# Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Size: px
Start display at page:

Download "Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009"

Transcription

1 Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined putting the cannon on top of a very high mountain and pouring in more and more gunpowder so the ball flew further and further: Here s his own drawing: Remember that the time the cannonball takes to reach F is the same as it took to reach E and D: just equal to the time it would take if dropped from V to the level ground. To continue Newton s fantasy, consider now the cannon to be placed on a mountain so high that air resistance is completely negligible even at these high cannonball speeds (no such mountain exists, but any mountain at all would do on the Moon!) Now, irrespective of horizontal speed, the cannonball drops almost exactly 5 meters in the first second. BUT if it s going fast enough, it ll get so far that the curvature of the Earth can t be ignored! The Earth s surface will have fallen below a horizontal line too. What we have to find is the distance over which the curving Earth s surface drops below a horizontal line by 5 meters, because if the cannonball can get that far in one second, it won t have lost any height, relative to the ground. This is an exercise in Pythagoras s Theorem look at the diagram:

2 2 v R R + 5 Using Pythagoras s Theorem to find over what distance v the Earth s surface falls below a horizontal tangent line by 5 meters: (R + 5) 2 = R 2 + v 2. (R in meters) Newton knew the radius of the Earth was 6400 km (in some units actually he began with an incorrect value, and put aside his result, but that s irrelevant to us now, he got it right a little later), so or (R + 5) 2 = R 2 + v 2 R R + 25 = R 2 + v 2. Notice that R 2 appears on both sides, so can be dropped, and also the 25 is completely negligible compared with 10R, so we drop it too, to find: v 2 = 10R = = 64 1,000,000, so v = 8,000m = 8 km. Remember here we re using v to represent the distance the cannonball must fly in one second for its falling below a horizontal line to match the Earth s surface s falling below a horizontal line. The bottom line is that a cannonball fired at a velocity v = 8 km/sec will not lose altitude. You might be thinking: but what happens in the next second? The answer is: exactly what happened in the first second! It s like a fresh start the cannonball is horizontal to the level ground now below it, and gravity, always directly downwards, has turned a little too. And, this scenario repeats indefinitely, provided air resistance is completely negligible. The cannonball is in orbit! Newton understood this point completely, and drew a diagram to make it clear:

3 3 For an animated version of Newton s cannon on a mountain, click here! Of course, no such mountain exists, but that no longer matters: we can get a satellite up there, going at the appropriate speed, and it takes years for the air resistance to bring it down (from, say, 120 miles up, where some of the first satellites were placed, they re now mostly 200 miles and above). And, Newton got the orbital speed right: the lowest earth orbit satellites go once around in about 90 minutes. (Note for nitpickers: as we ll discuss later, at a height of 120 miles, g is down to about 9.2, so the 5 meter fall should more accurately be 4.6m.) On to the Moon Once Newton realized that gravity could hold a cannonball in a circular orbit indefinitely, it dawned on him that the Moon must be circling the Earth for exactly the same reason not to mention the planets orbiting the Sun, etc. (Look at the other circles on his diagram above they re possible orbits.) Does this mean the Moon s circular orbit falls below a straight-line tangent by 5 meters in one second? To find out, we can follow exactly the procedure we used above to find v, but now in reverse: we know the Moon s speed in orbit, since it goes completely around in 27.3 days, and the radius of the orbit, 384,000 km, was already known to the ancient Greeks. So it s just Pythagoras again: the Moon s velocity in orbit turns out to be almost exactly 1 km/sec, if it falls x m below a straight line in one second, and we find x = 1.37 mm far less than 5 meters! 2xR = v 2,

