FXA Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

Size: px
Start display at page:

Download "FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it."

Transcription

1 Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing a cicle. 1 Deive fom fist pinciples, the equation : Select and apply the equation : fo planets and satellites (natual and atificial). T 2 = 4π 2 3 GM T 2 = 4π 2 3 GM Use gavitational field lines to epesent a gavitational field. Select and apply Keple s thid law to solve poblems. T 2 α 3 State Newton s law of gavitation. Select and use the equation fo the foce between two point o spheical objects : F = - GMm Define geostationay obit of a satellite and state the uses of such satellites. GRAVITATIONAL FIELDS Select and apply the equation fo the gavitational field stength (g) of a point mass : g = - GM The mass of an object ceates a GRAVTATIONAL FIELD aound it and this foce field exets an attactive foce on any othe mass which is placed in the field egion. All masses, fom the smallest paticles of matte to the lagest stas, have a gavitational field aound them. Select and use the equation g = - GM to detemine the mass of the Eath o anothe simila object. When an object is dopped, the Eath and the object exet equal and oppositely diected foces on each othe, but because The object s mass is minute in compaison to that of the Eath, it is the object which is pulled towads the Eath. Explain that close to the Eath s suface the gavitational field stength is unifom and appoximately equal to the acceleation of fee fall. Analyse cicula obits in an invese squae law field by Relating the gavitational foce to the centipetal acceleation it causes. A GRAVITATIONAL FIELD is a egion in space in which any mass will expeience a foce of attaction. All masses have a gavitational field aound them.

2 2 GRAVITATIONAL FIELD STRENGTH (g) The FIELD STRENGTH (g) at a point in a gavitational field is the FORCE (F) pe UNIT MASS (m) expeienced by a small* test mass placed at the point. The weight of an object is the foce of gavity acting on it. If an object of mass (m) is in a gavitational field of stength (g), the gavitational foce (F) on the object is : F = mg * The test mass must be small enough so as not to cause a significant change in the gavitational field being measued. If the object is allowed to fall feely unde the action of this foce, it Acceleates with an acceleation : a = F = mg = g m m FIELD STRENGTH (g) is expessed mathematically as : (N) g = F m (N kg -1 ) (kg) Field stength at any point = The acceleation of fee fall in a gavitational field (N kg -1 ) expeienced by an object at that point (m s -2 ) Show that N kg -1 is the same as m s -2. POINTS TO NOTE Fo a planet, g is the foce exeted by the planet s gavity on a 1 kg mass placed on its suface. The value of g vaies slightly fom place to place on the Eath s suface due to : Non-unifomities in the Eath s shape and composition. The effect of the Eath s spin, which educes g by an amount vaying fom zeo at the poles to a maximum at the equato. The aveage value of the Eath s gavitational field stength is 9.81 N kg -1. GRAVITATIONAL FIELD STRENGTH is a vecto quantity.

3 3 The stength of the field is indicated by the sepaation of the field lines. GRAVITATIONAL FIELD LINES The concept of field stength gives us a measue of the foce involved in any paticula gavitational inteaction, and field lines enables us to pictue the shape of the field as well as the diection of the foces aound the body. In a RADIAL field, the sepaation of the field lines inceases with distance fom the cente, indicating that the field stength is deceasing as the distance inceases. The diagam below uses field lines to show the Eath s gavitational field. Gavitational field lines Close to the suface and ove an aea small in compaison with the oveall aea of the planet, the field can be assumed to be UNIFORM (i.e. constant stength and diection). This is indicated By PARALLEL field lines. PRACTICE QUESTIONS (1) On a planetay scale the field lines divege with distance fom the Eath s suface. The field is RADIAL. Close to the Eath s suface the field lines can be assumed to be paallel. 1 (a) What is a gavitational field? (b) Define gavitational field stength. POINTS TO NOTE The diection of the field lines indicates the diection of the gavitational foce acting on a mass situated in the field. This is the diection in which a feely-falling mass will acceleate and defines the vetical diection. The field lines ae diected towads the cente of the planet Which tells us that the gavitational field is ATTRACTIVE. (c) What does a field line indicate in a gavitational field? (d) With the aid of a diagam in each case, explain what is meant by : (i) A RADIAL field. (ii) A UNIFORM field.

