Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth


 Geraldine Woods
 1 years ago
 Views:
Transcription
1 Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate the peiods and speeds of obiting objects. Descibe the method Cavendish used to measue G and the esults of knowing G. Johannes Keple Johannes Keple ( ) was an assistant to the Danish astonome Tycho Bahe. Keple was convinced that geomety and mathematics could be used to explain the motion of the planets. Unlike Bahe, he used a heliocentic model. Tycho Bahe I spent 26 yeas making sta chats using this quadant and no telescope. I thought the sun went aound the Eath and the planets went aound the Sun. Keple s Laws Johannes Keple discoveed 3 laws fom the motion of the planets as mapped by Tycho Bahe 1. Planetay obits ae elliptical not cicula 2. Obits sweep out equal aeas in equal times 3. T 2 / 3 = k whee k = constant I used Tycho Bahe s data to come up with my laws. It took him 20 yeas to collect it. 1
2 Keple s 1 st Law 1. The obits of the planets ae ellipses, with the sun at one focus. (Law of Ellipses) Obits ae ellipses Keple s 1 st Law The Sun is at one of the foci The close the planets ae to one anothe, the moe cicula the obit. Keple s 2 nd Law 2. An imaginay line dawn fom the cente of the sun to the cente of the planet will sweep out equal aeas in equal intevals of time. (Law of Equal Aeas) Deals with speed faste when close to the sun. Keple s 2 nd Law 2. Obits sweep out equal aeas in equal times The Sun is at one of the foci Keple s 3 d Law 3. The atio of the squaes of the peiods of any two planets is equal to the atio of the cubes of thei aveage distances fom the sun. (Law of Hamonies) Keple s 3 d Law T 2 / 3 = k whee k = constant T = the peiod fo 1 evolution = the aveage adius of the elliptical obit So fo evey obiting body eveywhee, this atio is tue (T A /T B ) 2 = ( A / B ) 3 2
3 Pat 2: Univesal Gavitation Univesal Gavitation Isaac Newton 24ys old Watching an apple fall to the gound made him wonde if gavity extended beyond Eath Developed a theoy of univesal gavitation Attactive foce between two objects The apple was also attacting the Eath Poposed Law of Univesal Gavitation Law of Univesal Gavitation The foce of attaction between any two masses is constant thoughout the univese F mam G d B 2 G is a univesal gavitational constant between two masses 6.67 x N m 2 /kg 2 Sec. 8.2 Using the Law of Univesal Gavitation Objectives Solve poblems involving obital speed and peiod Relate weightlessness to objects in fee fall Distinguish between inetia mass and gavitational mass Contast Newton s and Einstein s views about gavitation Satellite Motion If a pojectile moves fast enough, it falls at the same ate that the Eath cuves How fast ae satellites moving? F = ma o F = mv 2 / (a c = v 2 /) F = G(m A m B /d 2 ) Solve fo velocity? Set them equal to each othe G(m A m B /d 2 ) = mv 2 / which gives you. 3
4 Peiod of a Satellite Cicling Eath T 2 Gm E o if we know the velocity 2 T v 3 Weightlessness What is gavity in oute space? Whee space shuttle obits g = 8.7m/s 2 How come astonauts ae floating then? g = F/m Histoy Outline 1. Keple used Bahe s s data to make Keple s Laws 2. Newton deived the univesal law using Keples Laws 3. Newton poved his law using the apple and the moon 4. Cavendish measues the univesal constant Histoy Outline 1. Keple used Bahe s s data to make Keple s Laws a) Measued the motion of the stas and planets b) Planets move fom yea to yea but stas stay put c) Keple developed laws to explain the motion of the planets Newton deived the univesal law of gavity He knew: a) T 2 / 3 = k b) v = 2 /T2 c) F = mv 2 / Newton deived the univesal law of gavity He knew: a) T 2 / 3 = k b) v = 2 /T c) F = m( v ) 2 4
5 Newton deived the univesal law of gavity He knew: a) T 2 / 3 = k F = m4 2 b) v = T 2 c) F = m ( 2 /T ) 2 F = m4 2 3 k F = m4 2 T 2 F = 4 2 m k Newton deived the univesal law of gavity He knew: F = 4 2 m But once he got to this pat, he k ealized that evey action had an equal and opposite eaction so, he had to add anothe m F = G m m 2 1 F = Gm 1 m 2 F = the foce of gavity between 2 objects m 1 = mass of object #1 m 2 = mass of object #2 = distance between thei centes of mass G = Univesal Gavitational Constant G was not known but the equation was still poven by the compaison of an apple and the Moon. Newton thought that maybe the Moon moved though the heavens fo the same eason apples fell to the gound If F = Gm 1 m 2 Then if F = ma then m 1 a = Gm 1 m 2 So, a = Gm 2 a = Gm e This equation woks fo any mass attacted to the Eath a = Gm e 60 e a = 9.81m/s 2 fo an apple Since the Moon is 60x futhe away moon = 60 e So, a = Gm e amoon = Gm e a moon (60 e ) e e = a apple
