Chapter 9 Mitochondrial Structure and Function

Size: px
Start display at page:

Download "Chapter 9 Mitochondrial Structure and Function"

Transcription

1 Chapter 9 Mitochondrial Structure and Function

2 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2

3 Mitochondria have characteristic morphologies despite variable appearance. Typical mitochondria are beanshaped organelles but may be round or threadlike. The size and number of mitochondria reflect the energy requirements of the cell. Structure and Function 3

4 The balance between fusion and fission is likely a major determinant of mitochondrial number, length, and degree of interconnection. Fusion and Fission 4

5 Inner and outer mitochondrial membranes enclose two spaces: the matrix and intermembrane space. The outer mitochondrial membrane serves as its outer boundary. The inner mitochondrial membrane is subdivided into two interconnected domains: Inner boundary membrane Cristae where the machinery for ATP is located Mitochondrial Structure 5

6 The outer membrane is about 50%; the inner membrane is more than 75% protein. The inner membrane contains cardiolipin but not cholesterol, both are true of bacterial membranes. The outer membrane contains a large poreforming protein called porin. The inner membrane is impermeable to even small molecules; the outer membrane is permeable to even some proteins. Mitochondrial Membranes 6

7 Contains a circular DNA molecule, ribosomes, and enzymes. RNA and proteins can be synthesized in the matrix. The mitochondrial matrix 7

8 OXIDATIVE METABOLISM Role of Mitochondria in the Formation of ATP 8

9 Overview of carbohydrate metabolism in eukaryotic cells 9

10 The first steps in oxidative metabolism Glycolysis produces pyruvate, NADH, and two molecules of ATP. Aerobic organisms use O2 to extract more than 30 additional ATPs from pyruvate and NADH. Pyruvate is transported across the inner membrane and decarboxylated to form acetyl CoA, which enters the next stage. Glycolysis 10

11 It is a stepwise cycle where substrate is oxidized and its energy conserved. The two-carbon acetyl group from acetyl CoA is condensed with the four-carbon oxaloacetate to form a six-carbon citrate. During the cycle, two carbons are oxidized to CO2, regenerating the four-carbon oxaloacetate needed to continue the cycle. Tricarboxylic acid (TCA) cycle 11

12 Four reactions in the cycle transfer a pair of electrons to NAD+ to form NADH, or to FAD+ to form FADH2. Reaction intermediates in the TCA cycle are common compounds generated in other catabolic reactions making the TCA cycle the central metabolic pathway of the cell. Tricarboxylic acid (TCA) cycle 12

13 The reduced coenzymes FADH2 and NADH are the primary products of the TCA cycle. NADH formed during glycolysis enters the mitochondria via malate-aspartate or glycerol phosphate shuttles. As electrons move through the electrontransport chain, H + are pumped out across the inner membrane. Reduced Coenzymes 13

14 ATP is formed by the controlled movement of H+ back across the membrane through the ATPsynthesizing enzyme. The coupling of H + translocation to ATP synthesis is called chemiosmosis. Three molecules of ATP are formed from each pair of electrons donated by NADH; two molecules of ATP are formed from each pair of electrons donated by FADH2. Reduced Coenzymes 14

15 Strong oxidizing agents have a high affinity for electrons; strong reducing agents have a weak affinity for electrons Redox reactions are accompanied by a decrease in free energy. The transfer of electrons causes charge separation that can be measured as a redox potential. Oxidation-Reduction (Redox) Potentials 15

16 Flavoproteins are polypeptides bound to either FAD or FMN. Cytochromes contain heme groups bearing Fe or Cu metal ions. Three cooper atoms are located within a single protein complex and alternate between Cu2+/Cu3+ Ubiquinone (coenzyme Q) is a lipid-soluble molecule made of five-carbon isoprenoid units. Iron-sulfur proteins contain Fe in association with inorganic sulfur. Electron Carriers 16

