Microbiology - Problem Drill 05: Microbial Metabolism

Size: px
Start display at page:

Download "Microbiology - Problem Drill 05: Microbial Metabolism"

Transcription

1 Microbiology - Problem Drill 05: Microbial Metabolism No. 1 of Anabolism is a metabolic process where are turned into molecules. (A) Complex, simple (B) Simple, ATP (C) Simple, ATP (D) Simple, complex This would be for catabolism the opposite of anabolism. Anabolism often requires energy to assemble the larger more complex molecules. Since ATP is a form of generated energy this answer is incorrect. The process of anabolism is the process were simple molecules are metabolized into larger or complex molecules. This process usually requires the input of energy. D. Correct! Catabolism is the breakdown of complex molecules into smaller less complex molecules. The process typically generates energy. Anabolism can be thought of as synthesis of biomolecules. The synthesis of biomolecules comes from precursor smaller molecules (many of which have been created through the complementary process of catabolism) and requires energy input. Catabolism is the breakdown of molecules such as glucose, proteins and lipids. This breakdown product releases energy and creates precursors for use in the anabolic pathway.

2 No. 2 of is the breakdown of complex molecules into simpler molecules with the of energy. (Choose the best answers below to fill in the blanks.) (A) Anabolism, input (B) Anabolism, release (C) Catabolism, release (D) Catabolism, input Anabolism is the assembly of complex molecules from simpler molecules. Anabolism usually requires the input of energy. Anabolism is the assembly of complex molecules from simpler molecules. Anabolism usually requires the input of energy. C. Correct! Catabolism is the breakdown of complex molecules into simpler molecules usually releasing energy. D. Incorrect! Catabolism is the breakdown of complex molecules into simpler molecules usually releasing energy not requiring it. In the study of metabolism it is useful to determine if a molecule is becoming more or less complex, i.e. the direction of the reaction. If the direction is toward lower complexity, as a generalization you can make an educated guess that energy will be released. The process of catabolism is associated with the breakdown of complex molecules.

3 No. 3 of Nutrient molecules with high energy electrons are by catabolic reactions and the energy is stored in high energy bonds like. (A) Hydrolyzed and DNA (B) Oxidized and RNA (C) Deaminated and amino acids (D) Oxidized and ATP Hydrolysis is a chemical reaction when a molecule reacts with water. One reactant gets a hydroxyl OH and the other a proton +H (not an election). This answer is partially correct, catabolic reactions do involve oxidation. However RNA is a stable molecule. In order to be a participant in the storage and or transfer of genetic information the bonds of RNA must be relatively stable so not high energy. Deamination is the removal of an amine group from an amino acid. This is a step in breaking down proteins to ultimately be used in Krebs cycle. However amino acids are not high energy molecules. D. Correct! Catabolism is the process of oxidation of nutrient or complex molecules leading to the creation and storage of energy in the form of high energy bonds. The most common high energy bond where energy is stored in the cell is in ATP. Catabolism is the process of oxidation of nutrient or complex molecules leading to the creation and storage of energy in the form of high energy bonds. The most common high energy bond where energy is stored in the cell is in ATP.

4 No. 4 of The breakdown of glucose to produce large amount of energy in the form of ATP is known as. (A) Catabolism (B) Redox (C) Substrate level phosphorylation (D) Respiration Catabolism is the breakdown of complex biomolecules to simple molecules. This is frequently accompanied by energy being produced. However the over all process is not referred to as catabolism. REDOX referees to the reduction and oxidation of a sample. Oxidation refers to the loss of an electron by a molecule. Reduction describes the gain of an electron by a molecule. Substrate level phosphorylation is the direct transfer of a phosphate from an organic molecule to ADP. Cells can do this in glycolysis and a small amount of ATP made in the Kreb's cycle is made this way. D. Correct! A series of metabolic processes that the living cell uses to produce energy. This is done through oxidation of organic molecules. Cellular respiration, weather prokaryote or eukaryote is a oxidative process. The chemical energy of organic molecules is releases in a series of organized steps. The steps are frequently accompanied by use of oxygen (in aerobic respiration) and the release of CO 2 and H 2 O.