4 4 2 (a) What is the gavitational foce acting on an object of mass 48 kg on the luna suface whee the field stength is 1.67 N kg -1? (b) Calculate the field stength at a point in a gavitational field whee an object of mass 5.0 kg expeiences a foce of 75 N. 3 An object of mass (m) is situated at a point in a gavitational field whee the field stength is (g). Show that the acceleation of fee fall of the object at this point is also (g). Inseting a constant of popotionality tuns this into a mathematical equation which expesses NEWTON S LAW OF GRAVITATION : (N) (N m 2 kg -2 ) (kg) F = - G m 1 m 2 (m) G = univesal gavitational constant = 6.67 x N m 2 kg -2 NEWTON S LAW OF GRAVITATION Evey paticle in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely popotional to the squae of thei sepaation. m 1 m 2 F Conside two point masses (m 1 and m 2 ) whose centes ae distance () apat. Then, using Newton s law of gavitation, the gavitational attaction foce (F) which each mass exets on the othe is given by : F POINTS TO NOTE The minus sign is thee because it is conventional in field theoy to egad foces exeted by attactive fields as negative, and gavity is attactive eveywhee in the univese. Anothe eason is that is measued outwads fom the attacting body and F acts in the opposite diection. Gavitational foces ae extemely weak, unless at least one of the objects is of planetay mass o lage. Gavitational foces act at a distance, without the need fo an intevening medium. Newton s law is expessed in tems of point masses. Fo eal bodies, the law can be applied by assuming all the m 1 F F m 2 mass of a body to be concentated at its cente of mass. The sepaation () is then the distance between the centes of mass. F α m 1 m 2

5 2 5 Newton s law of gavitation is an example of an invese squae law. Complete the table below which will aid you undestanding of the invese squae natue of the law. distance apat Gavitational foce F The diagam above shows a spacecaft of mass 3000 kg at vaious distances fom Eath, coesponding to R, 2R, 4R and 8R, whee R is the adius of the Eath (6.4 x 10 6 m). Calculate the gavitational foce on the spacecaft on the Eath s suface, assuming the mass of the Eath to be 6.0 x kg, and G = 6.67 x N m 2 kg -2. PRACTICE QUESTIONS (2) 1 Calculate the gavitational foce between the following pais of objects. Take G = 6.67 x N m 2 kg -2. (a) A man of mass 95 kg on the Eath s suface, given that the mass of the Eath is 6.0 x kg and its adius is 6400 km. (b) Two spacecaft of masses 2500 kg and 3200 kg, when thei centes of mass ae 12 m apat. (c) Two potons, each of mass 1.67 x kg, whose centes ae 1.0 x m apat. Calculate the foce on the spacecaft at each position shown, and expess these foces as factions of the foce at the Eath s suface. Do you answes suppot the invese squae law of gavitation. 3 A spacecaft of total mass 2500 kg is at the halfway point between the Eath and the Moon. Calculate : (a) The gavitational attaction foce on the spacecaft : (i) Due to the Eath, (ii) Due to the Moon. (b) The magnitude and diection of the esultant gavity foce. Eath mass = 6.0 x kg Moon mass = 7.4 x10 22 kg Distance between centes of Eath and Moon = 3.8 x 10 8 m. Univesal gavitational constant, G = 6.67 x N m 2 kg -2.

6 6 GRAVITATIONAL FIELD STRENGTH OF A POINT MASS VARIATION OF g WITH DISTANCE FROM EARTH S CENTRE Conside a mass (m) at a distance () fom the cente of a planet o sta of mass (M), whee the gavitational field stength is (g). EARTH Fom the definition of field stength, the foce (F) acting on (m) is : planet of mass = M F m F = mg...(1) And applying Newton s law of gavitation, the foce (F) is : g-value at Eath suface F = -G Mm..(2) Combining equations (1) and (2) gives : Fom which : g = - GM mg = -G Mm (N kg-1) ( N m 2 kg -2 ) (m) (kg) The above gaph shows the elationship between gavitational field stength (g) and distance fom the cente of the Eath (). It shows that : Below the suface : g is diectly popotional to. At the cente : g = 0. Fo > R (Eath adius) : g is invesely popotional to. NOTE : All the above applies to any planet o sta.