17 Electron-Transport Complexes 17

18 Complex I (NADH dehydrogenase) catalyzes transfer of electrons from NADH to ubiquinone and transports four H+ per pair. Complex II (succinate dehydrogenase) catalyzes transfer of electrons from succinate to FAD to ubiquinone without transport of H+. Complex III (cytochrome bc1) catalyzes the transfer of electrons from ubiquinone to cytochrome c and transports four H+ per pair. Electron-Transport Complexes 18

19 Complex IV (cytochrome c oxidase) catalyzes transfer of electrons to O2 and transports H+ across the inner membrane. Cytochrome oxidase is a large complex that adds four electrons to O2 to form two molecules of H2O. The metabolic poisons CO, N3 (nitride), and CN (cyanide) bind catalytic sites in Complex IV. Electron-Transport Complexes 19

20 Electrons are transferred one at a time. Energy released by O2 reduction is presumably used to drive conformational changes. These changes would promote the movement of H+ ions and through the protein. Cytochrome oxidase 20

21 Oxidative phosphorylation 21

22 The F1 particle is the catalytic subunit, and contains three catalytic sites for ATP synthesis. The F0 particle attaches to the F1 and is embedded in the inner membrane. The F0 base contains a channel through which protons are conducted from the inter-membrane space to the matrix. ATP synthase 22

23 Movement of protons through ATP synthase alters the binding affinity of the active site. Each active site goes through distinct conformations that have different affinities for substrates and product. Binding sites on the catalytic subunit can be tight, loose, or open. ATP is synthesized through rotational catalysis where the stalk of ATP synthase rotates relative to the head. There is structural and experimental evidence to support this mechanism Binding Change Mechanism 23

24 A variety of disorders are known that result from abnormalities in mitochondria structure/function. Majority of mutations linked to mitochondrial diseases are traced to mutations in mtdna. Mitochondrial disorders are inherited maternally. It is speculated that accumulations of mutations in mtdna is a major cause of aging. In mice encoding a mutation in their mtdna, signs of premature aging develop. Additional findings suggest that mutations in mtdna may cause premature aging but are not sufficient for the normal aging process. Diseases that Result from Abnormal Mitochondrial Function 24

25 PEROXISOMES 25

26 Oxidize very-longchain fatty acids Form by splitting from preexisting organelles, import preformed proteins, and engage in oxidative metabolism. Peroxisomes 26

27 Hydrogen peroxide (H2O2), a reactive and toxic compound, is formed in peroxisomes and is broken down by the enzyme catalase. Plants contain a special peroxisome called glyoxysome, which can convert fatty acids to glucose by germinating seedlings. Peroxisomes 27

28 Patients with Zellweger syndrome lack peroxisomal enzymes due to defects in translocation of proteins from the cytoplasm into the peroxisome. Adrenoleukodydstrophy is caused by lack of a peroxisomal enzyme, leading to fatty acid accumulation in the brain and destruction of the myelin sheath of nerve cells. Peroxisomal Dysfunction 28

Module No. # 01 Lecture No. # 20 Electron Transport Chain and Oxidative Phosphorylation

Module No. # 01 Lecture No. # 20 Electron Transport Chain and Oxidative Phosphorylation Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

IB BIOLOGY: Respiration Notes. Draw and annotate a molecule of ATP to show how it stores and releases energy.

IB BIOLOGY: Respiration Notes. Draw and annotate a molecule of ATP to show how it stores and releases energy. IB BIOLOGY: Respiration Notes Draw and annotate a molecule of ATP to show how it stores and releases energy. Contrast oxidation and reduction from the perspectives of (a) the gain or loss of electrons

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy. Multiple-Choice Questions

Chapter 9. Cellular Respiration: Harvesting Chemical Energy. Multiple-Choice Questions Chapter 9 Cellular Respiration: Harvesting Chemical Energy Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic

More information

The Citric Acid Cycle and Oxidative Phosphorylation

The Citric Acid Cycle and Oxidative Phosphorylation Honors Biology Chapter 6.8 6.12 Study Sheet The Citric Acid Cycle and Oxidative Phosphorylation PYRUVATE OXIDATION DRAW THE DETAILED REACTION BELOW: REACTION SUMMARY: SUBSTRATES: PRODUCTS: THE CITRIC ACID

More information

2. Now examine aspects of the last stage in greater detail

2. Now examine aspects of the last stage in greater detail IX. Metabolism and Energy Production A. Introduction Slide 1. R `ism a. Stage I: Breakdown of macromolecules into their building blocks (1) Proteins amino acids (2) Polysaccharides, disaccharides monosaccharides

More information

An outline of glycolysis.

An outline of glycolysis. An outline of glycolysis. Each of the 10 steps shown is catalyzed by a different enzyme. Note that step 4 cleaves a six-carbon sugar into two three-carbon sugars, so that the number of molecules at every

More information

Chapter 9: How Cells Harvest Energy

Chapter 9: How Cells Harvest Energy Chapter 9: How Cells Harvest Energy General Pathways for making ATP Aerobic Respiration Anaerobic Respiration Fermentation Differentiate between aerobic respiration, anaerobic respiration, and fermentation

More information

Aerobic Respiration: steps

Aerobic Respiration: steps Chapter 5 Metabolism: Aerobic Respiration Dr. Amy Rogers Bio 139 Fall 2006 Office Hours: Mondays & Wednesdays, 8:30-10:00 AM Some figures taken from Krogh Biology: A Guide to the Natural World Bacterial

More information

CLASS XI BIOLOGY. Plant Respiration. Finish Line & Beyond send your queries to

CLASS XI BIOLOGY. Plant Respiration. Finish Line & Beyond send your queries to CLASS XI BIOLOGY Plant Respiration 1. Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration takes place in cells of

More information

Energy Metabolism and Mitochondria

Energy Metabolism and Mitochondria Energy Metabolism and Mitochondria Date: September 2, 2005 * Time: 9:40 am- 10:30 am * Room: G-202 Biomolecular Building Lecturer: Mohanish Deshmukh 7109E Neuroscience Research Building mohanish@med.unc.edu

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

Oxidation of Pyruvate and the Citric Acid Cycle

Oxidation of Pyruvate and the Citric Acid Cycle Oxidation of Pyruvate and the Citric Acid Cycle Bởi: OpenStaxCollege If oxygen is available, aerobic respiration will go forward. In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Oxidative Phosphorylation Frederick Stanley

Oxidative Phosphorylation Frederick Stanley Oxidative Phosphorylation Frederick Stanley I) Introduction A) Glucose 1) A highly reduced molecule with much potential energy. 2) Substrate level oxidation yields only 4 ATPs. 3) 2 NADH are produced in

More information

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Abir Alghanouchi Biochemistry department Sciences college

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Abir Alghanouchi Biochemistry department Sciences college Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Abir Alghanouchi Biochemistry department Sciences college All of the reactions involved in cellular respiration can be grouped into

More information

ATP. Overview of cellular respiration. Cellular Respiration The Krebs Cycle. Oxidation of pyruvate. Glycolysis is only the start. Cellular respiration

ATP. Overview of cellular respiration. Cellular Respiration The Krebs Cycle. Oxidation of pyruvate. Glycolysis is only the start. Cellular respiration Cellular Respiration The Krebs Cycle 2006-2007 Overview of cellular respiration 4 metabolic stages Anaerobic respiration 1. Glycolysis respiration without O 2 in cytosol Aerobic respiration respiration

More information

Mitochondria and the production of ATP. Alexandra Harci

Mitochondria and the production of ATP. Alexandra Harci Mitochondria and the production of ATP Alexandra Harci THE STRUCTURE OF MITOCHONDRIA The mitochondrion Greek Mitos = thread, and chondrion = granule found in most eukaryotic cells energy factory of the

