Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Size: px
Start display at page:

Download "Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2"

Transcription

1 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F Gm 1 m ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple, so if paticle 1 is attacted by paticles 2 and 3, the total foce on 1 is F 12 F 13. Cental foces ae consevative, we can define gavitational V F d d potential enegy: Gm 1 m 2 1 m 2 2 Define also gavitational potential (aka gavitational potential enegy Φ 1 pe unit mass) Gm (set m m and eplace m 2 with 1). Likewise, gavitational field g as gavitational foce pe unit mass: g ˆ Gm 2 g Field and potential ae elated in the usual way: Φ

2 2 Gavity Fom A Spheical Shell: Diect Calculation Conside a thin spheical m shell of adius a, mass pe unit aea ρ and total mass 2 4πρa Supeposition pinciple leads to element of mass: m dm ρ2πasinθadθ sinθdθ 2 Contibution to the potential fom annulus is: dφ Gdm R R Gm sinθdθ 2 Integate ove θ fom 0 to π. Change the integation 2 2 vaiable 2 fom θ to R, via R a 2a cosθ hence sinθdθr dr a

3 Gma a a If a integation limits ae a and a; if Φ a they ae and : Gm a 2a adr a Gm fo a fo 3 Gavitational g field by diffeentiation: a Gm ˆ 2 fo a 0 fo 1. Outside the shell, the potential is just that of a point mass at the cente. 2. Inside the shell, the potential is constant and so the foce vanishes.

4 4 Now Using Analogy With Coulomb Foce Apply integal fom of Gauss Law to gavitational case: g ds 4πG ρ m dv S V That is: to Suface integal of nomal component of gavitational field ove given suface S is equal 4πG times the mass contained within suface, with mass obtained by integating mass density ρ m ove volume V contained by S. Fom spheical symmety g gavitational field g must be adial: g ˆ Choose a concentic spheical suface with adius a: mass enclosed g is just shell mass m and Gauss Law says 4π 4πGm 2 g giving a. Gm ˆ fo 2 Likewise, choose concentic spheical suface inside shell: mass enclosed is zeo and g vanish.

5 F 5 Obits: Peliminaies Two-body Poblem: Reduced Mass Expess position i as CM location R plus displacement 1 ρ i R elative 1 to it: 2 R 2 ρ ρ F 1 Change vaiables fom 1 and 2 to R and 2 (ecall F 12 1 F 21, intenal 2 F foces only): m 1 m M 1 2 Set m m 2, thus M R m 1 m 2 i.e., CM velocity is constant. Conside elative displacement, F 1 m F m i.e., µ 1 m 1 and e-encounte educed µ mass m 1 1 m 2 2 m m 1 F m m 1 m 2 2

6 µ 6 Fo consevative foce F thee is potential enegy E V, hence total enegy MṘ2 is: µṙ2 V Likewise, when L F is cental, total angula momentum is R Ṙ M µ ṙ Since CM velocity is constant, R choose inetial fame 0 with oigin at R, i.e.: Hence: E L µṙ2 1 ṙ V 2 Rationale: two-body poblem educes to equivalent single body one of mass µ at position elative to fixed cente, acted F V ˆ upon by foce

7 7 2 If m m 1 µ : 1 2 R m 1 m 2 m 1 m m m 1 1 m m m 2 ( fixed Sun and moving Planet appoximation ). Commentay: 1. Appoximation 2 1 valid fo Keple s Laws (m m and m m Sun ). 2. Can ignoe inteactions between Planets in compaison to gavitational attaction Planet-Sun. Planet

8 0 8 Two-body Poblem: Conseved Quantities Gavity is cental foce: gavitational attaction between two bodies acts along line joining them. Gavitational foce on mass µ acts in diection L and no toque is exeted about fixed cente: constant Both magnitude and diection of L ae fixed! Since L p µṙ L is pependicula to plane defined by position and momentum of µ. Convesely: and p must always lie in fixed plane of all diections pependicula to L. Can theefoe descibe motion using plane pola coodinates θ, with oigin at fixed cente! k m 2 Radial and angula equations of motion become: θ 2 θ 2 adial equation 1 d equation dt angula F Gavitational foce is µ m 2 k M kˆ GMm wheein m Planet and m Sun.

9 9 Angula equation expesses L consevation of angula momentum: 2 θ m Othe conseved quantity is total enegy: k E 1 2 mṙ2 1 2 m2 θ 2 wheein gavitational V potential k enegy is Commentay: 1. Gavitational potential enegy will help deducing shape of planetay obits!

10 10 Two-body Poblem: Two Poblems Comet 1. Comet appoaching Sun in plane of Eath s obit (assumed cicula) cosses obit at angle of 60 tavelling at 50kms1. 2. Closest appoach to Sun is 110 of Eath s obital adius ( e ). µ m 3. Ignoe attaction of comet to Eath compaed to Sun (i.e., educed mass m Comet ). 4. Aim: compute comet s speed at point of closest appoach. Solution L p Key: angula momentum consevation mv of comet about Sun At point of closest appoach v comet s velocity must be tangential only: minv max v At cossing point: e vsin30 Equate two expessions: min v max 0 1 e v max ev 1 2

11 11 Finally, v max 5v 250kms1

12 G m 27 5 m 12 Cygnus X1 1. Cygnus X1 is a binay system of a supegiant sta of 25 sola masses and a black hole of 10 sola masses, each in a cicula obit about CM with peiod 5 6 days. 2. Aim: Detemine distance between supegiant and black hole, given sola mass kg. Solution Key: 2-body equation of motion in pola cood.s: Gm 1 m m ω 2 2 ω 2 m m 2 (m mass, distance, ang. velocity). Whee is RHS 2nd tem coming fom? T Intoduce peiod: 2πω Extact distance: 1 3 m 2 T 2 4π m 3 That is, m