7 PRACTICE QUESTIONS (3) Assume G = 6.67 x N m 2 kg Calculate the mass of the Moon, given that its adius is 1.74 x 10 6 m and the gavitational field stength at is suface is 1.70 N kg 1. 5 Instuments in a spacecaft ae used to find values fo the 7 gavitational field stength (g) due to the Moon. Conside the gaph shown below g/n kg -1 2 The Sun has a mass of 2.0 x kg and a mean adius of 1.4 x 10 9 m. Calculate : 0.40 (a) The gavitational field stength at : (i) Its suface, (ii) The Eath s obit, which is at a distance of 1.5 x m fom the Sun. (b) The Eath has a mass of 6.0 x kg. Show that at a distance of km fom the Eath s cente, its gavitational field stength is equal and opposite to that of the Sun. 3 The gavitational field stength on the Eath s suface is 9.81 N kg -1. If the Eath has a mass (M) and a mean adius (R), Calculate the field stength : (a) At a point which is at a distance of 4R fom the cente of the Eath. (b) At the suface of a planet having a mass = 2M and a adius = 3R. 4 X is a point on a spheical planet of adius 2000 km. Y is a point 1000 km above the suface of the planet. Calculate the atio g x /g y of the acceleations of fee fall measued at X and Y x x x x Fo points outside the Moon, the field is consideed to be that of a point mass, equal to the mass of the Moon, at the Moon s cente. (a) Calculate the numeical value of the gadient of the gaph. (b) Show that the gadient is equivalent to GM, whee G is the univesal gavitational constant, and M is the mass of the Moon. (c) Hence detemine the mass (M) of the Moon. 1 m 2

8 8 6 Use the intenet to find the suface gavitational field stength and the diamete of the planets in the sola system. Use the data obtained to calculate the mass of each planet. Then use the intenet to check you calculated values. centipetal foce povided by attactive gavitational foce between Eath and Sun. v SATELLITE ORBITS SUN M EARTH m Any body obiting a planet is a satellite of that planet. Ou Moon, fo example, is a natual satellite of planet Eath, while Eath itself is a natual satellite of the Sun. cicula obit Some planets have many natual satellites, and even the paticles which constitute the ings of planets like Satun can be thought of as satellites of thei planet. The diagam above shows the Eath of mass (m) obiting the Sun of mass (M) with a speed (v) at an obital adius (). The centipetal foce needed fo the cicula motion is povided by the gavitational foce acting between the Sun and Eath. Theefoe : gavitational foce = centipetal foce G Mm = mv 2 Atificial satellites ae becoming inceasingly numeous and they maintain thei obits due to the gavitational attaction between themselves and the Eath, at sufficient heights to escape atmospheic fiction that would dissipate thei enegy and send cashing back to Eath. Fom which : v 2 = GM. (1) But speed, v = distance tavelled in one complete obit = 2π Time taken fo one complete obit (PERIOD) T Then, substituting fo v in equation (1) gives : (2π) 2 = GM T 2 Expanding and eaanging gives : T 2 = 4π 2 3 GM

9 9 The equation opposite shows that fo a given planet o sta, the atio (T 2 / 3 ) is a constant fo all of its satellites, egadless of thei mass. To pove the above, NEWTON had assumed that : The Sun and the planets wee point masses. T 2 = 4π 2 * The gavitational foce between the Sun and the planets was diectly popotional to thei masses and invesely popotional to the squae of thei distance apat. Foty yeas o so ealie, the astonome JOHANNES KEPLER, had made vey caeful obsevations of the TIME PERIOD (T) and the AVERAGE ORBITAL RADIUS () fo each of the planets in the sola system. Based on these measuements, KEPLER had poposed his THIRD LAW of planetay motion : 3 GM The atio (T 2 / 3 ) is the same (i.e. constant) fo all the planets. PRACTICE QUESTIONS (4) 1 A satellite is moving in a cicula obit at a speed of 3.5 x 10 3 m s -1 aound a planet of mass (M). The time peiod of the satellite is 100 minutes. Calculate : (a) The obit adius. T = 2π 3 GM This equation allows us to calculate the PERIOD (T) of any satellite fom its ORBIT RADIUS () and the MASS (M) of the planet o sta it obits. (b) The centipetal acceleation of the satellite. (c) The mass (M) of the planet. (Assume G = 6.67 x N m 2 kg -2 ) So NEWTON was able to use his THEORY OF GRAVITATION to pove KEPLER S THIRD LAW. Equation * above can be eaanged to give the following foms : M = 4π 2 3 GT 2 This equation allows us to calculate the MASS (M) of the cental planet o sta fom the PERIOD (T) and ORBIT RADIUS () of one of its satellites. 2 A satellite is in a cicula obit aound the Eath at a height of 110 km above the suface. Given that the adius of the Eath is 6400 km and that G = 6.67 x N m 2 kg -2, calculate : (a) The Eath s gavitational field stength at the obit height. (b) The satellite speed. (c) The time peiod of the satellite.