More information

Cellular Energy Acquisition

Cellular Energy Acquisition Cellular Energy Acquisition 1. Organisms that can manufacture their own chemical energy sources are called. 2. depend on energy stored in chemical bonds by autotrophs for their food energy. 3. Simple molecules

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Energy Flows through the Ecosystem Cellular Respiration: Harvesting Chemical Energy Energy enters the ecosystem in form of solar energy Photosynthesis converts solar energy to chemical energy. and O are

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Cellular Respiration: Harvesting Chemical Energy Chapter 9 Objectives Define oxidation and reduction, and, in general terms, explain how redox reactions are involved in energy exchanges. Name the three

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name Advanced Biology Enzyme and Cellular Respiration Test Part I Multiple Choice (75 points) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The

More information

Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA

Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA Take notes while watching the following video tutorials to prepare for the Metabolism Part 2 Activity. Metabolism and Bioenergetics Part 1: Intro and Acetyl CoA Metabolism ALL biochemical reactions involving

More information

2. Cellular Respiration ATP. Where in the cell does this occur? Mitochondria

2. Cellular Respiration ATP. Where in the cell does this occur? Mitochondria But, in the presence of Oxygen. 2. Cellular Respiration A series of metabolic pathways involving 3 separate phases: Krebs cycle electron transport system oxidative phosphorylation Oxidizes pyruvate to

More information

Cellular Respiration: Harvesting Chemical Energy. Chapter 9

Cellular Respiration: Harvesting Chemical Energy. Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Life Is Work Living cells require energy from outside sources Plants E from? Animals E from? Light energy Energy flows into ecosystem as light

More information

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

5.3 Cellular Respiration Releases Energy from Organic Compounds

5.3 Cellular Respiration Releases Energy from Organic Compounds 5.3 Cellular Respiration Releases Energy from Organic Compounds In this section, you will distinguish among aerobic respiration, anaerobic respiration, and fermentation explain how carbohydrates are oxidized

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

Chapter 6: CELLULAR RESPIRATION

Chapter 6: CELLULAR RESPIRATION Chapter 6: CELLULAR RESPIRATION 1. Overview of Respiration 2. Glycolysis 3. The Citric Acid Cycle 4. Oxidative Phosphorylation 1. Overview of Respiration What is Cellular Respiration? It is the process

More information

Lecture 11. Krebs Cycle Reactions. Overview of Stage II of Catabolism. Beginning of Stage III: The Krebs Cycle. Acetyl-CoA

Lecture 11. Krebs Cycle Reactions. Overview of Stage II of Catabolism. Beginning of Stage III: The Krebs Cycle. Acetyl-CoA Overview of Stage II of Catabolism Lecture 11 Chapter 24: Metabolism and Energy Krebs Cycle, Cellular Respiration and Muscle Power! In Stage II- specific metabolic pathways, for amino acids, simple sugars,

More information

Biochemistry of muscle

Biochemistry of muscle Biochemistry of muscle Department of Animal Science and Food Sciences Advance Meat Science and Muscle Biology The ATP (adenosine triphosphate) is the ultimate source of energy for: The contractile process.

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

CELLULAR RESPIRATION. Dr. Howaida Nounou. Dr. Howaida Nounou

CELLULAR RESPIRATION. Dr. Howaida Nounou. Dr. Howaida Nounou CELLULAR RESPIRATION 1 The Pathway of energy in living organisms photosynthesis Light energy from the sun Chemical energy stored in glucose, fats, or carbohydrates cellular respiration Chemical energy

More information

Lecture Notes Respiration

Lecture Notes Respiration Lecture Notes Respiration We will consider two processes by which organisms harvest energy from food molecules: Aerobic Respiration more efficient, occurs in presence of O 2 Anaerobic Respiration less

