10. Collisions. Before During After

Size: px
Start display at page:

Download "10. Collisions. Before During After"

Transcription

1 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t) F(t) Befoe Duing Afte It is not necessay fo the objects to touch duing a collision, e.g. an asteoid flied by the eath is consideed a collision because its path is changed due to the gaitational attaction of the eath. One can still use conseation of momentum and enegy to analyze the collision. Impulse: Duing a collision, the objects exet a foce on one anothe. This foce may be complicated and change with time. Howee, fom Newton's 3d

2 Law, the two objects must exet an equal and opposite foce on one anothe. F(t) t i t Fom Newton's 2nd Law: dp dt = F (t) dp = F (t)dt p f p i = p = ti t f t f t F (t)dt The change in the momentum is defined as the impulse of the collision. Impulse is a ecto quantity. Impulse-Linea Momentum Theoem: In a collision, the impulse on an object is equal to the change in momentum: J = p Conseation of Linea Momentum: In a system of two o moe paticles that ae colliding, the foces that these objects exet on

3 one anothe ae intenal foces. These intenal foces cannot change the momentum of the system. Only an extenal foce can change the momentum. The linea momentum of a closed isolated system is conseed duing a collision of objects within the system. This follows diectly fom Newton's 2nd Law: p dt = p = constant d F ext = 0 Fo a two-body collision, the change in momentum of one object is equal and opposite to the change in the momentum of the othe object: p i = p f p 1i + p 2i = p 1 f p 1 f p 1i = ( p 2 f p 1 = p 2 + p 2 f p 2i )

4 This can also be undestood fom the impulses delieed by the two equal but opposite intenal foces: p 1 = F int dt = J p 2 = ( F int )dt = J p 1 = p 2 Elastic Collision: In an elastic collision, the kinetic enegy of the system is conseed duing the collision. The kinetic enegy of each object will change Conside a collision in which one of the objects is stationay befoe the collision: befoe m m +x afte 1 1 i f f Conseation of momentum fo an isolated system: m 1 1i = m 1 1 f + m 2 2 f m 1 ( 1i 1 f ) = m 2 2 f (1)

5 Conseation of enegy fo an elastic collision: 1 2 m 1 1i = 1 2 m 1 1f m f m 1 2 1i m f = m 2 2 f 2 m 1 ( 1i 1f )( 1i + 1 f ) = m 2 2 f (2) (2) (1): 1i + 1 f = 2 f (3) Substitute into (1): m 1 ( 1i 1f ) = m 2 ( 1i + 1 f ) 1 f = m 1 m 2 1i Substitute into (3): 2 f = 1i + m 1 m 2 1i 2m = 1 m 1 + m 1i 2 Paticle #2 always moes in the positie diection. Paticle #1 will moe in the positie

6 diection if m 1 > m 2 else it will ecoil and moe in the negatie diection. If m 1 = m 2, 1 f = 0 2 f = 1i i.e. paticle #1 comes to est and paticle #2 moes off with oiginal speed of paticle #1. If m 2 >> m 1, 1 f 1i 2 f 2m 1 m 1i << 1i 2 i.e. paticle #1 bounces back in the opposite diection with almost the same speed it had oiginally. The massie paticle #2 moes slowly in the oiginal diection of paticle #1. If m 1 >> m 2, 1f 1i 2 f 2 1i i.e. the massie paticle #1 continues to moe almost as if it did not hit anything, wheeas

7 paticle #2 flies off with twice the initial speed of the massie paticle. We can sole fo the case whee both paticles ae moing befoe the collision using conseation of momentum and enegy: 1 f = m 1 m 2 1i + 2m 2 2i 2 f = 2m 1 1i + m 2 m 1 2i The labeling "1" and "2" is completely abitay. We can change 1 2 eeywhee and get back the same answe. Setting 2i = 0 yields the peious set of equations. Example: A 350-g taget glide is at est on a tack, a distance d = 53 cm fom the end of the tack. A 590-g pojectile glide appoaches the taget glide with a elocity 1i = 75 cm / s and collides elastically. The taget glide ebounds elastically