4 4 But this was the key to gravity: the ratio of the distances fallen by the cannonball and the Moon would be the ratio of the acceleration due to gravity at the Earth s surface and at the distance of the Moon. Now, the Moon is 60 times further from the center of the Earth than we are, and the distance themoon falls in one second, the 1.37 mm, turns out to be 1/3600 of 5 meters and 1/3600 = (1/60) 2. Newton concluded that the gravitational acceleration of an object towards the Earth diminishes as the inverse square of the distance between them, as 1/r 2. Acceleration in Circular Motion Our above result for the distance fallen below a horizontal line in motion at speed v around a circle of radius R, 2xR = v 2 is completely general, in the limit of small distance traveled relative to the radius. Note now that the distance fallen x can be expressed in terms of the downward acceleration a as x = ½at 2, and since the time is one second (the distance traveled was v), x = ½a. Putting this together with 2xR = v 2, we find the acceleration in circular motion a = v 2 /R towards the center of the circle. This is an extremely important result: this acceleration is for a body moving at constant speed, and is entirely caused by changing direction. Furthermore, it is acceleration towards a point the body never gets any closer to! Fully understanding acceleration is half the battle in understanding Newtonian mechanics. Always remember that acceleration is a vector quantity, and its direction has nothing to do with the direction of the velocity at the same instant all that matters is the difference between the velocity vector v t dt. vt and that at a slightly different time From Galileo s Laws of Motion to Newton s: Introducing Force Newton s First Law: the Law of Inertia Recall Galileo had two laws of motion : vertical motion was at constant acceleration, horizontal motion at constant velocity, always provided no frictional forces (including air resistance) were present. Recall also that a projectile motion could be analyzed in terms of a gravitational falling away from a straight line trajectory:

5 5 y vt 0 gt r x Motion under gravity of a cannonball shot at an angle: r v t gt Newton s great insight was to realize that gravity is a force, just as real as the force of air resistance, and if there were truly no force on the projectile it would continue in a straight line forever. People at the time had a hard time accepting this: their idea of a force was a direct, in-contact, push of pull, or, say, friction dragging something pushed along the ground. The idea of the Earth exerting a force through empty space, without physical contact, seemed creepy: they were trying to get away from magic and superstition, and this seemed a backward step. Newton wasn t keen on it, either, he offered no ideas on how it might come about, he just stated that there it was: introducing this force gave for the first time a unified picture of motion that included things here on Earth and the solar system above. Newton s First Law of Motion tells what happens if a moving body feels no force at all: no friction, no air resistance, no gravity. A body stays at rest, or moving at constant velocity, if there are no forces acting on it. In particular, a projectile will keep moving in a straight line at constant speed under these conditions. This is sometimes called The Law of Inertia : it s a generalization of Galileo s natural horizontal motion, and we can now see that the projectile diagram above the force of gravity gives the deviation from a straight line.

6 6 So any acceleration, or change in speed or direction of motion of a body signals that it is being acted on by some force. Newton s Second Law: Mass Acceleration is Proportional to Force Newton s next assertion, based on much experiment and observation, is that, for a given body, the acceleration produced is proportional to the strength of the external force: doubling the external force will cause the body to pick up speed twice as fast, a F. But what about different bodies, with different masses? A point well-established by this time was that if a force caused a body to accelerate at a, the same force would accelerate two such bodies held together at 1 2 a. In other words, the acceleration for a given force was inversely proportional to the mass, where here mass really is just the amount of stuff. For a uniform material, the mass is the volume multiplied by the density: for water, that s one kilogram per liter of volume, or one gram per cc. Mass, then, can be thought of as resistance to having velocity changed by an external force. This resistance is also termed inertia. We can now put together a F and a 1/ mfor a given force to give F ma. We already have units for mass (kg) and acceleration (m. sec -2 ). We define our unit force as one Newton: the force that accelerates one kg at one meter per sec per sec. With force measured in Newtons, the equation becomes: F ma. Newton wrote his Second Law slightly differently from this: he defined the amount of motion as what is now called the momentum, mv, and stated (in our notation): d F mv. dt This is of course the same as F ma if the mass is constant, but also covers the case of changing masses, such as a rocket ejecting fuel, or a particle moving close to the speed of light. We ll talk a lot more about momentum later. The Force of Gravity: Mass and Weight We re ready to go back to falling bodies. Newton interpreted Galileo s constant acceleration natural vertical motion as acceleration caused by a gravitational force, just as horizontal acceleration must be caused by an applied external force.