More information

Oxidation of Pyruvate and the Citric Acid Cycle

Oxidation of Pyruvate and the Citric Acid Cycle OpenStax-CNX module: m47334 1 Oxidation of Pyruvate and the Citric Acid Cycle Robert Bear David Rintoul Based on Oxidation of Pyruvate and the Citric Acid Cycle by OpenStax College This work is produced

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

monosaccharides fatty acids amino acids

monosaccharides fatty acids amino acids Cellular Energy In order to sustain life (steady state), cells constantly expend energy in the form of ATP hydrolysis the hydrolysis of ATP yields a molecule of ADP (adenosine diphosphate) and a Phosphate

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Cellular Respiration. Biology 20 Aerobic Cellular Respiration

Cellular Respiration. Biology 20 Aerobic Cellular Respiration Cellular Respiration Biology 20 Aerobic Cellular Respiration Stages Stage 1: Glycolysis- 10 steps; cytoplasm Stage 2: Pyruvate Oxidation- 1 step; mitochondria Stage 3: The Krebs Cycle- 8 step cyclic; mitochondria

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

What s the point? ATP! Electron Transport Chain ATP

What s the point? ATP! Electron Transport Chain ATP http://www.youtube.com/watch?v=vcpnk92uswy What s the point? Cellular Respiration The point Stage 4: is to make ATP! Electron Transport Chain ATP 2013-2014 Cellular respiration ATP accounting so far Even

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

The Chemical Reactions in Glycolysis

The Chemical Reactions in Glycolysis 12.4 Glycolysis From Hydrolysis Products to Common Metabolites The Chemical Reactions in Glycolysis In the body, energy must be transferred in small amounts to minimize the heat released in the process.

More information

Mitochondria. phosphorylation

Mitochondria. phosphorylation Mitochondria. Mechanism of oxidative phosphorylation p The mitochondrion has been termed the "powerhouse" of the cell. Mitochondria are oval-shaped organelles. They have 2 membrane systems: outer membrane

More information

Respiration: Occurs in two places in the cell. Cytoplasm. and mitochondria. cytoplasm : Lecture 6. Outer membrane. Inner membrane.

Respiration: Occurs in two places in the cell. Cytoplasm. and mitochondria. cytoplasm : Lecture 6. Outer membrane. Inner membrane. Respiration: Occurs in two places in the cell Cytoplasm and mitochondria Outer membrane Inner membrane cytoplasm Matrix Intermembrane space 1 Respiration: Occurs in 3 stages Glycolysis split sugars 6C

More information

Cellular Respiration Section Quizzes

Cellular Respiration Section Quizzes Cellular Respiration Section Quizzes Level 1 Section Test... 2 Level 1 Word Match... 4 Level 2 Section Test... 5 Level 2 Word Match... 7 Level 1 Section Test for Cellular Respiration 1. Glycolysis is a

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Why? Oxidative Phosphorylation How are the electrons in NADH and FADH 2 used to make ATP during cellular respiration? The final phase of cellular respiration is oxidative phosphorylation. Both the electron

More information

Cellular Respiration: Harvesting Chemical Energy. Chapter 9

Cellular Respiration: Harvesting Chemical Energy. Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Life Is Work Living cells require energy from outside sources Plants E from? Animals E from? Light energy Energy flows into ecosystem as light

More information

Chapter 4: Cellular Respiration pg : Introduction to Cellular Respiration and Fermentation

Chapter 4: Cellular Respiration pg : Introduction to Cellular Respiration and Fermentation UNIT 2: Metabolic Processes Chapter 4: Cellular Respiration pg. 166-209 4.1: Introduction to Cellular Respiration and Fermentation pg. 168 171 The energy which keeps our planet alive comes from the solar

More information

Cellular Respiration. Cellular respiration is a catabolic, energy-yielding pathway.

Cellular Respiration. Cellular respiration is a catabolic, energy-yielding pathway. Cellular Respiration Typical animal cell Cellular respiration is a catabolic, energy-yielding pathway. It is the process by which organisms break down energy rich molecules, such as glucose, releasing

More information

Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic.

Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 1 of 37 The Krebs Cycle The Krebs

More information

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37 1 of 37 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 2 of 37 The Krebs Cycle The

More information

Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration.

Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration. Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules

More information

Metabolism Lesson Plan Outline Introduction A. What is Metabolism 1. Types of Metabolism a. Catabolism b. Anabolism c. Amphibolic 2. Nutrition 3.

Metabolism Lesson Plan Outline Introduction A. What is Metabolism 1. Types of Metabolism a. Catabolism b. Anabolism c. Amphibolic 2. Nutrition 3. Metabolism Lesson Plan Outline Introduction A. What is Metabolism 1. Types of Metabolism a. Catabolism b. Anabolism c. Amphibolic 2. Nutrition 3. Metabolic Cycles a. ATP b. NAD+ c. NADH B. Metabolic Cycles

More information

Oxidation of Pyruvate and the Citric Acid Cycle

Oxidation of Pyruvate and the Citric Acid Cycle OpenStax-CNX module: m44433 1 Oxidation of Pyruvate and the Citric Acid Cycle OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Aerobic cellular respiration requires

More information

Electron Transport and Oxidative Phosphorylation

Electron Transport and Oxidative Phosphorylation CHM333 LECTURES 37 & 38: 4/27 29/13 SPRING 2013 Professor Christine Hrycyna Electron Transport and Oxidative Phosphorylation Final stages of aerobic oxidation of biomolecules in eukaryotes occur in the

More information

130 Cellular Respiration: Harvesting Chemical Energy

130 Cellular Respiration: Harvesting Chemical Energy 130 Cellular Respiration: Harvesting Chemical Energy Formation of Acetyl CoA. The junction between glycolysis and the Krebs Cycle is the oxidation of pyruvate to acetyl CoA: Pyruvate molecules are translocated

More information

Powering the Cell: Cellular Respiration

Powering the Cell: Cellular Respiration Powering the Cell: Cellular Respiration Lesson Objectives Name the three stages of cellular respiration. Give an overview of glycolysis. Explain why glycolysis probably evolved before the other stages

More information

Cell Metabolism (Lecture 17-19)

Cell Metabolism (Lecture 17-19) Cell Metabolism (Lecture 17-19) Comparison of passive and active transport In passive transport, a substance diffuses spontaneously down its concentration gradient with no need for the cell to expend energy.

More information

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary)

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary) Electron transport chain Final stage of aerobic oxidation! Also known as: -oxidative phosphorylation(when coupled to ATP synthase) -respiration (when coupled to ATP synthase) Purpose: -Recycle reduced

More information

Chapter 22. Structure and Function. Structure of Acetyl CoA Conversion of. Pyruvate to Acetyl CoA The Mitochondria

Chapter 22. Structure and Function. Structure of Acetyl CoA Conversion of. Pyruvate to Acetyl CoA The Mitochondria Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 22.1 The Mitochondria Denniston Topping Caret 5 th Edition Chapter 22 Aerobic Respiration and Energy Production

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Cells require outside energy to do cellular work. Energy flows ( (تتدفق into most ecosystems ( بيئية (أنظمة as sunlight Photosynthetic organisms trap a portion of the sunlight

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes

More information

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ GCE A Level Biology Energy and respiration сᴏᴏʟιᴏ 2013-2014 Q 1(a) Describe how ATP is synthesized by oxidative phosphorylation. [June 2012 # 1] Reduced NAD and reduced FAD are passed to the electron transport

More information

The matrix contains Pyruvate Dehydrogenase, enzymes of Krebs Cycle, and other pathways, e.g., fatty acid oxidation & amino acid metabolism.