5 No. 5 of Carbohydrates are the primary energy source for microbial metabolism typically in the form of glucose. Glucose is metabolized further via fermentation or cellular respiration. Before fermentation or cellular respiration occurs glucose first goes through the. (A) TCA cycle (B) Glycolysis (C) Kreb s cycle (D) Electron transport TCA cycle is also known as the Kreb s cycle. It is a series of reactions involving he oxidative metabolism of biomolecules with the concurrent production of ATP. ATP serves as the main source of cellular energy. B. Correct! Glycolysis the metabolic pathway that occurs in almost all living cells. Glucose is changed in a series of steps to pyruvic acid which releases energy in the process. Glycolysis precedes the other pathways and is therefore the primary pathway. TCA cycle is also known as the Kreb s cycle. It is a series of reactions involving he oxidative metabolism of biomolecules with the concurrent production of ATP. ATP serves as the main source of cellular energy. D. Incorrect! Electron transport chain or system is a series of oxidation-reduction reactions that result in an electron(s) creating the energy that is used in oxidative phosphorylation. The oxidative phosphorylation is used to make ATP. Energy carrying molecules of NADH and FADH2 give their electrons to coenzymes. The enzymes used in electron transport and oxidative phosphorylation are on the inner membrane of the bacteria. However the ETC of bacteria is high variable between species. Membrane invaginations form structures called: mesosomes, respiratory vesicles or lamellar vesicles. Note in the schematic the metabolic processes available including Krebs, TCA etc. all begin after glycolysis.

6 No. 6 of In the preparatory stage of glycolysis glucose is energized by adding phosphate groups. Two molecules of ATP are in this step resulting in two molecules of glyceraldehyde 3 phosphate. compounds. (A) 4 and produced (B) 2 and produced (C) 4 and used (D) 2 and used Clue is in the question. It states that Two molecules of ATP are involved. The most likely scenario then is that two phosphates are added. The question does state that two molecules of ATP are used in the preparatory step so the first half of this answer is correct. However remember that in the preparatory step ATP is used not produced. Clue is in the question. The question states that Two molecules of ATP are involved. The most likely scenario then is that two phosphates are added. In the preparatory step ATP is used not produced. Production of ATP will occur in the following steps D. Correct! The question does state that two molecules of ATP are used in the preparatory step so the answer 2 is correct. In the preparatory step ATP is used not produced. Production of ATP will occur in the following steps. Glycolysis has four main steps (although it has 10 distinct chemical reactions). These key events occur during glycolysis: 1. Preparatory stage, glucose is energized by adding two phosphate groups. Two molecules of ATP are used in this step and results in two, three-carbon compounds. 2. Substrate level phosphorylation makes 2 molecules of ATP from ADP. During the formation of the two phosphorylated 3-carbon molecules 4 molecules of ATP are made. This results in a net gain of 2 ATP per glucose. 3. For every glyceraldehyde 3-phosphate molecule a molecule of NAD+ is reduced to NADH. NADH can enter the electron transport system generating more ATP by oxidative phosphorylation. 4. Two molecules of pyruvate are made. Pyruvate may be fermented or enter the Krebs cycle depending on the bacterium.

7 No. 7 of The end product of glycolysis includes: 2 ATP, 2 NADH and 2. (A) Urea (B) Lactic acid (C) Galactose (D) Pyruvate Urea is a product of the urea cycle which is involved in protein breakdown. Lactate or lactic acid is formed under aerobic conditions. Pyruvate is reduced to lactate. pyruvate + NADH + H + lactate + NAD + Galactose is a carbohydrate that is used as a metabolite not a product. D. Correct! A single molecule of glucose gives rise to 2 molecules of pyruvate. Step by step complete solution (the long version). This can be any format, whatever you can type in Word.