6 a moon =.0027m/s 2 accoding to the fomula The eal acceleation of the Moon can be measued: a = v 2 v = 2 /T2 T = 28.5days = 60 e a = v 2 v = 2 /T 2 T = 28.5days = 28.5x24x60x60 = s = 60 e = 60x 6.4x10 6 m = m e = 6.4x10 6 m a = v 2 v = 2 /T2 v = m) / ( s) =980m/s T = 28.5days = 28.5x24x60x60 = s = 60 e = 60x 6.4x10 6 m = m e = 6.4x10 6 m a = v 2 = (980m/s) 2 / m =.0025m/s 2 v = 2 /T2 v = m) / ( s) =980m/s T = 28.5days = 28.5x24x60x60 = s = 60 e = 60x 6.4x10 6 m = m e = 6.4x10 6 m a = v 2 = (980m/s) 2 / m =.0025m/s 2 The eal acceleation of the Moon =.0025m/s 2 The theoetical acceleation =.0027m/s 2 1. Cavendish measues the univesal constant A. G was still unknown fo 100yeas B. Cavendish figued it out using a Tosion Balance This was so close that this became well accepted and Newton went down in histoy as the one who discoveed gavity 6
7 Tosion Balance 1. Imagine twisting the thead aound 100 times Tosion Balance 1. Imagine twisting the thead aound 100 times 2. Then let go 2. Then let go 3. The system would spin in the opposite diection 3. The system would spin in the opposite diection Tosion Balance 1. Now imagine the foce that pulls the ba back Tosion Balance 4. The foce he measued was.0144n F 2. The foce of a twisted wie is called tosion 3. Attach a sping scale to the ba and measue this tosion foce F 5. Now he has to figue out how much tosion a tiny faction of a twist would make. 6. If he twisted the sting 1/60 th of 1 degee, the foce on the scale would be 100times 360 times 60 times smalle. Tosion Balance F 7. The foce of a twist of 1/60 th of a degee =.0144N / (100)(360)(60) = N 8. He used a mio attached to the sting to eflect a beam of light onto a fa away wall. 9. He used this to measue the angle the sting had twisted Each making measued 1/60 th of a degee 7
8 10. He then placed a 1 kg ball at each end of the ba 11. Next, he placed 1kg masses on the table nea the masses on the ba 12. He let go. 13. The foce of gavity twisted the sting 2/60 th s s of a degee. 14. The masses stopped moving. 15. The foce of gavity between the masses = the tosion in the sting 12. He let go. 13. The foce of gavity twisted the sting 2/60 th s s of a degee. 14. The masses stopped moving. 15. The foce of gavity between the masses = the tosion in the sting Top View Tosion Foce F g F g Tosion Foce 16. Thee wee 2 foces fom the two sets of balls 17. Total Tosion Foce = 2F g 18. The total angle it twisted was 2/60 th s s of a degee Top View Tosion Foce F g F g Tosion Foce 16. Tosion Foce = N x 2 = N 20. 2Fg = N 21. F g = N Top View m 1 = 1.0kg =.10m m 2 = 1.0kg F g = 6.67 x 109 N 22. m 1 = 1.0kg 23. m 2 = 1.0kg 24. =.10m 25. F g = N 26. F g = Gm 1 m G = F g 2 m 1 m 2 G = 6.67 x Nm 2 kg 2 8
9 F = Gm 1 m 2 F = the foce of gavity between 2 objects m 1 = mass of object #1 m 2 = mass of object #2 = distance between thei centes of mass G = Univesal Gavitational Constant G = 6.67 x Nm 2 kg 2 Hee s a sketch of the Expeiment fom Cavendish s time Sample Poblems 1. No matte how much you say you don t t find someone attactive, the fact is, that all people ae at least gavitationally attactive. If you have a mass of 70kg and the othe peson has a mass of 80kg, what is the foce of gavitational attaction between you both when you ae sitting.50m apat? Sample Poblem No matte how much you say you don t t find someone attactive, the fact is, that all people ae at least gavitationally attactive. If you have a mass m of 70kg and the othe peson has a mass of 80kg, what is the foce of gavitational attaction between you both when you ae sitting.50m apat? F g F g =? m 1 = 70kg m 2 = 80kg =.50m G = 6.67 x Nm 2 kg 2 9
10 Homewok Pg 242 # 131 Pg 247 #3a,c, 5 Noth Pole Stas move in a cicle as the Eath otates on its axis evey night. So to explain the motion of the stas, Moon and Sun you need to measue thei positions at a cetain time of day o night Also, the stas move fom season to season though the yea 6am 7am 8am 9am 10am 11am 12am 1pm 2pm 3pm 4pm 5pm Night Day 10
11 Evey yea, at the same time, on the same day, the stas ae in the same position they wee last yea. Night Day 12am 1/22/07 11
12 12
13 Mas Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. 12am 1/22/08 Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. 12am 1/29/08 12am 2/5/08 Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. 12am 2/12/08 12am 2/19/08 13
14 Thee ae celestial objects that don t stay in the same place they wande. These ae called wandees, o in Geek, Planets. Astonomes tied to explain the moving objects. At fist, they thought these planets wee like the Sun and the Moon. They thought the planets obited aound the Eath in a cicle 12am 2/26/08 12am 3/5/08 14
Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationResources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics
3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gapsystem.og/~histoy/mathematicians/ Newton.html http://www.fga.com http://www.clke.com/clipat
More informationChapter 13 Gravitation
Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More information14. Gravitation Universal Law of Gravitation (Newton):
14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationmv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !
Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!
More informationA) 2 B) 2 C) 2 2 D) 4 E) 8
Page 1 of 8 CTGavity1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between
More informationOrbital Motion & Gravity
Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion
More informationExam I. Spring 2004 Serway & Jewett, Chapters 15. Fill in the bubble for the correct answer on the answer sheet. next to the number.
Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 15 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE
More informationESCAPE VELOCITY EXAMPLES
ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationLesson 32: Measuring Circular Motion
Lesson 32: Measuing Cicula Motion Velocity hee should be a way to come up with a basic fomula that elates velocity in icle to some of the basic popeties of icle. Let s ty stating off with a fomula that
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More information6.2 Orbits and Kepler s Laws
Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More informationGRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players:
CHAPT 11 TH GAVITATIONAL FILD (GAVITY) GAVITATIONAL FILD: The goundwok fo Newton s geat contibution to undestanding gavity was laid by thee majos playes: Newton s Law of Gavitation o gavitational and inetial
More information2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years.
CHAPTR 7 Gavitation Pactice Poblems 7.1 Planetay Motion and Gavitation pages 171 178 page 174 1. If Ganymede, one of Jupite s moons, has a peiod of days, how many units ae thee in its obital adius? Use
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationSo we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)
Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing
More informationGeneral Physics (PHY 2130)
Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:
More informationChapter 8, Rotational Kinematics. Angular Displacement
Chapte 8, Rotational Kinematics Sections 1 3 only Rotational motion and angula displacement Angula velocity and angula acceleation Equations of otational kinematics 1 Angula Displacement! B l A The length
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationLab 5: Circular Motion
Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion
More informationPY1052 Problem Set 3 Autumn 2004 Solutions
PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the
More informationChapter 26  Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationSection 53 Angles and Their Measure
5 5 TRIGONOMETRIC FUNCTIONS Section 5 Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding
More informationSolutions to Homework Set #5 Phys2414 Fall 2005
Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More informationPhysics 111 Fall 2007 Electrostatic Forces and the Electric Field  Solutions
Physics 111 Fall 007 Electostatic Foces an the Electic Fiel  Solutions 1. Two point chages, 5 µc an 8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the
More informationOn the Relativistic Forms of Newton's Second Law and Gravitation
On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationPHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013
PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,
More informationrotation  Conservation of mechanical energy for rotation  Angular momentum  Conservation of angular momentum
Final Exam Duing class (13:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationDisplacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
More informationGravity and the figure of the Earth
Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 479071397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is
More informationNew proofs for the perimeter and area of a circle
New poofs fo the peimete and aea of a cicle K. Raghul Kuma Reseach Schola, Depatment of Physics, Nallamuthu Gounde Mahalingam College, Pollachi, Tamil Nadu 64001, India 1 aghul_physics@yahoo.com aghulkumak5@gmail.com
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationMagnetism: a new force!
1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of Efield kq Efields ae ceated by chages: E = 2 Efield exets a foce on othe
More informationPHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded.
