at (100 Hz, 1.00 ). This ideal is never realized in practice, however. Thus, a compromise is usually required to select the cut-off frequency. The transfer function in Figure 1 also has a corresponding phase relationship, but this is not shown. The transfer function could also be represented in terms of a complex function, with real and imaginary components. A transfer function magnitude plot for a sixth-order Butterworth filter with a cut-off frequency of 100 Hz as shown in Figure. TRANSFER MAGNTUDE SIXTH ORDER BUTTERWORTH FILTER 100 Hz HIGHPASS TRANSFER MAGNITUDE (100 Hz, 0.707) Figure. FREQUENCY (Hz) Frequency Domain Implementation The curves in Figures 1 and suggests that filtering could be achieved as follows: 1. Take the Fourier transform of the input time history.. Multiply the Fourier transform by the filter transfer function, in complex form. 3. Take the inverse Fourier transform of the product. 3

4 The above frequency domain method is valid. Nevertheless, the filtering algorithm is usually implemented in the time domain for computational efficiency. Time Domain Implementation The transfer function can be represented by H ( ω). Digital filters are based on this transfer function, as shown in the block diagram in Figure 3. Note that x k and y k are the time domain input and output, respectively. x k Time domain equivalent of H( ω) y k Figure 3. Filter Block Diagram Phase Correction Ideally, a filter should provide linear phase response. This is particularly desirable if shock response spectra calculations are required. Butterworth filters, however, do not have a linear phase response, for reasons discussed in Reference. Other IIR filters share this problem. A number of methods are available, however, to correct the phase response. One method is based on time reversals and multiple filtering as shown in Figure 4. x k Time Reversal Time domain equivalent of H( ω) Time Reversal Time domain equivalent of H( ω) y k Figure 4. Phase Correction Method Further information about refiltering is given in References 1 and. An important note about refiltering is that it reduces the transfer function magnitude at the cut-off frequency to 6 db. 4

5 Example 1 Consider the synthesized time history in Figure 5. The time history appears to be random, perhaps even white noise. The corresponding power spectral density function is shown in Figure 6. ACCELERATION TIME HISTORY EXAMPLE 1 15 Overall Level = 0.68 GRMS 10 5 ACCEL (G) TIME (SEC) Figure 5. 5

6 POWER SPECTRAL DENSITY OF EXAMPLE 1 TIME HISTORY 0.01 Overall Level = 0.68 GRMS ACCEL (G /Hz) FREQUENCY (Hz) Figure 6. The power spectral density displays some characteristics of white noise. Nevertheless, a distinct spectral peak occurs at 100 Hz. The signal is perhaps best described as sine-onrandom. The behavior of the 100 Hz signal can be clarified by bandpass filtering the time history in Figure 5. The time history is bandpass filtered from 50 Hz to 150 Hz in Figure 7. A close-up view of a 00 millisecond segment is shown in Figure 8. 6

7 ACCELERATION TIME HISTORY EXAMPLE 1 50 Hz to 150 Hz BP FILTERED 4 3 Overall Level = 0.6 GRMS ACCEL (G) TIME (SEC) Figure 7. 7

8 ACCELERATION TIME HISTORY EXAMPLE 1 50 Hz to 150 Hz BP FILTERED 4 3 Overall Level = 0.6 GRMS ACCEL (G) TIME (SEC) Figure 8. The signal in Figure 8 is not pure sine, but it can be modeled as such for engineering purposes. The number of cycles is nearly 0. The duration is 00 milliseconds. The dominant frequency is thus ( 0 cycles / 0.00 seconds) = 100 Hz This calculation confirms the observation of the 100 Hz peak in the power spectral density plot in Figure 6. The sine function in Figures 7 and 8 tended to remain stable with time, in terms of amplitude and frequency. Either of these parameters, however, could have shifted with time. One of the purposes of filtering is to study this behavior. Consider the solid rocket motor in Figure 9. (1) 8