8 No. 8 of In REDOX reactions molecules are either oxidized or reduced. Which of the following statements is true of oxidation reduction processes? Reduction reactions trap chemical energy. In reduction the substrate gains electrons and hydrogens. (A) A molecule that has undergone reduction is energy rich. (B) Reduction reactions release chemical energy. (C) A molecule that has undergone oxidation is energy rich. (D) Reduction is the releasing of electrons by a molecule. A. Correct! REDOX reactions are involved in the energy release or generation (storage) of chemical energy. As a rule of thumb it should be remembered that when a molecule is reduced it has acquired an electron and hydrogens and traps energy. Reduction reactions trap chemical energy. In reduction the substrate gains electrons and hydrogens. A molecule that has undergone reduction is energy rich. Oxidation reactions release energy. In biological systems, oxidation involves the loss of hydrogen atoms from a substrate, electrons are usually lost with hydrogen atoms. An oxidized molecule has given up energy. D. Incorrect! Reduction is the acquisition of electrons. The basics of oxidation and reduction are presented. It is in oxidation reduction that high energy molecules are created and utilized. Oxidation reactions release energy. In biological systems, oxidation involves the loss of hydrogen atoms from a substrate, electrons are usually lost with hydrogen atoms. An oxidized molecule has given up energy. Reduction reactions trap chemical energy. In reduction the substrate gains electrons and hydrogens. A molecule that has undergone reduction is energy rich.

9 No. 9 of The breakdown products of glucose to glucose-6 phosphate and fructose-6-phospate enter the anabolic pathway to make glycogen and peptidoglycan, both of which are polysaccharides. This is an example of. (A) Catabolism (B) Anabolism (C) Fermentation (D) Electron Transport Chain Catabolism is the breakdown of molecules into simpler one usually releasing energy. The pathway described is making the molecule more complex and uses energy. B. Correct! This is anabolism because a simple starting molecule is assembled into more complex molecules. Fermentation is the production of energy under anaerobic conditions. D. Incorrect! Electron transport is the process where the greatest amount of energy in the form of ATP is created. To answer this question consider the complexity of the starting molecules, glucose and glucose-6- phosphate and fructose-6-phospate and then look at the products. The starting molecules are simple carbohydrates and the end products are more complex. This is therefore and example of anabolism.

10 No. 10 of NAD is used in glycolysis and the Kreb s cycle during cellular respiration and is converted to NADH. The potential of NADH can be used to convert ADP to ATP in the electron transport chain. (A) Oxidizing (B) Hydrolyzing (C) Reducing (D) Fermenting The H (hydrogen) is a clue that the NADH is not an oxidizing molecule. Hydrolyzing is the addition of an OH. C. Correct! The hydrogen from NADH is released as a reducing agent. This is used in the electron transport chain to make ATP. D. Incorrect! Fermentation is the process of energy creation without oxygen and in the absence of the ETC. The mechanism for oxidative phosphorylation is the gradient of H+ across the cell membrane. This is called chemiosmotic coupling. NADH enters the ETS chain at the beginning and yields 3 ATP per NADH.

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Cellular Respiration

Cellular Respiration Cellular Respiration So, all living things need energy in order to stay alive. The transformation of energy and matter in the body is called metabolism. Metabolism involves anabolic (build-up) and catabolic

More information

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions.

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions. Cellular respiration So why do we breathe? The big picture Heterotrophs cannot make their own food to supply their energy needs Instead they break down food to use the chemical energy stored in organic

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

monosaccharides fatty acids amino acids

monosaccharides fatty acids amino acids Cellular Energy In order to sustain life (steady state), cells constantly expend energy in the form of ATP hydrolysis the hydrolysis of ATP yields a molecule of ADP (adenosine diphosphate) and a Phosphate

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name Advanced Biology Enzyme and Cellular Respiration Test Part I Multiple Choice (75 points) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section C: Related Metabolic Processes

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section C: Related Metabolic Processes CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section C: Related Metabolic Processes 1. Fermentation allows some cells to produce ATP without the help of oxygen 2. Glycolysis and the Krebs

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy I. Introduction A. In eukaryotes, cellular respiration 1. harvests energy from food 2. yields large amounts of ATP 3. B. A similar process takes place in many prokaryotic

More information

Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY!

Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY! Biology I Cellular Respiration Name: Date: Hour: OK OK OK.. I m sure you all thought that I wouldn t possibly ask you to know more for this chapter SORRY! Now, we need a place to disassemble the molecule

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Ch. 6 Cellular Respiration Period

Ch. 6 Cellular Respiration Period Ch. 6 Cellular Respiration Name Period California State Standards covered by this chapter: Cell Biology 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions

More information

Cellular Respiration Page 9

Cellular Respiration Page 9 Cellular Respiration Page 9 I. The Importance of Food A. Food provides living things with the chemical building blocks they need to grow and reproduce. B. Food serves as a source of for the cells of the

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Chapter 3: Bioenergetics

Chapter 3: Bioenergetics Chapter 3: Bioenergetics Introduction Metabolism: total of all chemical reactions that occur in the body Anabolic reactions Synthesis of molecules Catabolic reactions Breakdown of molecules Bioenergetics

More information

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules Metabolism Metabolism Total of all chemical reactions that occur in the body 1. Anabolic reactions Synthesis of molecules 2. Catabolic reactions Breakdown of molecules Bioenergetics Converting foodstuffs

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Slide 1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Chapter 9 CELLULAR RESPIRATION

Chapter 9 CELLULAR RESPIRATION Chapter 9 CELLULAR RESPIRATION HARVESTING FREE ENERGY Photosynthesis takes free energy and puts it into carbohydrates/sugars Carbohydrates can be stored for later use; light can not and neither can ATP

More information

ENERGY AND METABOLISM 1

ENERGY AND METABOLISM 1 ENERGY AND METABOLISM 1 Respiration and Fermentation 1. Some bacteria can use carbon dioxide rather than oxygen as the prime oxidizing molecule and therefore produce methane (CH4) rather than water as

More information

5.3 Cellular Respiration Releases Energy from Organic Compounds

5.3 Cellular Respiration Releases Energy from Organic Compounds 5.3 Cellular Respiration Releases Energy from Organic Compounds In this section, you will distinguish among aerobic respiration, anaerobic respiration, and fermentation explain how carbohydrates are oxidized

More information

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis

Cellular Respiration. The backwards and slightly more complicated version of photosynthesis Cellular Respiration The backwards and slightly more complicated version of photosynthesis Learning Outcomes I will. - Explain how glycolysis and the Kreb s cycle work and describe where these processes

More information

Cellular Respiration

Cellular Respiration ellular Respiration ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H 12

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Aerobic Respiration: steps

Aerobic Respiration: steps Chapter 5 Metabolism: Aerobic Respiration Dr. Amy Rogers Bio 139 Fall 2006 Office Hours: Mondays & Wednesdays, 8:30-10:00 AM Some figures taken from Krogh Biology: A Guide to the Natural World Bacterial

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy Pathways that Harvest and Store Chemical Energy Chapter 6 Pathways that Harvest and Store Chemical Energy Key Concepts 6.1 ATP, Reduced Coenzymes, and Chemiosmosis Play Important Roles in Biological Energy

More information

Cellular Respiration Part V: Anaerobic Respiration and Fermentation

Cellular Respiration Part V: Anaerobic Respiration and Fermentation Cellular Respiration Part V: Anaerobic Respiration and Fermentation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate

More information

Lecture Notes Respiration

Lecture Notes Respiration Lecture Notes Respiration We will consider two processes by which organisms harvest energy from food molecules: Aerobic Respiration more efficient, occurs in presence of O 2 Anaerobic Respiration less

More information

An outline of glycolysis.

An outline of glycolysis. An outline of glycolysis. Each of the 10 steps shown is catalyzed by a different enzyme. Note that step 4 cleaves a six-carbon sugar into two three-carbon sugars, so that the number of molecules at every

More information

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37 1 of 37 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 2 of 37 The Krebs Cycle The

More information

Chapter 6 How Cells Harvest Chemical Energy. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP

Chapter 6 How Cells Harvest Chemical Energy. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP Chapter 6 How Cells Harvest Chemical Energy Standard 1.g. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP Is an aerobic process Yields The Relationship

More information

SBI4U: Respiration and Photosynthesis Test. [25 marks]

SBI4U: Respiration and Photosynthesis Test. [25 marks] Part 1: Multiple Choice SBI4U: Respiration and Photosynthesis Test Mr. Dykstra Name: [25 marks] 1. Which of the following molecules links glucose oxidation, fatty acid catabolism, and the catabolism of

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Energy flow and chemical recycling in ecosystems. Energy flow and chemical recycling in ecosystems