The matrix contains Pyruvate Dehydrogenase, enzymes of Krebs Cycle, and other pathways, e.g., fatty acid oxidation & amino acid metabolism. Glycolysis occurs in the cytosol of cells. matrix Pyruvate enters the mitochondrion to be metabolized further. cristae intermembrane space Mitochondrial Compartments: inner membrane mitochondrion outer

More information

Life requires energy. A cell uses energy to builcand maintain is structure, transport

Life requires energy. A cell uses energy to builcand maintain is structure, transport 1 Life requires energy. A cell uses energy to builcand maintain is structure, transport materials, manufacture products, move, grow,and reproduce. This energy ultimately comes from the sun. The figure

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Dr. Wendy Sera Houston Community College Biology 1406 Chapter 9 Concepts 1. Catabolic pathways yield energy by oxidizing organic fuels. 2. Glycolysis harvests

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Dr. Wendy Sera Houston Community College Biology 1406 Chapter 9 Concepts 1. Catabolic pathways yield energy by oxidizing organic fuels.. Glycolysis harvests

More information

I. Cellular Energy Figure 1: Adenosine Triphosphate: ATP. Figure1.1: ATP as an Energy Source ATP:

I. Cellular Energy Figure 1: Adenosine Triphosphate: ATP. Figure1.1: ATP as an Energy Source ATP: I. Cellular Energy Figure 1: Adenosine Triphosphate: ATP Figure1.1: ATP as an Energy Source ATP: 1 II. Chemistry of Aerobic Respiration Figure 2: ATP Consumption & Cellular Respiration Cell Respiration:

More information

Electron Transport and Oxidative Phosphorylation. Zoology 1 By Dr. Nafeesa Qudsia Hanif

Electron Transport and Oxidative Phosphorylation. Zoology 1 By Dr. Nafeesa Qudsia Hanif Electron Transport and Oxidative Phosphorylation Zoology 1 By Dr. Nafeesa Qudsia Hanif Electron transport Chain The citric acid cycle oxidizes acetate into two molecules of CO2 while capturing the electrons

More information

19. The Citric Acid Cycle

19. The Citric Acid Cycle 19. The Citric Acid Cycle 19.1 The Central Role of Citric Acid Cycle Play in Metabolism Evolution of aerobic metabolism - Nutrients are oxidized to carbon dioxide and water. - Organisms can obtain far

More information

Transfers of electrons during chemical reactions (oxidation-reduction reactions)

Transfers of electrons during chemical reactions (oxidation-reduction reactions) Transfers of electrons during chemical reactions (oxidation-reduction reactions) Relocation of electrons in food molecules releases energy which can be used to synthesize ATP ATP is used to do ALL types

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12

More information

BSC Exam I Lectures and Text Pages. Citric Acid Cycle. Citric acid cycle completes the energy-yielding oxidation of organic molecules

BSC Exam I Lectures and Text Pages. Citric Acid Cycle. Citric acid cycle completes the energy-yielding oxidation of organic molecules BSC 010 - Exam I Lectures and Text Pages I. Intro to Biology (-9) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Copyright Mark Brandt, Ph.D. 74

Copyright Mark Brandt, Ph.D. 74 The Electron Transport and Oxidative Phosphorylation Pathways Extracting energy from reduced coenzymes In general, reactions that extract all of the energy from a molecule in a single step are inefficient:

More information

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules Introduction Chapter 6 In eukaryotes, cellular respiration harvests energy from food, yields large amounts of, and Uses to drive cellular work. A similar process takes place in many prokaryotic organisms.

More information

Describe the structure of a mitochondrion. Summarize the three stages of cellular respiration and identify where ATP is made.