10 10 3 Calculate the mass of the Sun fom the data given below : Mean adius of Eath s obit aound the Sun = 1.5 x m. Eath s peiodic time = days. Gavitational constant, G = 6.67 x N m 2 kg -2. satellite Eath otation km GEOSTATIONARY SATELLITE - GEOSYNCHRONOUS ORBIT geosynchonous obit In the ealy days of satellite communication, the satellites wee in faily close Eath obits and so they wee visible ove the hoizon fo only shot peiods of time. This was of limited value because boadcasts wee only possible when the satellite was in ange of both the tansmitte and the eceive. In 1945, the sci-fi wite Athu C. Clake pedicted the value of satellites which would obit the Eath with the same angula speed and diection as the Eath. These would appea to be stationay ove a point on the Eath s suface and theefoe always be available fo eceiving o tansmitting adio waves anywhee on the side of the planet facing the satellite. Thee ae now well ove 130 of these GEOSTATIONARY satellites in GEOSYNCHRONOUS obit of the Eath, most of which ae used fo telecommunication, paticulaly television boadcasting. The pictue below gives some idea of the incedible numbe of atificial satellites which now cicle ou planet. A GEOSTATIONARY SATELLITE is in a GEOSYNCHRONOUS ORBIT. This means that it : Has an obit cented on the Eath s cente. Tavels above the equato in the same diection as that of the Eath (west to east). Has an obital peiod the same as that of the Eath s otation about its own axis (24 hous). Always appeas to be above the same point on the Eath s suface. Geostationay satellites foming a cicle above Eath s equato

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

A) 2 B) 2 C) 2 2 D) 4 E) 8

A) 2 B) 2 C) 2 2 D) 4 E) 8 Page 1 of 8 CTGavity-1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

ESCAPE VELOCITY EXAMPLES

ESCAPE VELOCITY EXAMPLES ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Orbital Motion & Gravity

Orbital Motion & Gravity Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

Introduction to Electric Potential

Introduction to Electric Potential Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic

More information

6.2 Orbits and Kepler s Laws

6.2 Orbits and Kepler s Laws Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years.

2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years. CHAPTR 7 Gavitation Pactice Poblems 7.1 Planetay Motion and Gavitation pages 171 178 page 174 1. If Ganymede, one of Jupite s moons, has a peiod of days, how many units ae thee in its obital adius? Use

More information

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics 3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gap-system.og/~histoy/mathematicians/ Newton.html http://www.fg-a.com http://www.clke.com/clipat

More information

PY1052 Problem Set 3 Autumn 2004 Solutions

PY1052 Problem Set 3 Autumn 2004 Solutions PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:

More information

Solutions to Homework Set #5 Phys2414 Fall 2005

Solutions to Homework Set #5 Phys2414 Fall 2005 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Gravity and the figure of the Earth

Gravity and the figure of the Earth Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 47907-1397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 1-5 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE

More information

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates 13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. Vecto-Valued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along

More information

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1) Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing

More information

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

On the Relativistic Forms of Newton's Second Law and Gravitation

On the Relativistic Forms of Newton's Second Law and Gravitation On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Ch. 14: Gravitation (Beta Version 7/01) 14 Gravitation

Ch. 14: Gravitation (Beta Version 7/01) 14 Gravitation Ch. 14: Gavitation (Beta Vesion 7/01) 14 Gavitation The Milky Way galaxy is a disk-shaped collection of dust, planets, and billions of stas, including ou Sun and sola system. The foce that binds it o any

More information

Chapter 8, Rotational Kinematics. Angular Displacement

Chapter 8, Rotational Kinematics. Angular Displacement Chapte 8, Rotational Kinematics Sections 1 3 only Rotational motion and angula displacement Angula velocity and angula acceleation Equations of otational kinematics 1 Angula Displacement! B l A The length

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

Chapter F. Magnetism. Blinn College - Physics Terry Honan

Chapter F. Magnetism. Blinn College - Physics Terry Honan Chapte F Magnetism Blinn College - Physics 46 - Tey Honan F. - Magnetic Dipoles and Magnetic Fields Electomagnetic Duality Thee ae two types of "magnetic chage" o poles, Noth poles N and South poles S.