Energy flow and chemical recycling in ecosystems. Energy flow and chemical recycling in ecosystems 1 Cellular Respiration Bio 103 Lecture Dr. Largen 2 Topics Introduction to cellular respiration Basic mechanisms of energy release and storage Stages of cellular respiration and fermentation Interconnections

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Chapter 7. How Cells Release Chemical energy

Chapter 7. How Cells Release Chemical energy Chapter 7 How Cells Release Chemical energy Overview of Carbohydrate Breakdown Pathway Plants and all other photoautotrophs get energy from the sun, heterotrophs get by eating plants and one another ATP

More information

Glycolysis & Respiration

Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Major concepts: Notes: Capturing Cell Energy

Major concepts: Notes: Capturing Cell Energy 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Transfers of electrons during chemical reactions (oxidation-reduction reactions)

Transfers of electrons during chemical reactions (oxidation-reduction reactions) Transfers of electrons during chemical reactions (oxidation-reduction reactions) Relocation of electrons in food molecules releases energy which can be used to synthesize ATP ATP is used to do ALL types

More information

Aerobic organisms obtain energy from oxidation of food molecules

Aerobic organisms obtain energy from oxidation of food molecules Experiment: Time-course of water and oxygen uptake, and seed germination Aerobic organisms obtain energy from oxidation of food molecules Pradet et al 1968; 1981) Interpret results Becker et al. Third

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-14 RESPIRATION IN PLANTS

Visit  For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-14 RESPIRATION IN PLANTS Chapter-14 RESPIRATION IN PLANTS POINTS TO REMEMBER Aerobic respiration : Complete oxidation of organic food in presence of oxygen thereby producing CO 2, water and energy. Anaerobic respiration : Incomplete

More information

Lecture Chapter 6. Cellular Respiration

Lecture Chapter 6. Cellular Respiration Lecture 12-13 Chapter 6 Cellular Respiration How do marathon runners and sprinters differ? Long-distance runners have many SLOW FIBERS in their muscles Slow fibers break down glucose for ATP production

More information

Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp. 133-149. Insert figure 8.2 here. 10th Edition

Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp. 133-149. Insert figure 8.2 here. 10th Edition Chapter 8: pp. 133-149 BIOLOGY 10th Edition Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Insert figure 8. here and Cytoplasm e F ADH Mitochondrion

More information

pathways Chapter 9 1 Cellular Respiration 2 Introduction 3 Energy flow 4 Cellular respiration and fermentation are catabolic, energy-yielding

pathways Chapter 9 1 Cellular Respiration 2 Introduction 3 Energy flow 4 Cellular respiration and fermentation are catabolic, energy-yielding 1 Cellular Respiration Chapter 9 2 Introduction Living is work. To perform their many tasks, cells require transfusions of energy from outside sources. In most ecosystems, energy enters as sunlight. Light

More information

Photosynthesis and Respiration

Photosynthesis and Respiration Chemical Reactions and Enzymes Do Now Photosynthesis and Respiration 4 Minutes Share Out What is SUCCESS? Success is not gained by defeat Success does not occur over night Success can emerge at anytime

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

The Citric Acid Cycle and Oxidative Phosphorylation

The Citric Acid Cycle and Oxidative Phosphorylation Honors Biology Chapter 6.8 6.12 Study Sheet The Citric Acid Cycle and Oxidative Phosphorylation PYRUVATE OXIDATION DRAW THE DETAILED REACTION BELOW: REACTION SUMMARY: SUBSTRATES: PRODUCTS: THE CITRIC ACID

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

9-1 Notes. Chemical Pathways

9-1 Notes. Chemical Pathways 9-1 Notes Chemical Pathways Chemical Energy & Food Food provides living things with the chemical building blocks to grow and reproduce. One gram of the sugar glucose releases 3811 calories of heat energy.

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration

Cellular Respiration. Cellular Respiration. The Mighty Mitochondria. Cellular Respiration. Cellular Respiration Have you ever wondered why you need oxygen? The Process that releases energy by breaking down food molecules in the presence of oxygen That energy goes to make ATP. What does it all mean? C 6 H 12 O 6

More information

Introduction to Biology Respiration Chapter 5

Introduction to Biology Respiration Chapter 5 Introduction to Biology Respiration Chapter 5 Introduction Being alive is work. Cells organize small organic molecules into polymers such as the proteins, carbohydrates, and so forth you studied last week.