8 fom a shot sping at the end of the tack and meets the pojectile glide fo a second time. How fa fom the end of the tack does this second collision occu? d m 2 The pojectile glide will moe with some speed afte the 1st collision towad the sping. The 1st collision gies the taget some elocity to tael to the sping. The taget ebounds elastically fom the sping with the same speed afte 1st collision. Afte 1st collision: 2m 2 f = 1 m 1 + 1i = 94 cm / s m 2 1f = m 1 m 2 m 1 + 1i m 2 1i m 1 = 19 cm / s x = 0 x x = d path of taget path of pojectile

9 t = d + x = d x 2 f 1 f ` x = d 2 f 1f = 34 cm 2 f + 1f Conceptual Question: A popula swinging-balls appaatus consists of an aligned ow of identical elastic balls that ae suspended by stings so that they baely touch each othe. When two balls ae lifted fom one end and eleased, they stike the ow and two balls pop out fom the othe end, If instead one ball popped out with twice the elocity of the othe two. This would iolate the conseation of: 1. momentum 2. enegy 3. both of these 4. none - it is possible fo one ball to fly out

10 Inelastic Collision: In an inelastic collision between two objects in an isolated system, kinetic enegy is not conseed, but the linea momentum is conseed. Most collision we obsee eeyday ae inelastic with some loss of kinetic enegy. stating height ending height If we dop a ball fom a height h, it will collide with the eath (gound) and bounce back up. Howee, it will not etun to the oiginal height because some kinetic enegy is lost duing the collision. When two cas collide with one anothe, pats of the cas cumple and bend. Some of the kinetic enegy of the system goes into this defomation, so kinetic enegy is lost duing the collision. This is pat of the design by automatic enginees by haing a "cumple zone" to take enegy out of the collision to potect the die.

11 Completely Inelastic Collision: Two objects stick togethe afte the collision. Afte the collision, the combined objects hae a mass equal to the sum of the two masses and moe with the elocity of the cente of mass. Linea momentum is conseed. Maximum amount of kinetic enegy is lost. p i sys = p f sys m 1 1i + m 2 2i = ( ) = cm = m 1 1 i + m 2 2i Example: A bullet of mass 4.5 g is fied hoizontally into a 2.4-kg wooden block at est on a hoizontal

12 suface. The coefficient of kinetic fiction between the block and the suface is The bullet comes to est in the block, which moes 1.8 m. (a) What is the speed of the block immediately afte the bullet comes to est within it, and (b) at what speed is the bullet fied? Befoe collision Afte collision Afte slide b i d x 0 x 0 x 0 = 0 f

13 (a) f = µn = µ(m b + m w )g (m b + m w )a = µ(m b + m w )g a = µg 2 = a(x x 0 ) 0 = i 2 2µgd i = 2µgd = 2.65 m / s (b) Conseation of momentum: m b b + 0 = (m b + m w ) i i b = m b + m w m b = 1400 m / s Conceptual Question: A piece of taffy slams into and sticks to anothe identical piece at est. The momentum

14 of the two pieces stuck togethe afte the collision is the same as it was befoe the collision, but this is not tue of the kinetic enegy which is patly tuned into heat. What pecentage of the kinetic enegy is tuned into heat? 1. 0% 2. 25% 3. 50% 4. 75% 5. moe infomation must be gien Collisions in 2-Dimensions: When we studied the motion of objects, we stated by studying motion in one dimension and then we found that eey thing we leaned could be easily applied to 2 o 3 dimensions. The same is tue fo collisions in 2 o 3 dimensions: Linea momentum is each diection is conseed. In elastic collisions, the kinetic enegy of the system is conseed. In totally inelastic collisions, the two objects stick togethe and moe with a common elocity, the elocity of the cente of mass.

15 y 1i F 21 1f 2i F = -F f x p sys sys ix = p f x m 1 1i x + m 2 2i x = m 1 1 f x + m 2 2 f x p sys sys iy = p f y m 1 1i y + m 2 2i y = m 1 1 f y + m 2 2 f y Fo elastic collisions: 1 2 m 1 2 1i m 2 2 2i = 1 2 m f m f Example: One ice skate (m 1 ) is skating due east along a fozen lake with a speed 1. Anothe skate (m 2 ) is skating due noth with speed 2. They collide

16 into a big heap and slide acoss the ice togethe. What is thei elocity afte the collision? m 1 1 y f θ x m 2 2