Describe the structure of a mitochondrion. Summarize the three stages of cellular respiration and identify where ATP is made. Objectives Describe the structure of a mitochondrion. Summarize the three stages of cellular respiration and identify where ATP is made. Key Terms metabolism glycolysis Krebs cycle ATP synthase While the

More information

Ch. 6 Cellular Respiration Period

Ch. 6 Cellular Respiration Period Ch. 6 Cellular Respiration Name Period California State Standards covered by this chapter: Cell Biology 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions

More information

Chapter 12 - The Citric Acid Cycle

Chapter 12 - The Citric Acid Cycle Chapter 12 - The Citric Acid Cycle The citric acid cycle (tricarboxylic acid cycle) is amphibolic (both catabolic and anabolic) The cycle is involved in the aerobic catabolism of carbohydrates, lipids

More information

Lets Review Glycolysis and Fermentation

Lets Review Glycolysis and Fermentation Lets Review Glycolysis and Fermentation Chapter 7 Photosynthesis-Cellular Respiration Cycle Chapter 7 Cellular Respiration Versus Fermentation Chapter 7 Section 1 Glycolysis and Fermentation Two Types

More information

CHAPTER 5. Respiration. and Metabolism. Chapter 5 Outline. Metabolism. and the Lactic Acid Pathway. Metabolism of Lipids and Proteins

CHAPTER 5. Respiration. and Metabolism. Chapter 5 Outline. Metabolism. and the Lactic Acid Pathway. Metabolism of Lipids and Proteins CHAPTER 5 Cell Respiration and Metabolism Chapter 5 Outline Glycolysis and the Lactic Acid Pathway Respiration Metabolism of Lipids and Proteins Aerobic Metabolism Is all reactions in body that involve

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37 1 of 37 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 2 of 37 The Krebs Cycle The

More information

Which statement best describes the movement of ions shown in the diagram? where they create a highly reducing environment and hydrolyze CO 2

Which statement best describes the movement of ions shown in the diagram? where they create a highly reducing environment and hydrolyze CO 2 1. The electron transport chain is a part of cellular respiration. The diagram below shows the movement of ions in the electron transport chain within a mitochondrion. Which statement best describes the

More information

Lecture Chapter 6. Cellular Respiration

Lecture Chapter 6. Cellular Respiration Lecture 12-13 Chapter 6 Cellular Respiration How do marathon runners and sprinters differ? Long-distance runners have many SLOW FIBERS in their muscles Slow fibers break down glucose for ATP production

More information

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis makes O 2 and organic molecules (like sugars and proteins), which are used in cellular respiration Cells use chemical energy

More information

Target. SWBAT describe both parts of the last step of cellular respiration aerobic respiration.

Target. SWBAT describe both parts of the last step of cellular respiration aerobic respiration. Aerobic Respiration Target SWBAT describe both parts of the last step of cellular respiration aerobic respiration. Two Major Stages Krebs Cycle Electron Transport Chain Chart: Page 66 Glycolysis Without

More information

Chapter 6 How Cells Harvest Chemical Energy. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP

Chapter 6 How Cells Harvest Chemical Energy. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP Chapter 6 How Cells Harvest Chemical Energy Standard 1.g. Cellular Respiration Is the main way that chemical energy is harvested from food and converted to ATP Is an aerobic process Yields The Relationship

More information

Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp. 133-149. Insert figure 8.2 here. 10th Edition

Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp. 133-149. Insert figure 8.2 here. 10th Edition Chapter 8: pp. 133-149 BIOLOGY 10th Edition Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Insert figure 8. here and Cytoplasm e F ADH Mitochondrion

More information

Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration What is Glucose Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 + 6 H 2 O

More information

Which statement best describes the movement of ions shown in the diagram? where they create a highly reducing environment and hydrolyze CO 2

Which statement best describes the movement of ions shown in the diagram? where they create a highly reducing environment and hydrolyze CO 2 1. The electron transport chain is a part of cellular respiration. The diagram below shows the movement of ions in the electron transport chain within a mitochondrion. Which statement best describes the

More information

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP

pyruvate, lactic acid, CO2, NADH, FADH2 pyruvate, NADH, ATP 1. Glycolysis leads to the production of and two molecules of ATP. In the absence of oxygen, fermentation leads to the production of. Glycolysis plus the citric acid cycle can convert the carbons of glucose

More information

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles Slow fibers break down glucose aerobically (using oxygen) for ATP production These muscle cells

More information