9 Cavity Solid Propellant Figure 9. The cavity has an acoustic pressure natural frequency. The cavity can be modeled as a closed pipe, because the nozzle throat diameter is very small. The propellant is expended during powered flight. The cavity volume increases as a result. The acoustic pressure natural frequency tends to decrease as the volume increases. Again, this behavior could be analyzed by filtering the data. Example Reconsider the time history in Figure 6. Bandpass filter the data from 10 Hz to 60 Hz. The resulting time history is shown in Figure 10. The bandpass filtered data in Figure 10 is narrowband random. Note that the overall level is GRMS. The frequency bandwidth is 60 Hz 10 Hz = 50 Hz () The power spectral density amplitude for this band can be calculated as follows [ GRMS] PSD = (3) 50 Hz PSD = GRMS / Hz (4) By convention, the unit is abbreviated as PSD = G / Hz (5) 9

10 ACCELERATION TIME HISTORY EXAMPLE 10 Hz to 60 Hz BP FILTERED 1.5 Overall Level = GRMS ACCEL (G) TIME (SEC) Figure 10. Now compare the level in equation (5) with plot in Figure 6 over the domain from 10 Hz to 60 Hz. The plot amplitude tends to agree with the calculation from the bandpass filtering operation. Power Spectral Density Summary Example demonstrates an important point: a complete power spectral density function can be constructed via bandpass filtering in successive bands. For example, the first band could be taken from 0 Hz to 10 Hz; the second from 10 Hz to 0 Hz, the third from 0 Hz to 30 Hz; and so on in 10 Hz increments. The overall GRMS value is then calculated for each band. The level is then squared. The square is divided by the bandwidth, which is 10 Hz in this example. The power spectral density level is thus calculated for each band. This bandpass method altogether bypasses the Fourier transform step. 10

11 The Fourier transform method remains more efficient for computational purposes. The bandpass filter method, however, is easier to understand. References 1. T. Irvine, An Introduction to the Filtering of Digital Signals, Vibrationdata Publications, Stearns and David, Signal Processing Algorithms in Fortran and C, Prentice Hall, Englewood Cliffs, New Jersey, Homework 1. File shock.txt is a shock pulse which occurred during the flight of a rocket vehicle. The specific event was the tail-off, or burnout, of a rocket motor. The data is composed of several dominant frequencies. The dominant frequencies could be forcing frequencies, natural frequencies, or some combination of both. Use program poweri.exe to take a power spectral density function of the data. Use a rectangular window with 4096 samples per segment. Plot the resulting power spectral density function. List the frequencies of the dominant peaks that are below 00 Hz.. One of the dominant frequencies occurs near 10 Hz. The next goal is to filter the time history to clarify the behavior of this frequency. Use program filter.exe. Bandpass filter the data using frequency limits of 100 Hz and 150 Hz. Plot the results. Note the beat frequency effect, suggesting two closely-space frequencies. 11

The Calculation of G rms

The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

Classic Filters. Figure 1 Butterworth Filter. Chebyshev

Classic Filters There are 4 classic analogue filter types: Butterworth, Chebyshev, Elliptic and Bessel. There is no ideal filter; each filter is good in some areas but poor in others. Butterworth: Flattest

The power spectral density calculation has associated error sources. Power spectral density functions may be calculated via three methods:

STATISTICAL DEGREES OF FREEDOM Revision A By Tom Irvine Email: tomirvine@aol.com March 7, 000 INTRODUCTION The power spectral density calculation has associated error sources. The purpose of this report

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 3. Sine Sweep Frequency and Octave Calculations

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 3. Sine Sweep Frequency and Octave Calculations By Tom Irvine Introduction A common specification for a base excitation test is a sine sweep test. An example

2 of 6 09/27/ :42 PM Figure 2: A system that has a sampling frequency at f s (a) will digitize signals with frequencies below f s /2 as well as

1 of 6 09/27/2006 05:42 PM Tutorial: Basics of choosing and designing the best filter for an effective data-acquisition system By Bonnie C. Baker, Senior Applications Engineer, Texas Instruments, Inc.

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

Recursive Filters. The Recursive Method

CHAPTER 19 Recursive Filters Recursive filters are an efficient way of achieving a long impulse response, without having to perform a long convolution. They execute very rapidly, but have less performance

Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF and BPF.