7 7 But the gravitational force has a special feature: all masses accelerate downwards at the same rate. This must mean that the gravitational force is proportional to the mass of the object. The gravitational force on an object near the Earth s surface is called its weight, so we re saying weight is proportional to mass. Denoting weight as W, with all forces downward, F = ma is just W = mg, where g is the acceleration of a falling body. In physics problems, weight must be measured in its correct units, Newtons, although it is usually given in mass units in everyday life. The gravitational force is not only proportional to the mass of the falling object: it must also be proportional to the mass of the Earth, because if there were two Earths glued together, surely the Moon would feel twice the attraction. The Moon is also gravitationally attracting the Earth: this is evident from the tides, which follow a monthly cycle as the Moon goes around, the water being pulled from its spherical shape. Newton boldly generalized to the whole Universe: he asserted that every body attracts every other body with a force proportional to both masses, and inversely proportional to the distance between them. Written as an equation, Gm m F r where G is a constant to be determined. (We can t set it equal to one: we already have units for mass, length and force.) The force is along the line from the center of one body to that of the other, and each body is attracted towards the other. We ll discuss gravity in more detail later: we ve introduced it here because it is central to a full understanding of Newton s Third Law. Newton s Third Law: Action and Reaction Having established that a force the action of another body was necessary to cause a body to change its state of motion, Newton made one further crucial observation: such forces always arise as a mutual interaction of two bodies, and the other body also feels the force, but in the opposite direction. His Third Law of Motion: If a body A exerts a force F on a body B, then the body B exerts a force This he wrote as: F on the body A. To every action there is always opposed an equal and opposite reaction: or the mutual actions of two bodies upon each other are always equal in magnitude, but opposite in direction. It doesn t matter what kind of force we re talking about: the Third Law is equally valid for pushing against a table, dragging a dog on a leash, or gravitational attraction. If you push against a wall, the wall

8 8 is pushing you back. If that s difficult to visualize, imagine what would happen if the wall suddenly evaporated. Newton s Laws in Everyday Life The reason the external force causing the acceleration may not be immediately evident in a given situation is that it may not be what s doing the work. Consider the following scenario: you are standing on level ground, on roller skates, facing a wall with your palms pressed against it. You push against the wall, and roll away backwards. You accelerated. Clearly, you did the work that caused the acceleration. But from Newton s Second Law, your acceleration was, in fact, caused by the reactive external force of the wall pushing your hands, and hence the rest of you. That is to say, the force causing the acceleration may not be generated directly by what or who is doing the work! In this example, it s generated indirectly, as a reaction force to that of the hands pushing on the wall. But if the wall were on wheels, and it accelerated away when you pushed (having taken off your roller skates) the force causing the acceleration of the wall would be generated directly by the agent doing the work, you. Now imagine two people on roller skates, standing close facing each other, palms raised and pushing the other person away. According to Newton s discussion above following his Third Law, the two bodies involved will undergo equal changes of motion, but to contrary parts, that is, in opposite directions. That sounds reasonable. They obviously both move off backwards. Notice, however, that Newton makes a special point of the fact that these equal (but opposite) motions do not imply equal (but opposite) velocities this becomes obvious when you imagine the experiment with a 100 pound person and a 200 pound person. Newton tells us that in that situation the heavier person will roll backwards at half the speed notice he says the velocities are reciprocally proportional to the bodies. Roller skates actually provide a pretty good example of the necessity of generating an external force if you want to accelerate. If you keep the skates pointing strictly forwards, and only the wheels are in contact with the ground, it s difficult to get going. The way you start is to turn the skates some, so that there is some sideways push on the wheels. Since the wheels can t turn sideways, you are thus able to push against the ground, and therefore it is pushing you you ve managed to generate the necessary external force to accelerate you. Note that if the wheels were to be replaced by ball bearings somehow, you wouldn t get anywhere, unless you provided some other way for the ground to push you, such as a ski pole, or maybe twisting your foot so that some fixed part of the skate contacted the ground.

### Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### How To Understand The Theory Of Gravity

Newton s Law of Gravity and Kepler s Laws Michael Fowler Phys 142E Lec 9 2/6/09. These notes are partly adapted from my Physics 152 lectures, where more mathematical details can be found. The Universal

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### Review D: Potential Energy and the Conservation of Mechanical Energy

MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Chapter 7 Newton s Laws of Motion

Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Aristotelian Physics Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Here's what Aristotle said: Aristotelian Physics Aristotle s classification

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### 2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Name: Date: Period: Gravity Study Guide

Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

### AP Physics Applying Forces

AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.

Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### What Do You Think? For You To Do GOALS

Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

### Orbital Mechanics. Angular Momentum

Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

### Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

### Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### 1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### PROBLEM SET. Practice Problems for Exam #1. Math 2350, Fall 2004. Sept. 30, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam #1 Math 350, Fall 004 Sept. 30, 004 ANSWERS i Problem 1. The position vector of a particle is given by Rt) = t, t, t 3 ). Find the velocity and acceleration vectors

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### 1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector