Angle Modulation, II. Lecture topics FM bandwidth and Carson s rule. Spectral analysis of FM. Narrowband FM Modulation. Wideband FM Modulation


 David Chapman
 5 years ago
 Views:
Transcription
1 Angle Modulation, II EE 179, Lecture 12, Handout #19 Lecture topics FM bandwidth and Carson s rule Spectral analysis of FM Narrowband FM Modulation Wideband FM Modulation EE 179, April 25, 2014 Lecture 12, Page 1
2 Bandwidth of AngleModulated Waves Angle modulation is nonlinear and complex to analyze. Early developers thought that bandwidth could be reduced to 0. They were wrong. FM has infinite bandwidth. Two approximations for FM: narrowband approximation (NBFM) wideband approximation (WBFM) NBFM: if a(t) = m(u)du and k f a(t) 1, then B s 2B m and ϕ FM (t) A ( cosω c t k f a(t)sinω c t ) WBFM: if f = max k f m(t) is peak frequency deviation, then B s = 2 f +2B m This is known as known as Carson s rule. J.R. Carson, Proc. IRE, EE 179, April 25, 2014 Lecture 12, Page 2
3 Narrowband FM Let a(t) = t m(u)du. Define complex FM signal: ˆϕ FM (t) = Ae j(ωct+k fa(t)) = Ae jk fa(t) e jωct By definition, ϕ FM (t) = Re (ˆϕ FM (t) ). Maclaurin power series expansion of ˆϕ FM (t): ( ) A 1+jk f a(t) k2 f 2! a2 (t)+ +j nkn f n! an (t)+ e jωct This expansion for ˆϕ FM (t) shows that the bandwidth is infinite. Since kf n /n! 0, all but a small amount of power is in a finite band. Using ϕ FM (t) = Re (ˆϕ FM (t) ), the FM signal is ( ) A cosω c t k f a(t)sinω c t k2 f 2! a2 (t)cosω c t+ k3 f 3! a3 (t)sinω c t+ If k f a(t) is small then the first two terms are sufficient. EE 179, April 25, 2014 Lecture 12, Page 3
4 Narrowband FM (cont.) If k f a(t) 1 then all but first two terms are negligible. The narrowband FM approximation is ϕ FM (t) A ( cosω c t k f a(t)sinω c t ) NBFM signal has bandwidth 2B, same as bandwidth of AM. NBFM has power 1 2 A2, which does not depend directly on m(t). Narrowband approximation for phase modulation is ϕ PM (t) A ( cosω c t k p m(t)sinω c t ) SNR of NBFM will be discussed later. The narrowband approximation is a special case of linearization, finding the linear approximation to a function at a given point. EE 179, April 25, 2014 Lecture 12, Page 4
5 Tone Frequency Modulation, f c = 20, f m = 1 ϕ FM (t) = cos ( 2πf c +k a a(t) ), k f a(t) = 0.2,0.8, k a = k a = k a = 3.2 EE 179, April 25, 2014 Lecture 12, Page 5
6 Fourier Transforms of Tone FM ϕ FM (t) = cos ( 2πf c +k a a(t) ), k f a(t) = 0.2,0.8, k a = k a = k a = 3.2 EE 179, April 25, 2014 Lecture 12, Page 6
7 Wideband FM (WBFM) Bandwidth Analysis Sampling theorem: any signal with bandwidth B Hz can be reconstructed from samples taken at any rate f s > 2B, so that t k = k/f s = kt s. The reconstruction process interpolates using a lowpass filter: m(t) = m(t k )sinc(π(t t k )) k= If m(t) is approximated by a step signal, then the reconstruction filter is a shaped lowpass filter. EE 179, April 25, 2014 Lecture 12, Page 7
8 WBFM Bandwidth Analysis (cont.) Staircase approximation to m(t) is sum of pulses of width 1/2B: m(t) = k= m(t k )Π(2B(t t k )) Frequency of modulated signal is constant over each cell : instantaneous frequency is ω i (t) = ω c t+k f m(t k ) ϕ FM,k (t) = Π(2B(t t k ))cos(ω i t) By the modulation theorem, the contribution to the spectrum of ϕ FM (t) from each cell is ( ) 1 ω 4B sinc +ωc +k f m(t k ) + 1 ( ) ω 2B 4B sinc ωc k f m(t k ) 2B (We ignore phase shift factors e ±j2πω, i.e., the above is the magnitude of the transform.) EE 179, April 25, 2014 Lecture 12, Page 8
9 WBFM Bandwidth Analysis (cont.) EE 179, April 25, 2014 Lecture 12, Page 9
10 WBFM Bandwidth Analysis (cont.) The first lobe of sincf contains 90% of energy/power, since 1 1 sinc 2 f df = , Thus we need include spectrum only from ω c k f m p 2πB to ω c +k f m p +2πB Phase modulation bandwidth analysis is similar. PM bandwidth depends on ṁ(t), how rapidly m(t) varies. EE 179, April 25, 2014 Lecture 12, Page 10
11 Frequency Modulation of Tone Spectral analysis of FM is difficult/impossible for general signals. Consider sinusoidal input m(t) = cosω m t B m = f m = 2πω m. t a(t) = m(u)du = 1 sinω m t (assuming a( ) = 0) ω m ( ˆϕ FM = Aexp jω c t+ k ) f sinω m t = Ae jωct e jβsinωmt ω m where β = k f /ω m is frequency deviation ratio (also called FM modulation index). Since e jβsinωmt is periodic with frequency ω m, J n (β) = 1 2π π π e j(βsint nt) dt e jβsinωmt = n J n is a Bessel function. J n (β) is negligible if n > β +1. J n (β)e jnωmt EE 179, April 25, 2014 Lecture 12, Page 11