Laboratory of the circuits and signals Laboratory work No. 4 ACTIVE FILTERS Objectives: to get acquainted with active filter circuits and parameters, design methods, build and investigate active LPF, HPF

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL Saurabh Singh Rajput, Dr.S.S. Bhadauria Department of Electronics, Madhav Institute of Technology

ADC Familiarization. Dmitry Teytelman and Dan Van Winkle. Student name:

Dmitry Teytelman and Dan Van Winkle Student name: RF and Digital Signal Processing US Particle Accelerator School 15 19 June, 2009 June 16, 2009 Contents 1 Introduction 2 2 Exercises 2 2.1 Measuring 48

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

Module 4. Contents. Digital Filters - Implementation and Design. Signal Flow Graphs. Digital Filter Structures. FIR and IIR Filter Design Techniques

Module 4 Digital Filters - Implementation and Design Digital Signal Processing. Slide 4.1 Contents Signal Flow Graphs Basic filtering operations Digital Filter Structures Direct form FIR and IIR filters

International Journal of Advanced Research in Computer Science and Software Engineering

Volume 4, Issue 8, August 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Comparative Study

FIR Filter Design. FIR Filters and the z-domain. The z-domain model of a general FIR filter is shown in Figure 1. Figure 1

FIR Filters and the -Domain FIR Filter Design The -domain model of a general FIR filter is shown in Figure. Figure Each - box indicates a further delay of one sampling period. For example, the input to

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

Fast Fourier Transforms and Power Spectra in LabVIEW

Application Note 4 Introduction Fast Fourier Transforms and Power Spectra in LabVIEW K. Fahy, E. Pérez Ph.D. The Fourier transform is one of the most powerful signal analysis tools, applicable to a wide

USING THE ANALOG DEVICES ACTIVE FILTER DESIGN TOOL

USING THE ANALOG DEVICES ACTIVE FILTER DESIGN TOOL INTRODUCTION The Analog Devices Active Filter Design Tool is designed to aid the engineer in designing all-pole active filters. The filter design process

EXPERIMENT 6 - ACTIVE FILTERS

1.THEORY HACETTEPE UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELE-313 ELECTRONICS LABORATORY II EXPERIMENT 6 - ACTIVE FILTERS A filter is a circuit that has designed to pass a specified

Moving Average Filters

CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average

AN INTRODUCTION TO RANDOM VIBRATION Revision B. By Tom Irvine Email: tomirvine@aol.com October 26, 2000

AN INTRODUCTION TO RANDOM VIBRATION Revision B By Tom Irvine Email: tomirvine@aol.com October 26, 2000 Introduction Random Forcing Function and Response Consider a turbulent airflow passing over an aircraft

Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

UNIT III & IV. PARTA 2marks. 3. Mention advantages of direct form II and cascade structure? (2)

UNIT III & IV PARTA 2marks 1. Define canonic and non canonic form realizations. (2) 2. Draw the direct form realizations of FIR systems? (2) 3. Mention advantages of direct form II and cascade structure?

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

AN-837 APPLICATION NOTE

APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

Analysis and Design of FIR filters using Window Function in Matlab

International Journal of Computer Engineering and Information Technology VOL. 3, NO. 1, AUGUST 2015, 42 47 Available online at: www.ijceit.org E-ISSN 2412-8856 (Online) Analysis and Design of FIR filters

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6502 PRINCIPAL OF DIGITAL SIGNAL PROCESSING YEAR / SEMESTER: III / V ACADEMIC

Chapter 21 Band-Pass Filters and Resonance

Chapter 21 Band-Pass Filters and Resonance In Chapter 20, we discussed low-pass and high-pass filters. The simplest such filters use RC components resistors and capacitors. It is also possible to use resistors

SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY

3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION

ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION How-to, version: 3.1, Date: 04.05.2016 DEWESoft d.o.o. Gabrsko 11a, 1420 Trbovlje, Slovenia support@dewesoft.com Dewesoft has a possibility to set different

Order analysis in ArtemiS SUITE 1

08/16 in ArtemiS SUITE 1 Introduction 1 Requirement: RPM information 3 Calculating an Order Spectrum vs. RPM with the Variable DFT Size algorithm 4 Basics 4 Configuration possibilities in the Properties

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

IIR Filter design (cf. Shenoi, 2006)

IIR Filter design (cf. Shenoi, 2006) The transfer function of the IIR filter is given by Its frequency responses are (where w is the normalized frequency ranging in [ π, π]. When a and b are real, the

Chapter 5. Basic Filters

Chapter 5 Basic Filters 39 CHAPTER 5. BASIC FILTERS 5.1 Pre-Lab The answers to the following questions are due at the beginning of the lab. If they are not done at the beginning of the lab, no points will

Real-Time Filtering in BioExplorer

Real-Time Filtering in BioExplorer Filtering theory Every signal can be thought of as built up from a large number of sine and cosine waves with different frequencies. A digital filter is a digital signal

EE4512 Analog and Digital Communications Chapter 2. Chapter 2 Frequency Domain Analysis

Chapter 2 Frequency Domain Analysis Chapter 2 Frequency Domain Analysis Why Study Frequency Domain Analysis? Pages 6-136 Why frequency domain analysis? Allows simple algebra rather than time-domain differential

Chapter 3 Discrete-Time Fourier Series. by the French mathematician Jean Baptiste Joseph Fourier in the early 1800 s. The

Chapter 3 Discrete-Time Fourier Series 3.1 Introduction The Fourier series and Fourier transforms are mathematical correlations between the time and frequency domains. They are the result of the heat-transfer

Purpose of Time Series Analysis. Autocovariance Function. Autocorrelation Function. Part 3: Time Series I

Part 3: Time Series I Purpose of Time Series Analysis (Figure from Panofsky and Brier 1968) Autocorrelation Function Harmonic Analysis Spectrum Analysis Data Window Significance Tests Some major purposes

Basic Acoustics and Acoustic Filters

Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors

Filter Comparison. Match #1: Analog vs. Digital Filters

CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

In modern electronics, it is important to be able to separate a signal into different

Introduction In modern electronics, it is important to be able to separate a signal into different frequency regions. In analog electronics, four classes of filters exist to process an input signal: low-pass,

Transition Bandwidth Analysis of Infinite Impulse Response Filters

Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor

Topic 4: Continuous-Time Fourier Transform (CTFT)

ELEC264: Signals And Systems Topic 4: Continuous-Time Fourier Transform (CTFT) Aishy Amer Concordia University Electrical and Computer Engineering o Introduction to Fourier Transform o Fourier transform

LAB 4 DIGITAL FILTERING

LAB 4 DIGITAL FILTERING 1. LAB OBJECTIVE The purpose of this lab is to design and implement digital filters. You will design and implement a first order IIR (Infinite Impulse Response) filter and a second

Implementation of FIR Filter using Adjustable Window Function and Its Application in Speech Signal Processing

International Journal of Advances in Electrical and Electronics Engineering 158 Available online at www.ijaeee.com & www.sestindia.org/volume-ijaeee/ ISSN: 2319-1112 Implementation of FIR Filter using

Image Enhancement in the Frequency Domain

Image Enhancement in the Frequency Domain Jesus J. Caban Outline! Assignment #! Paper Presentation & Schedule! Frequency Domain! Mathematical Morphology %& Assignment #! Questions?! How s OpenCV?! You

Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa

Topic Bandwidth-dependent transformation of noise data from frequency into time domain and vice versa Authors Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany),

Digital Filter Package 2 (DFP2) Software Instruction Manual

Digital Filter Package 2 (DFP2) Software Instruction Manual Digital Filter Package 2 Software Instruction Manual 2013 Teledyne LeCroy, Inc. All rights reserved. Unauthorized duplication of Teledyne LeCroy

Image Enhancement: Frequency domain methods

Image Enhancement: Frequency domain methods The concept of filtering is easier to visualize in the frequency domain. Therefore, enhancement of image f ( m, n) can be done in the frequency domain, based

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS

SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying

Department of Electronics and Communication Engineering 1

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III Year ECE / V Semester EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING QUESTION BANK Department of

What is a Filter? Output Signal. Input Signal Amplitude. Frequency. Low Pass Filter

What is a Filter? Input Signal Amplitude Output Signal Frequency Time Sequence Low Pass Filter Time Sequence What is a Filter Input Signal Amplitude Output Signal Frequency Signal Noise Signal Noise Frequency

10: FOURIER ANALYSIS OF COMPLEX SOUNDS

10: FOURIER ANALYSIS OF COMPLEX SOUNDS Amplitude, loudness, and decibels Several weeks ago we found that we could synthesize complex sounds with a particular frequency, f, by adding together sine waves

Windowed-Sinc Filters

CHAPTER 16 Windowed-Sinc Filters Windowed-sinc filters are used to separate one band of frequencies from another. They are very stable, produce few surprises, and can be pushed to incredible performance

AN-649 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703

APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Using the Analog Devices Active Filter Design Tool By Hank Zumbahlen INTRODUCTION

SMOOTH FREQUENCY RESPONSE DIGITAL AUDIO EQUALIZERS WITH SMALL RINGING IMPULSE RESPONSE

SMOOTH FREQUENCY RESPONSE DIGITAL AUDIO EQUALIZERS WITH SMALL RINGING IMPULSE RESPONSE LUCIAN STANCIU, CRISTIAN STANCIU, VALENTIN STANCIU Key words: Audio equalizers, Grouped B-spline functions, Smooth

SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

1 pole lowpass (Fc = 1kHz) Bode plot. 5 Magnitude (db) Frequency (Hz) Phase (deg) Frequency (Hz)

Filtered Audio Demo Max Kamenetsky In this demo you'll listen to a second segment of music, alternating with various filtered versions of it. You should try to relate what you hear to the frequency response,

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

Lecture 06: Design of Recursive Digital Filters

Lecture 06: Design of Recursive Digital Filters John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Lecture Contents Introduction IIR Filter Design Pole-Zero

Filters for Data Transmission

Application Report SLOA063 July 2001 Filters for Data Transmission Bruce Carter ABSTRACT The process of filtering an analog signal removes all frequencies above or below a corner frequency, passing only

An Analog Filter Design Software Package Using Mathematica

An Analog Filter Design Software Package Using Mathematica DAVID BÁEZ-VILLEGAS and DAVID BÁEZ-LÓPEZ Departamento de Ingeniería Electrónica, Universidad de las Américas-Puebla, Cholula, Puebla, México dbaeziec@udlap.mx

Digital Communication Fundamentals

Chapter 2 Digital Communication Fundamentals 2.1 Introduction As we said at the end of Chapter 1, CDMA is applicable to digital (as opposed to analog) communication. This chapter is therefore devoted to

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

CHAPTER 8 ANALOG FILTERS

ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

081212/ Thomas Munther Halmstad University School of Information Technology, Computer Science and Electrical Engineering Exercises in Matlab/Simulink VI In this exercise will we use another tool within

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

Chapter 4: Problem Solutions

Chapter 4: Problem s Digital Filters Problems on Non Ideal Filters à Problem 4. We want to design a Discrete Time Low Pass Filter for a voice signal. The specifications are: Passband F p 4kHz, with 0.8dB

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Discrete-Time Signal Processing

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 8 DT Filter Design: IIR Filters Reading:

IIR Filter. Dmitry Teytelman and Dan Van Winkle. Student name: RF and Digital Signal Processing US Particle Accelerator School June, 2009

Dmitry Teytelman and Dan Van Winkle Student name: RF and Digital Signal Processing US Particle Accelerator School 15 19 June, 2009 June 17, 2009 Contents 1 Introduction 2 2 IIR Coefficients 2 3 Exercises

Design Technique of Bandpass FIR filter using Various Window Function

IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 6, Issue 6 (Jul. - Aug. 213), PP 52-57 Design Technique of Bandpass FIR filter using Various

Digital Filter Plus User's Guide. Version January, 2015

Digital Filter Plus User's Guide Version 2.50 3 January, 2015 2014 Numerix Ltd. Email : mailto:numerix@numerix-dsp.com WWW : http://www.numerix-dsp.com/ INTRODUCTION 3 INSTALLATION 4 USING DIGITAL FILTER

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

Lab 4 Band Pass and Band Reject Filters

Lab 4 Band Pass and Band Reject Filters Introduction During this lab you will design and build three filters. First you will build a broad-band band-pass filter by cascading the high-pass and low-pass

Frequency response. Chapter 1. 1.1 Introduction

Chapter Frequency response. Introduction The frequency response of a system is a frequency dependent function which expresses how a sinusoidal signal of a given frequency on the system input is transferred

Monolithic Crystal Filters 2 Quartz resonator internally coupled utilizing piezoelectric effect.