PHYSICS 18 Honos EXAM Retest Choose 5 of the following 6 pobles. Indicate which poble is not to be gaded. 1. A ope is affixed at one end to the i of a pulley, and wapped five tuns aound the pulley. The
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationChapter 23: Gauss s Law
Chapte 3: Gauss s Law Homewok: Read Chapte 3 Questions, 5, 1 Poblems 1, 5, 3 Gauss s Law Gauss s Law is the fist of the fou Maxwell Equations which summaize all of electomagnetic theoy. Gauss s Law gives
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationCHAPTER 4 POSITION, VELOCITY AND ACCELERATION ANALYSES FOR PLANAR MECHANISMS USING COMPLEX NUMBER METHOD
CHPTER POSITION, VELOCITY ND CCELERTION NLYSES FOR PLNR MECHNISMS USING COMPLEX NUMER METHOD Vecto nalysis: Fo the position vectos shown below, the positive angle is measued counteclock wise (ccw) fom
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationIn this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION
MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationTRIGONOMETRY REVIEW. The Cosines and Sines of the Standard Angles
TRIGONOMETRY REVIEW The Cosines and Sines of the Standad Angles P θ = ( cos θ, sin θ ) . ANGLES AND THEIR MEASURE In ode to define the tigonometic functions so that they can be used not only fo tiangula
More information2008 QuarterFinal Exam Solutions
2008 Quatefinal Exam  Solutions 1 2008 QuateFinal Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of
More informationTheory and measurement
Gavity: Theoy and measuement Reading: Today: p11  Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationProblems of the 2 nd International Physics Olympiads (Budapest, Hungary, 1968)
Poblems of the nd ntenational Physics Olympiads (Budapest Hungay 968) Péte Vankó nstitute of Physics Budapest Univesity of Technical Engineeing Budapest Hungay Abstact Afte a shot intoduction the poblems
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More information1. CIRCULAR MOTION. ω =
1. CIRCULAR MOION 1. Calculate the angula elocity and linea elocity of a tip of minute hand of length 1 cm. 6 min. 6 6 s 36 s l 1 cm.1 m ω?? Fomula : ω π ω ω π 3.14 36 ω 1.744 1 3 ad/s ω.1 1.74 1 3 1.74
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More information2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90
. Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More informationSAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo
THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, twobody obits, theebody obits, petubations, tides, nongavitational foces,
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Radians At school we usually lean to measue an angle in degees. Howeve, thee ae othe ways of measuing an angle. One that we ae going to have a look at hee is measuing angles in units called adians. In
More informationTrigonometry in the Cartesian Plane
Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom
More informationIntroduction to Electric Potential
Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic
More informationCHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS
9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationCh. 14: Gravitation (Beta Version 7/01) 14 Gravitation
Ch. 14: Gavitation (Beta Vesion 7/01) 14 Gavitation The Milky Way galaxy is a diskshaped collection of dust, planets, and billions of stas, including ou Sun and sola system. The foce that binds it o any
More informationEnergy Conservation. Energy Conservation. Work Done by Gravitational Force. Work Done by Gravitational Force. Work Done by Gravitational Force.
1. Consevative/Nonconsevative Foces Wok alon a path (Path inteal) Wok aound an closed path (Path inteal). Potential Ene (P.E.) Mechanical 3. Findin P.E. function 4. Ene Diaam Wok Done b Gavitational Foce
More information1.1 KINEMATIC RELATIONSHIPS
1.1 KINEMATIC RELATIONSHIPS Thoughout the Advanced Highe Physics couse calculus techniques will be used. These techniques ae vey poweful and knowledge of integation and diffeentiation will allow a deepe
More informationTrigonometric Functions of Any Angle
Tigonomet Module T2 Tigonometic Functions of An Angle Copight This publication The Nothen Albeta Institute of Technolog 2002. All Rights Reseved. LAST REVISED Decembe, 2008 Tigonometic Functions of An
More informationClassical Lifetime of a Bohr Atom
1 Poblem Classical Lifetime of a Boh Atom James D. Olsen and Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 85 (Mach 7, 5) In the Boh model of the hydogen atom s gound state,
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationChapter 30: Magnetic Fields Due to Currents
d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.11 T) i to ue a lage cuent flowing though a wie.
More informationF = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a
.1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q q a +q a q F = kq 1q F 1 = k(q)(q) a F 13
More informationGeostrophic balance. John Marshall, Alan Plumb and Lodovica Illari. March 4, 2003
Geostophic balance John Mashall, Alan Plumb and Lodovica Illai Mach 4, 2003 Abstact We descibe the theoy of Geostophic Balance, deive key equations and discuss associated physical balances. 1 1 Geostophic
More informationPhys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
More informationEXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD
260 161. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationRoad tunnel. Road tunnel information sheet. Think about. Using the information
Road tunnel This activity is about using a gaphical o algebaic method to solve poblems in eal contets that can be modelled using quadatic epessions. The fist poblem is about a oad tunnel. The infomation
More information