17 p sys sys ix = p f x m 1 1 = ( ) f x f x = m 1 1 p sys sys iy = p f y m 2 2 = ( ) f y f y = m 2 2 θ = tan 1 f y f x = tan 1 m 2 2 m 1 1 f = 2 2 f x + f y = (m 1 1 )2 + (m 2 2 ) 2 Check: If two skates of equal momentum collided: m 1 1 = m 2 2 θ = 45 If skate 2 was stationay:

18 θ = tan 1 (0) = 0 Conceptual Question: (a) The figues below show the position s. time plot fo two bodies and thei cente of mass. The two bodies undego a completely inelastic onedimensional collision while moing along the x- axis. Which gaph coesponds to a physically impossible situation? x x x x (a) (b) (c) (d) t t t t (b) The figue below shows seen identical blocks on a fictionless floo. Initially, block a and b ae moing ightwad and block g leftwad, each with the same speed. A seies of elastic collisions occu. Afte the last collision, what ae the speeds and diection of motion of each block? a b c d e f g

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

4 Impulse and Impact. Table of contents:

4 Impulse and Impact. Table of contents: 4 Impulse and Impact At the end of this section you should be able to: a. define momentum and impulse b. state principles of conseration of linear momentum c. sole problems inoling change and conseration

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum Final Exam Duing class (1-3:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

Notes on Elastic and Inelastic Collisions

Notes on Elastic and Inelastic Collisions Notes on Elastic and Inelastic Collisions In any collision of 2 bodies, their net momentus conserved. That is, the net momentum vector of the bodies just after the collision is the same as it was just

More information

Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 7 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and

Hour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon

More information

ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS

ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS 1 PURPOSE ACTIVITY SIX CONSERVATION OF MOMENTUM ELASTIC COLLISIONS For this experiment, the Motion Visualizer (MV) is used to capture the motion of two frictionless carts moving along a flat, horizontal

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

Chapter 9. particle is increased.

Chapter 9. particle is increased. Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Chapter #7 Giancoli 6th edition Problem Solutions

Chapter #7 Giancoli 6th edition Problem Solutions Chapter #7 Giancoli 6th edition Problem Solutions ü Problem #8 QUESTION: A 9300 kg boxcar traveling at 5.0 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.0 m/s.

More information

Worked Examples. v max =?

Worked Examples. v max =? Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum

Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information

www.sakshieducation.com

www.sakshieducation.com Viscosity. The popety of viscosity in gas is due to ) Cohesive foces between the moecues ) Coisions between the moecues ) Not having a definite voume ) Not having a definite size. When tempeatue is inceased

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

Our Dynamic Universe

Our Dynamic Universe North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed?

A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. Which fragment has the greater speed? 1 2 PHYS 1021: Chap. 9, Pg 2 Page 1 1 A uranium nucleus

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Differentiated Physics Practice Questions

Differentiated Physics Practice Questions Differentiated Physics Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 100-kg cannon at rest contains a 10-kg cannon ball. When fired,

More information

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.

Learning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds. Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of

More information

Name per due date mail box

Name per due date mail box Name per due date mail box Rolling Momentum Lab (1 pt for complete header) Today in lab, we will be experimenting with momentum and measuring the actual force of impact due to momentum of several rolling

More information

PHYSICS 111 HOMEWORK SOLUTION #8. March 24, 2013

PHYSICS 111 HOMEWORK SOLUTION #8. March 24, 2013 PHYSICS 111 HOMEWORK SOLUTION #8 March 24, 2013 0.1 A particle of mass m moves with momentum of magnitude p. a) Show that the kinetic energy of the particle is: K = p2 2m (Do this on paper. Your instructor

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Instructor Now pick your pencils up and get this important equation in your notes.

Instructor Now pick your pencils up and get this important equation in your notes. Physics 605 Mechanical Energy (Read objectives on screen.) No, I haven t been playing with this toy the whole time you ve been gone, but it is kind of hypnotizing, isn t it? So where were we? Oh yes, we

More information

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws

Lecture 7 Force and Motion. Practice with Free-body Diagrams and Newton s Laws Lecture 7 Force and Motion Practice with Free-body Diagrams and Newton s Laws oday we ll just work through as many examples as we can utilizing Newton s Laws and free-body diagrams. Example 1: An eleator

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Introduction to Electric Potential

Introduction to Electric Potential Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD 260 16-1. THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and

More information

Activity 5a Potential and Kinetic Energy PHYS 010. To investigate the relationship between potential energy and kinetic energy.