The following describes filter types, what they do and how they perform. Along with definitions and detailed graphs, we are hopeful this information is both useful and informative. Filter Types Monolithic

EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 4 IIR Filters written by Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 September 6, 05 Objectives:

Filters and Waveform Shaping

Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

Frequency Domain Characterization of Signals. Yao Wang Polytechnic University, Brooklyn, NY11201 http: //eeweb.poly.edu/~yao

Frequency Domain Characterization of Signals Yao Wang Polytechnic University, Brooklyn, NY1121 http: //eeweb.poly.edu/~yao Signal Representation What is a signal Time-domain description Waveform representation

Applications of the DFT

CHAPTER 9 Applications of the DFT The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal Processing. This chapter discusses three common ways it is used. First, the DFT

USE OF SYNCHRONOUS NOISE AS TEST SIGNAL FOR EVALUATION OF STRONG MOTION DATA PROCESSING SCHEMES

USE OF SYNCHRONOUS NOISE AS TEST SIGNAL FOR EVALUATION OF STRONG MOTION DATA PROCESSING SCHEMES Ashok KUMAR, Susanta BASU And Brijesh CHANDRA 3 SUMMARY A synchronous noise is a broad band time series having

DEVELOPMENT OF IDENTIFICATION SYSTEM FOR CHECK-WEIGHER

Measurement of Mass, Force and Torque (APMF 2013) International Journal of Modern Physics: Conference Series Vol. 24 (2013) 1360034 (10 pages) c The Authors DOI: 10.1142/S2010194513600343 DEVELOPMENT OF

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

Fundamental Concepts in EMG Signal Acquisition

Fundamental Concepts in EMG Signal Acquisition Gianluca De Luca Copyright DelSys Inc, 2 Rev.2., March 23 The information contained in this document is presented free of charge, and can only be used for

LAB 12: ACTIVE FILTERS

A. INTRODUCTION LAB 12: ACTIVE FILTERS After last week s encounter with op- amps we will use them to build active filters. B. ABOUT FILTERS An electric filter is a frequency-selecting circuit designed

1 1. The ROC of the z-transform H(z) of the impulse response sequence h[n] is defined

A causal LTI digital filter is BIBO stable if and only if its impulse response h[ is absolutely summable, i.e., S h [ < n We now develop a stability condition in terms of the pole locations of the transfer

Title Feedback Active Noise Control. Author(s) Sing-Kiong. Conference: Issue Date DOI. Doc URLhttp://hdl.handle.

Title All Pass Filtered Reference LMS Alg Feedback Active Noise Control Author(s) Tabatabaei Ardekani, Iman; Abdulla, Sing-Kiong Proceedings : APSIPA ASC 29 : Asi Citation Information Processing Association,

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

Electronic Warfare Digital Radar Receiver System Block Diagram Deliverable Bradley University, Electrical and Computer Engineering Department Project Members: Project Advisors: Michael Gahl Peter Petrany

Chapter 15. Active Filter Circuits

hapter 5 Active Filter ircuits 5.0 Introduction Filter is circuit that capable of passing signal from input to put that has frequency within a specified band and attenuating all others side the band. This

DESIGN OF LOW PASS FIR FILTER USING HAMMING, BLACKMAN-HARRIS AND TAYLOR WINDOW

http:// DESIGN OF LOW PASS FIR FILTER USING HAMMING, BLACKMAN-HARRIS AND TAYLOR WINDOW ABSTRACT 1 Mohd. Shariq Mahoob, 2 Rajesh Mehra 1 M.Tech Scholar, 2 Associate Professor 1,2 Department of Electronics

070928/ Thomas Munther Halmstad University School of Information Technology, Computer Science and Electrical Engineering

7928/ Thomas Munther Halmstad University School of Information Technology, Computer Science and Electrical Engineering Matlab Exercise III In this laboratory we will focus on digital filters like FIR and

Practical Analog Filters Overview Types of practical filters Filter specifications Tradeoffs Many examples

Practical Analog Filters Overview Types of practical filters Filter specifications Tradeoffs Many examples J. McNames Portland State University ECE 222 Practical Analog Filters Ver. 1.4 1 Ideal Filters

Arbitrary FIR Filter Theory, Design, and Application

Arbitrary FIR Filter Theory, Design, and Application Oscilloscopes have incorporated the ability for the user to apply their own custom designed FIR filters to math waveforms. This paper provides an in

Waveguides. Metal Waveguides. Dielectric Waveguides

Waveguides Waveguides, like transmission lines, are structures used to guide electromagnetic waves from point to point. However, the fundamental characteristics of waveguide and transmission line waves