More information

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles Slow fibers break down glucose aerobically (using oxygen) for ATP production These muscle cells

More information

An Overview of Metabolism

An Overview of Metabolism An Overview of Metabolism metabolism total of all chemical reactions occurring in cell catabolism breakdown of larger, more complex molecules into smaller, simpler ones energy is released and some is trapped

More information

Cellular Respiration

Cellular Respiration Cellular Respiration INTRODUCTION TO CELLULAR RESPIRATION Nearly all the cells in our body break down sugars for ATP production Most cells of most organisms harvest energy aerobically The aerobic harvesting

More information

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Aerobic cellular respiration requires

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Cellular_Respiration.tns. All living things require energy to stay alive. Most of this energy comes from food, often in the form of glucose. Cells share common pathways to metabolize

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

Ch 4: Energy and Cellular Metabolism

Ch 4: Energy and Cellular Metabolism Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis

More information

: The Body s Energy Shuttles. *The body s energy shuttles NADH, FADH 2

: The Body s Energy Shuttles. *The body s energy shuttles NADH, FADH 2 Chapter 8 Metabolism Chapter Outline I. Energy: Fuel for Work. *Energy is necessary to do any kind of work. The body converts chemical energy from food sources carbohydrates, proteins, and fats into a

More information

Chapter 5 Fundamentals of Human Energy Transfer

Chapter 5 Fundamentals of Human Energy Transfer Chapter 5 Fundamentals of Human Energy Transfer Slide Show developed by: Richard C. Krejci, Ph.D. Professor of Public Health Columbia College 6.18.11 Objectives 1. Describe the first law of thermodynamics

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Cells require outside energy to do cellular work. Energy flows ( (تتدفق into most ecosystems ( بيئية (أنظمة as sunlight Photosynthetic organisms trap a portion of the sunlight

More information

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Energetics... Page 18. Respiration

Buddhist Chi Hong Chi Lam Memorial College A.L. Bio. Notes (by Denise Wong) Energetics... Page 18. Respiration Energetics... Page 18 Respiration Syllabus : The importance of respiration in converting chemical energy in food to chemical energy in ATP. The sites of respiration the sites of the various biochemical

More information

Cellular Respiration and Fermentation. Lab 6 Biol 1107L Spring 2015

Cellular Respiration and Fermentation. Lab 6 Biol 1107L Spring 2015 Cellular Respiration and Fermentation Lab 6 Biol 1107L Spring 2015 Overview: Life Is Work Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals

More information

Summary of Metabolic Pathways (Ch 21,23 and 25)

Summary of Metabolic Pathways (Ch 21,23 and 25) Summary of Metabolic Pathways (Ch 21,23 and 25) 21.1 Energy and Life Energy can be converted from one form to another, but can t be created or destroyed. -A consequence of this is that we need a constant

More information

Cellular Respiration. Chemical Energy and Food (page 221) Overview of Cellular Respiration (page 222) Chapter 9. Mitochondrion.

Cellular Respiration. Chemical Energy and Food (page 221) Overview of Cellular Respiration (page 222) Chapter 9. Mitochondrion. Chapter 9 Cellular Respiration Section 9 1 Chemical Pathways (pages 221 225) This section explains what cellular respiration is. It also describes what happens during a process called glycolysis and describes

More information

Oxidation of Pyruvate and the Citric Acid Cycle

Oxidation of Pyruvate and the Citric Acid Cycle Oxidation of Pyruvate and the Citric Acid Cycle Bởi: OpenStaxCollege If oxygen is available, aerobic respiration will go forward. In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis

More information

Answers and Solutions to Text Problems

Answers and Solutions to Text Problems 23 Answers and Solutions to Text Problems 23.1 The digestion of polysaccharides takes place in stage 1. 23.2 In stage 3, small molecules are converted to CO 2, H 2 O, and energy for ATP synthesis. 23.3

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules Introduction Chapter 6 In eukaryotes, cellular respiration harvests energy from food, yields large amounts of, and Uses to drive cellular work. A similar process takes place in many prokaryotic organisms.