Activity 5a Potential and Kinetic Energy PHYS 010. To investigate the relationship between potential energy and kinetic energy. Name: Date: Partners: Purpose: To investigate the relationship between potential energy and kinetic energy. Materials: 1. Super-balls, or hard bouncy rubber balls. Metre stick and tape 3. calculator 4.

More information

Newton s Shell Theorem

Newton s Shell Theorem Newton Shell Theoem Abtact One of the pincipal eaon Iaac Newton wa motivated to invent the Calculu wa to how that in applying hi Law of Univeal Gavitation to pheically-ymmetic maive bodie (like planet,

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

The Detection of Obstacles Using Features by the Horizon View Camera

The Detection of Obstacles Using Features by the Horizon View Camera The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit aa@am.info.gifu-u.ac.jp

More information

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A

A couple is a pair of forces, equal in magnitude, oppositely directed, and displaced by perpendicular distance, d. F A F B (= -F A 5 Moment of a Couple Ref: Hibbele 4.6, edfod & Fowle: Statics 4.4 couple is a pai of foces, equal in magnitude, oppositely diected, and displaced by pependicula distance, d. d (= - ) Since the foces ae

More information

92.131 Calculus 1 Optimization Problems

92.131 Calculus 1 Optimization Problems 9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle

More information

Physics 101: Lecture 12 Collisions and Explosions Today s lecture covers Textbook Sections

Physics 101: Lecture 12 Collisions and Explosions Today s lecture covers Textbook Sections Physics 101: Lecture 12 Collisions and Explosions Today s lecture covers Textbook Sections 7.5-7.8 Exam II Physics 101: Lecture 12, Pg 1 Overview of Semester Newton s Laws F Net = m a = Dp/Dt Work-Energy

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phs0 Lectures 4, 5, 6 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 9-,,3,4,5,6,7,8,9. Page Moentu is a vector:

More information

Definitions and terminology

Definitions and terminology I love the Case & Fai textbook but it is out of date with how monetay policy woks today. Please use this handout to supplement the chapte on monetay policy. The textbook assumes that the Fedeal Reseve

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Experiment 7 ~ Conservation of Linear Momentum

Experiment 7 ~ Conservation of Linear Momentum Experiment 7 ~ Conservation of Linear Momentum Purpose: The purpose of this experiment is to reproduce a simple experiment demonstrating the Conservation of Linear Momentum. Theory: The momentum p of an

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

Do Vibrations Make Sound?

Do Vibrations Make Sound? Do Vibations Make Sound? Gade 1: Sound Pobe Aligned with National Standads oveview Students will lean about sound and vibations. This activity will allow students to see and hea how vibations do in fact

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions Peason Physics Level 30 Unit VI Foces and Fields: hapte 10 Solutions Student Book page 518 oncept heck 1. It is easie fo ebonite to eove electons fo fu than fo silk.. Ebonite acquies a negative chage when

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Chapter 29: Magnetic Fields

Chapter 29: Magnetic Fields Chapter 29: Magnetic Fields Magnetism has been known as early as 800C when people realized that certain stones could be used to attract bits of iron. Experiments using magnets hae shown the following:

More information

Physics Core Topic 9.2 Space

Physics Core Topic 9.2 Space Physics 9. Space Syllabus Notes Physics Coe Topic 9. Space Summay of Contextual Outline Scientists daw on othe aeas of science to deelop iable spacecaft Launch, e enty and landing ae dangeous Huge foces

More information

Your Comments. during the last couple lectures its been getting really noisy and hard to hear, especially for the last couple rows.

Your Comments. during the last couple lectures its been getting really noisy and hard to hear, especially for the last couple rows. You Comments lease explain the ight hand ule when thee ae two wies and ou ae ting to find the diection of the foce I am getting confused with all these ight hand ules So do ou have an age-old advice fo

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

CHAT Pre-Calculus Section 10.7. Polar Coordinates

CHAT Pre-Calculus Section 10.7. Polar Coordinates CHAT Pe-Calculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to

More information