12 Bessel Function J n (β) EE 179, April 25, 2014 Lecture 12, Page 12
13 US Broadcast FM Frequency range: MHz Channel width: 200 KHz (100 channels) Channel center frequencies: 88.1, 88.3,..., Frequency deviation: ±75 KHz US FM is narrowband, since Signal bandwidth: highfidelity audio requires ±20 KHz, so bandwidth is available for other applications: Muzak (elevator music) (1936) Stock market quotations Interactive games Stereo uses sum and difference of L/R audio channels FM radio was assigned the MHz band of the spectrum in In 1945, at the behest of RCA (David Sarnoff CEO), the FCC moved FM to MHz, obsoleting all existing receivers. EE 179, April 25, 2014 Lecture 12, Page 13
14 NBFM Modulation For narrowband signals, k f a(t) 1 and k p m(t) 1, ˆϕ NBFM A(cosω c k f a(t)sinω c t) ˆϕ NBPM A(cosω c k f m(t)sinω c t) We can use a DSBSC modulator with a phase shifter. Phase modulation Frequency modulation EE 179, April 25, 2014 Lecture 12, Page 14
15 NBFM: Bandpass Limiter The inputoutput diagram for an ideal hard limiter is { +1 vi (t) > 0 v o (t) = 1 v i (t) < 0 This is a signum function, the output of a comparison against 0. A hard limiter can be implemented by an op amp without feedback. EE 179, April 25, 2014 Lecture 12, Page 15
16 NBFM: Bandpass Limiter (cont.) A bandpass limiter is a hard limiter cascaded with a bandpass filter. EE 179, April 25, 2014 Lecture 12, Page 16
17 NBFM: Bandpass Limiter (cont.) Input to bandpass limiter is t v i (t) = A(t)cosθ(t), where θ(t) = ω c t+k f m(u) du Ideally, A(t) is constant, but it may vary slowly. We assume A(t) > 0. The input to the bandpass filter is { +1 cosθ > 1 v o (θ) = 1 cosθ < 1 which is periodic in θ with period 2π. Its Fourier series is v o (θ) = 4 ( cosθ 1 π 3 cos3θ+ 1 cos5θ+ ) 5 = 4 ( cos (ω c t+k f m(u) du ) 1 π 3 (ω cos3 c t+k f ) ) m(u) du + The bandpass filter eliminates all but the first term. EE 179, April 25, 2014 Lecture 12, Page 17
18 WBFM Modulation: Direct Generation Using VCO A voltage controlled oscillator generates a signal whose instantaneous frequency proportional to an input m(t): ω i (t) = ω c +k f m(t) The signal with frequency ω i (t) is bandpass filtered, then used in a modulator. VCO can be constructed by using input voltage to control one or more circuit parameters: R: transistor with controlled gate voltage L: saturable core reactor C: reversebiased semiconductor diode In all cases, feedback is used to adjust the frequency. EE 179, April 25, 2014 Lecture 12, Page 18
19 VCO Using Varactor The inductor is part of an LRC subcircuit whose frequency is determined by the capacitance on D1, which depends on the input voltage. The frequency of the output should be compared against a reference. EE 179, April 25, 2014 Lecture 12, Page 19
The Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
More informationLecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 22 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 22 / 37 Properties of the Fourier Transform Properties of the Fourier
More informationFrequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
More informationIntroduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
More informationSampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
More informationLaboratory Manual and Supplementary Notes. CoE 494: Communication Laboratory. Version 1.2
Laboratory Manual and Supplementary Notes CoE 494: Communication Laboratory Version 1.2 Dr. Joseph Frank Dr. Sol Rosenstark Department of Electrical and Computer Engineering New Jersey Institute of Technology
More informationVCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
More informationImplementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)
More informationAdding Sinusoids of the Same Frequency. Additive Synthesis. Spectrum. Music 270a: Modulation
Adding Sinusoids of the Same Frequency Music 7a: Modulation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) February 9, 5 Recall, that adding sinusoids of
More informationTx/Rx A highperformance FM receiver for audio and digital applicatons
Tx/Rx A highperformance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding highsignal environments. By Wayne C. Ryder
More informationThe front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
More informationDT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
More informationIntroduction to FMStereoRDS Modulation
Introduction to FMStereoRDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely
More informationLocal Oscillator for FM broadcast band 88108 MHz
Local Oscillator for FM broadcast band 88108 MHz Wang Luhao Yan Shubo Supervisor: Göran Jönsson Department of Electrical and Information Technology Lund University 2012.05.15 Abstract In this project
More informationMAINTENANCE & ADJUSTMENT
MAINTENANCE & ADJUSTMENT Circuit Theory The concept of PLL system frequency synthesization is not of recent development, however, it has not been a long age since the digital theory has been couplet with
More informationApplication Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electromagnetic Interference Design engineers seek to minimize harmful interference between components,
More informationCommunication Systems
AM/FM Receiver Communication Systems We have studied the basic blocks o any communication system Modulator Demodulator Modulation Schemes: Linear Modulation (DSB, AM, SSB, VSB) Angle Modulation (FM, PM)
More informationLecture 1: Communication Circuits
EECS 142 Lecture 1: Communication Circuits Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California, Berkeley EECS 142 Lecture
More informationMATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 4699510 FAX (732) 4690418 MATRIX TECHNICAL NOTES MTN107 TEST SETUP FOR THE MEASUREMENT OF XMOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
More informationReview of Fourier series formulas. Representation of nonperiodic functions. ECE 3640 Lecture 5 Fourier Transforms and their properties
ECE 3640 Lecture 5 Fourier Transforms and their properties Objective: To learn about Fourier transforms, which are a representation of nonperiodic functions in terms of trigonometric functions. Also, to
More informationVi, fi input. Vphi output VCO. Vosc, fosc. voltagecontrolled oscillator
Experiment #4 CMOS 446 PhaseLocked Loop c 1997 Dragan Maksimovic Department of Electrical and Computer Engineering University of Colorado, Boulder The purpose of this lab assignment is to introduce operating
More informationEE 179 April 21, 2014 Digital and Analog Communication Systems Handout #16 Homework #2 Solutions
EE 79 April, 04 Digital and Analog Communication Systems Handout #6 Homework # Solutions. Operations on signals (Lathi& Ding.33). For the signal g(t) shown below, sketch: a. g(t 4); b. g(t/.5); c. g(t
More informationRLC Resonant Circuits
C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document
More informationThe Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
More informationContents. Preface. xiii. Part I 1
Contents Preface xiii Part I 1 Chapter 1 Introduction to FrequencyModulated ContinuousWave 3 Radar 1.1 Brief History 3 1.2 Examples of Use of FMCW Radar 5 1.2.1 Radio Altimeters 5 1.2.2 LevelMeasuring
More informationHarmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies
Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the
More informationHomework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9V dc power supply generates 10 W in a resistor. What peaktopeak amplitude should an ac source have to generate the same
More informationPHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
More informationAN837 APPLICATION NOTE
APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDSBased Clock Jitter Performance vs. DAC Reconstruction Filter Performance
More informationINTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
More informationIF Transformer. V2 is 2Vpp sinusoidal
V2 is 2Vpp sinusoidal Purpose and Function These transformers are specially designed tuned circuit in RFItight groundable metal packages for narrow bandwith IF application. 1 Theory and Design C30 and
More informationLOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE
LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE Karl M. Hink, Executive Vice President Originally presented at the Power Quality 99 Conference ABSTRACT Motor protection
More informationClock Recovery in SerialData Systems Ransom Stephens, Ph.D.
Clock Recovery in SerialData Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
More informationTCOM 370 NOTES 994 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 994 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationRF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
More informationT = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
More informationVoltage. Oscillator. Voltage. Oscillator
fpa 147 Week 6 Synthesis Basics In the early 1960s, inventors & entrepreneurs (Robert Moog, Don Buchla, Harold Bode, etc.) began assembling various modules into a single chassis, coupled with a user interface
More informationCHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
More informationMSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) pegasusdat@aol.com Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes
More informationDepartment of Electrical and Computer Engineering BenGurion University of the Negev. LAB 1  Introduction to USRP
Department of Electrical and Computer Engineering BenGurion University of the Negev LAB 1  Introduction to USRP  11 Introduction In this lab you will use software reconfigurable RF hardware from National
More informationDigital Transmission of Analog Data: PCM and Delta Modulation
Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process
More informationRECOMMENDATION ITUR BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes
Rec. ITUR BS.704 1 RECOMMENDATION ITUR BS.704 *, ** Characteristics of FM sound broadcasting reference receivers for planning purposes (1990) The ITU Radiocommunication Assembly, considering a) that
More informationImproving A D Converter Performance Using Dither
Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analogtodigital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion
More informationExample/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) 7KHz 5KHz 3KHz 2KHz 0 2KHz 3KHz
More informationIntroduction to Digital Audio
Introduction to Digital Audio Before the development of highspeed, lowcost digital computers and analogtodigital conversion circuits, all recording and manipulation of sound was done using analog techniques.
More informationAN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902928 MHz. FCC Regulations for ISM Band Devices: 902928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
More informationDVBT Television Repeater Jim Andrews, KH6HTV
AN23 DTV Rptr.doc (6/1/2015) p. 1 of 5 Application Note AN23 June, 2015 DVBT Television Repeater Jim Andrews, KH6HTV Fig. 1 A 70cm, Digital TV Repeater, block diagram. The FCC allows licensed amateur
More informationHow PLL Performances Affect Wireless Systems
May 2010 Issue: Tutorial Phase Locked Loop Systems Design for Wireless Infrastructure Applications Use of linear models of phase noise analysis in a closed loop to predict the baseline performance of various
More informationUnderstand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can
designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase
More informationSimulation and Analysis of PWM Inverter Fed Induction Motor Drive
Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial
More informationLock  in Amplifier and Applications
Lock  in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lockin amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
More informationFundamentals of Signature Analysis
Fundamentals of Signature Analysis An Indepth Overview of Poweroff Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
More informationby Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science
A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of
More informationCHAPTER 2 POWER AMPLIFIER
CHATER 2 OWER AMLFER 2.0 ntroduction The main characteristics of an amplifier are Linearity, efficiency, output power, and signal gain. n general, there is a trade off between these characteristics. For
More informationL and C connected together. To be able: To analyse some basic circuits.
circuits: Sinusoidal Voltages and urrents Aims: To appreciate: Similarities between oscillation in circuit and mechanical pendulum. Role of energy loss mechanisms in damping. Why we study sinusoidal signals
More informationTHE BASICS OF PLL FREQUENCY SYNTHESIS
Supplementary Reading for 27  Oscillators Ron Bertrand VK2DQ http://www.radioelectronicschool.com THE BASICS OF PLL FREQUENCY SYNTHESIS The phase locked loop (PLL) method of frequency synthesis is now
More informationThe New Radio Receiver Building Handbook
The New Radio Receiver Building Handbook And Related Radio Subjects Vacuum Tube and Transistor Shortwave Radio Receivers by Lyle Russell Williams, BSEE KC5KBG Copyright 2006 by Lyle Russell Williams All
More informationSwitch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
More informationModulation and Demodulation
16 Modulation and Demodulation 16.1 Radio Broadcasting, Transmission and Reception 16. Modulation 16.3 Types of Modulation 16.4 Amplitude Modulation 16.5 Modulation Factor 16.6 Analysis of Amplitude Modulated
More informationDiode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.
by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although halfwave rectification
More informationPCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
More informationHIGH SIGNALTONOISE RATIO GAIN BY STOCHASTIC RESONANCE IN A DOUBLE WELL
Postprint version of the paper: Zoltan Gingl, Peter Makra, and Robert Vajtai, Fluct. Noise Lett., L8 (2). World Scientific Publishing Company. DOI:.42/S29477548 (http://dx.doi.org/.42/s29477548) HIGH
More informationDigital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
More informationRECOMMENDATION ITUR BS.6441 *,** Audio quality parameters for the performance of a highquality soundprogramme transmission chain
Rec. ITUR BS.6441 1 RECOMMENDATION ITUR BS.6441 *,** Audio quality parameters for the performance of a highquality soundprogramme transmission chain (19861990) The ITU Radiocommunication Assembly,
More informationChapter 8  Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8  Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
More informationLoop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 13046
Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 13046 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often
More informationTitle: Low EMI Spread Spectrum Clock Oscillators
Title: Low EMI oscillators Date: March 3, 24 TN No.: TN2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)
More information1. (Ungraded) A noiseless 2kHz channel is sampled every 5 ms. What is the maximum data rate?
Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the
More informationFundamentals of Microelectronics
Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors
More informationThe D.C Power Supply
The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output
More informationImplementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 3045 MHz (8m HF) 174250 MHz (VHF) 450960 MHz
More informationUnderstanding Noise Figure
Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in
More informationHOW TO SELECT VARISTORS
HOW TO SELECT VARISTORS We have three alternatives:  selection of the varistors suitable for the operating voltage of the application  calculating the surge current, energy absorption and average power
More information14: FM Radio Receiver
(1) (2) (3) DSP and Digital Filters (20157310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):
More informationChapter 20 QuasiResonant Converters
Chapter 0 QuasiResonant Converters Introduction 0.1 The zerocurrentswitching quasiresonant switch cell 0.1.1 Waveforms of the halfwave ZCS quasiresonant switch cell 0.1. The average terminal waveforms
More informationExperiment 3: Double Sideband Modulation (DSB)
Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the doublesideband (DSB) linear modulation process. The demodulation is performed coherently and its strict
More informationChapter 29 AlternatingCurrent Circuits
hapter 9 Alternatingurrent ircuits onceptual Problems A coil in an ac generator rotates at 6 Hz. How much time elapses between successive emf values of the coil? Determine the oncept Successive s are
More informationAVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8bit and 32bit Microcontrollers APPLICATION NOTE
Atmel 8bit and 32bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analogtodigital converter (ADC) and the
More informationRF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
More informationLecture 27: Mixers. Gilbert Cell
Whites, EE 322 Lecture 27 Page 1 of 9 Lecture 27: Mixers. Gilbert Cell Mixers shift the frequency spectrum of an input signal. This is an essential component in electrical communications (wireless or otherwise)
More informationOPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
More informationPIEZO FILTERS INTRODUCTION
For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on
More informationAlternatingCurrent Circuits
hapter 1 Alternatingurrent ircuits 1.1 A Sources... 11. Simple A circuits... 13 1..1 Purely esistive load... 13 1.. Purely Inductive oad... 15 1..3 Purely apacitive oad... 17 1.3 The Series ircuit...
More informationTDA2040. 20W HiFi AUDIO POWER AMPLIFIER
20W HiFi AUDIO POWER AMPLIFIER DESCRIPTION The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22W output power
More informationAnalysis of CommonCollector Colpitts Oscillator
Analysis of CommonCollector Colpitts Oscillator H R Pota May 20, 2005 Introduction Murphy s rule when paraphrased for oscillators reads [], Amplifiers will oscillate but oscillators won t. As we all know,
More informationMODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4339622) is published by CORONA publishing co.,
More informationGSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement
More informationThe Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper
The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal
More informationAmplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA1B)
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production
More informationAM/FM/ϕM Measurement Demodulator FSK7
Data sheet Version 02.00 AM/FM/ϕM Measurement Demodulator FSK7 July 2005 for the Analyzers FSQ/FSU/FSP and the Test Receivers ESCI/ESPI AM/FM/ϕM demodulator for measuring analog modulation parameters
More informationLAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS
LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the iv characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND
More informationAPSYN420A/B Specification 1.24. 0.6520.0 GHz Low Phase Noise Synthesizer
APSYN420A/B Specification 1.24 0.6520.0 GHz Low Phase Noise Synthesizer 1 Introduction The APSYN420 is a wideband low phasenoise synthesizer operating from 0.65 to 20 GHz. The nominal output power is
More informationAnalog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
More informationPHYS 331: Junior Physics Laboratory I Notes on Noise Reduction
PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction When setting out to make a measurement one often finds that the signal, the quantity we want to see, is masked by noise, which is anything
More information5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
More informationNetwork Analyzer Operation
Network Analyzer Operation 2004 ITTC Summer Lecture Series John Paden Purposes of a Network Analyzer Network analyzers are not about computer networks! Purposes of a Network Analyzer Measures Sparameters
More informationChap#5 (Data communication)
Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a bandpass channel. Baseband digital or analog signals are
More informationSuperheterodyne Radio Receivers
EE354 Superheterodyne Handout 1 Superheterodyne Radio Receivers Thus ar in the course, we have investigated two types o receivers or AM signals (shown below): coherent and incoherent. Because broadcast
More informationUSB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
More information