More information

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis makes O 2 and organic molecules (like sugars and proteins), which are used in cellular respiration Cells use chemical energy

More information

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP 1. Glycolysis leads to the production of and two molecules of ATP. In the absence of oxygen, fermentation leads to the production of. Glycolysis plus the citric acid cycle can convert the carbons of glucose

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

What s the point? ATP! Electron Transport Chain ATP

What s the point? ATP! Electron Transport Chain ATP http://www.youtube.com/watch?v=vcpnk92uswy What s the point? Cellular Respiration The point Stage 4: is to make ATP! Electron Transport Chain ATP 2013-2014 Cellular respiration ATP accounting so far Even

More information

Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy)

Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy) Cellular Respiration 1. Occurs in the Mitochondria 2. How are cells produce ATP (energy) Consider the energy released by a burning peanut How is this like cellular respiration? Hyperlink What happened

More information

Introduction to Biology Respiration Chapter 8

Introduction to Biology Respiration Chapter 8 Introduction to Biology Respiration Chapter 8 Introduction Being alive is work. Cells organize small organic molecules into polymers such as the proteins, carbohydrates, and so forth you studied last week.

More information

Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA

Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA Take notes while watching the following video tutorials to prepare for the Metabolism Part 2 Activity. Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA Metabolism ALL biochemical reactions involving

More information

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose Harvesting Energy: and Cellular Chapter 8 Using the Energy from Photosynthesis 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 + heat Some ATP is produced in photosynthesis, but most energy is stored in sugars.

More information

Study Guide A. Answer Key. Cells and Energy

Study Guide A. Answer Key. Cells and Energy Cells and Energy Answer Key SECTION 1. CHEMICAL ENERGY AND ATP 1. molecule; food molecules 2. high-energy; lower-energy 3. phosphate group 4. a; d; b; c 5. b; e 6. c; d 7. a; f 8. chemical energy; light

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

CELLULAR RESPIRATION. Dr. Howaida Nounou. Dr. Howaida Nounou

CELLULAR RESPIRATION. Dr. Howaida Nounou. Dr. Howaida Nounou CELLULAR RESPIRATION 1 The Pathway of energy in living organisms photosynthesis Light energy from the sun Chemical energy stored in glucose, fats, or carbohydrates cellular respiration Chemical energy

More information

Cellular Respiration. Biology Gr11F. Grade 11F Science Related Reading/Biology. Name: Class: Date: Concept Mapping

Cellular Respiration. Biology Gr11F. Grade 11F Science Related Reading/Biology. Name: Class: Date: Concept Mapping Name: Class: Date: Grade 11F Science Related Reading/Biology Cellular Respiration Biology Gr11F Concept Mapping Complete the concept map showing the cellular respiration. 1 Unit: Linking Cell Structures

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Enzymes and Metabolic Pathways Un-lecture.part II. NOTE: number corresponds to slides posted on the website.

Enzymes and Metabolic Pathways Un-lecture.part II. NOTE: number corresponds to slides posted on the website. Enzymes and Metabolic Pathways Un-lecture.part II NOTE: number corresponds to slides posted on the website. 44. ETS and Oxidative phosphorylation: When we completed the Krebs cycle, all of the bonds between

More information

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for work 3. Redox reactions release energy

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

Cellular Respiration: How Cells Use Stored Energy. Killer Bees. ATP -- Energy Storage. Chapter 8

Cellular Respiration: How Cells Use Stored Energy. Killer Bees. ATP -- Energy Storage. Chapter 8 Cellular Respiration: How Cells Use Stored Energy Chapter 8 Killer Bees Descendents of African honeybees that were imported to Brazil in the 1950s More aggressive, wider-ranging than other honeybees Africanized

More information

THE CELLULAR RESPIRATION SAGA: Glycolysis, Fermentation & Pyruvate Oxidation

THE CELLULAR RESPIRATION SAGA: Glycolysis, Fermentation & Pyruvate Oxidation THE CELLULAR RESIRATION SAGA: Glycolysis, Fermentation & yruvate Oxidation 1 HOW DO WE GET AT? AT is a product of cellular respiration O Breathing CO Breath in O O diffuses into bloodstream Lungs O diffuses

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information