More information

Section 5-3 Angles and Their Measure

Section 5-3 Angles and Their Measure 5 5 TRIGONOMETRIC FUNCTIONS Section 5- Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,

More information

2008 Quarter-Final Exam Solutions

2008 Quarter-Final Exam Solutions 2008 Quate-final Exam - Solutions 1 2008 Quate-Final Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of

More information

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions Name St.No. - Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100-minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

L19 Geomagnetic Field Part I

L19 Geomagnetic Field Part I Intoduction to Geophysics L19-1 L19 Geomagnetic Field Pat I 1. Intoduction We now stat the last majo topic o this class which is magnetic ields and measuing the magnetic popeties o mateials. As a way o

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION

In this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

Algebra and Trig. I. A point is a location or position that has no size or dimension.

Algebra and Trig. I. A point is a location or position that has no size or dimension. Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite

More information

Theory and measurement

Theory and measurement Gavity: Theoy and measuement Reading: Today: p11 - Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds. Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

PHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded.

PHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded. PHYSICS 18 Honos EXAM Retest Choose 5 of the following 6 pobles. Indicate which poble is not to be gaded. 1. A ope is affixed at one end to the i of a pulley, and wapped five tuns aound the pulley. The

More information

Physics 107 HOMEWORK ASSIGNMENT #14

Physics 107 HOMEWORK ASSIGNMENT #14 Physics 107 HOMEWORK ASSIGNMENT #14 Cutnell & Johnson, 7 th edition Chapte 17: Poblem 44, 60 Chapte 18: Poblems 14, 18, 8 **44 A tube, open at only one end, is cut into two shote (nonequal) lengths. The

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions 1 [M] A unifom line chage that has a linea chage density l equal to.5 nc/m is on the x axis between x and x 5. m. (a) What is its total chage?

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning

Gravitational Mechanics of the Mars-Phobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning Gavitational Mechanics of the Mas-Phobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This

More information

Gauss Law in dielectrics

Gauss Law in dielectrics Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics,

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

The Critical Angle and Percent Efficiency of Parabolic Solar Cookers

The Critical Angle and Percent Efficiency of Parabolic Solar Cookers The Citical Angle and Pecent Eiciency o Paabolic Sola Cookes Aiel Chen Abstact: The paabola is commonly used as the cuve o sola cookes because o its ability to elect incoming light with an incoming angle

More information

Mon., 3/9 Tues., 3/10 Wed., 3/11 Thurs., 3/12 Fri., 3/ 13. RE19 HW19:RQ.42, 49, 52; P.61, 66, 69 RE20, Exp new RE ,3-4 Magnetic Force

Mon., 3/9 Tues., 3/10 Wed., 3/11 Thurs., 3/12 Fri., 3/ 13. RE19 HW19:RQ.42, 49, 52; P.61, 66, 69 RE20, Exp new RE ,3-4 Magnetic Force Mon., 3/9 Tues., 3/10 Wed., 3/11 Thus., 3/12 Fi., 3/ 13 Mon., 3/16 Tues., 3/17 Wed., 3/18 Thus., 3/19 Fi., 3/20 20.1,3-4 Magnetic Foce 20.2,5 Cuent and Motional Emf Quiz Ch 19, Lab 8 Cycloton & Electon

More information

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90 . Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal

More information

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo

SAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, two-body obits, thee-body obits, petubations, tides, non-gavitational foces,

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a .1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q -q a +q a -q F = kq 1q F 1 = k(q)(q) a F 13

More information

MAGNETIC FIELDS AND FORCES 24

MAGNETIC FIELDS AND FORCES 24 MAGNETIC FIELDS AND FORCES 24 Q24.1. Reason: When a ba magnet is bought nea the cente of anothe ba magnet as shown in Figue Q24.1, the foce between the ba magnets is zeo. The attactive foce between the

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Chapter 6. Gradually-Varied Flow in Open Channels

Chapter 6. Gradually-Varied Flow in Open Channels Chapte 6 Gadually-Vaied Flow in Open Channels 6.. Intoduction A stea non-unifom flow in a pismatic channel with gadual changes in its watesuface elevation is named as gadually-vaied flow (GVF). The backwate

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Physics 202, Lecture 4. Gauss s Law: Review

Physics 202, Lecture 4. Gauss s Law: Review Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25-Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential

More information

XIIth PHYSICS (C2, G2, C, G) Solution

XIIth PHYSICS (C2, G2, C, G) Solution XIIth PHYSICS (C, G, C, G) -6- Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of

More information

Magnetism: a new force!

Magnetism: a new force! -1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of E-field kq E-fields ae ceated by chages: E = 2 E-field exets a foce on othe

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Hamonic Motion Intoduction Simple hamonic motion occus when the net foce acting on an object is popotional to the object s displacement fom an equilibium position. When the object is at an equilibium

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information