13 13 Keple s Laws State Keple s Laws: The obits of the planets ae ellipses with the Sun at one focus. The adius vecto fom the Sun to a planet sweeps out equal aeas in equal times. 3. The squae of the obital peiod of a planet is popotional to the cube of the semimajo axis of the planet s obit (T 2 a 3 ). Next lectue: thei deivation

14 14 Keple s 2nd Law This is statement of angula momentum consevation unde action of cental gavitational foce. Angula equation 2 θ m of motion gives: L const Leads to: 2 θ da 1 L dt 2 2m const

15 15 Obit equation Ellipses ae specific to invese squae law fo foce, hence fist and thid laws ae specific to invese squae law foce. Study adial equation of motion (k GMm) 2 k θ m! 2 (i) Remove θ using angula momentum consevation, θ 2 Lm get 2 k m (ii) Use elation L 2 m 2 3 d θ dt dθ d L d m dθ 2 (diffeential u equation fo in tems of θ). (iii) Substitute 1 to 2 obtain u obit equation: d 2 u mk dθ L 2

16 16 Keple s 1st Law Solution of obit equation 2 1 is 1 mk L ecosθ l 0 e Fist law: fo 1 is an ellipse, with semi latus ectum L 2mk. Keple s 3d Law Stat with 2nd law fo ate of aea: da L dt 2m T A! Integate ove complete obital peiod T: 2mAL πab is aea of ellipse Substituting fo b in 2 tems of a3 a gives thid law: 4π 2 T GM

17 17 Scaling Agument fo Keple s 3d Law Suppose you found a solution to obit equation 2 2 θ km i.e., and θ as functions of t. Scale adial and vaiables by constants α and β: α t βt In tems of and t, LHS of obit equation is: d dt 2 dt 2 β dθ α α α θ θ β 2 β RHS becomes: k 1 m k α m Compae two sides, new 2 solution 3 in tems of and t povided β α That is, T 2 a 3 1. Need solving obit equation fo popotionality constant. 2. Scaling agument makes clea thid law based on invese-squae foce law.

18 18 Poblem Sheet 6 Section B. Eath s speed in cicula motion about Sun!? Obit equation in pola coodinates: 0 l 1! e That is, e l L mk G 2 m 2 v 2 e 2 e m 2 M Sun Inveting, Finally, GM e v 2 GM v 2 e e Sun 2 e Sun e Eveything can be expessed in tems of v e!

19 19 Enegy Consideations: Effective Potential Gavitational foce is consevative, hence total enegy E of obiting body is conseved: V E 1 2 mṙ2 1 2 m2 θ 2 Angula momentum is also conseved (foce is cental), hence use 2 θ Lm to emove θ 2 : E 1 2 mṙ2 L 2 2m 2 V Fomally, enegy equation of paticle in linea motion unde effective U potential 2 V L 2 2m 2 Effective potential contains centifugal tem, L 22m aising because V angula momentum l is conseved. Replace k and use L 2mk: k Fig U kl 2 2

20 mk 20 U 2 Intepet as a function of fo given E By definition ṙ E U 0, implying 2 kl U k 2 Daw a hoizontal line fo E, lies below it! U Cicula Obit At minimum c l E, is constant at E 2mk L hence obit is cicula and total enegy is k2l 2 22L Elliptic Obit If k2l E 0, motion p is a allowed fo peihelion p E 2 and aphelion a k given by oots of kl2 E Paabolic Obit If 0, thee is always minimum value fo but escape to infinity is just possible. E Hypebolic Obit Fo 0, escape to infinity is possible with finite kinetic enegy at infinite sepaation.

21 21 Obits in a Yukawa Potential Conside V Yukawa potential 0 κ 0 αeκ α Descibes, e.g., attactive foce between nucleons in an atomic nuclei. Neglect quantum-mechanics and use classical dynamics. Effective potential U becomes 2 L 2 2m αeκ Tajectoies ae moe complicated: Fig.

22 22 U Intepet E as a function of fo given E 0 but geate than U min Rosette obit, i.e., ellipse with otating oientation, aka pecession of peihelion. Typical of small (κ 0) petubations of planetay obits, e.g., due to othe planets (iegulaities in Uanus motion led to discovey of Neptune, 1846). Lage limit Tem L 22m U 2 dominates exponentially falling Yukawa tem, so becomes positive! If U max E 0, two possible obits classically distinct. In quantum mechanics, tunnelling becomes possible (e.g., alpha decay)!

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Chapter 5: Circular Motion : Earlier in the semester. Universal Law of Gravitation: Today. Newton s Universal Law of Gravitation

Chapter 5: Circular Motion : Earlier in the semester. Universal Law of Gravitation: Today. Newton s Universal Law of Gravitation Chapte 5: Cicula otion : Ealie in the semeste Univesal Law of Gavitation: Today 1 Newton s Univesal Law of Gavitation 1 Newton s Law of Univesal Gavitation Fo a pai of point masses Diection: towads each

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Gavitation Page: 8 fo/u fopkj Hkh# tu] ugha vkjehks dke] foif ns[k NksM+s qja e/;e eu dj ';kea iq#"k flag ladyi dj] lgs foif vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks

More information

Gravitational Field and its Potential

Gravitational Field and its Potential Lectue 19 Monday - Octobe 17, 2005 Witten o last updated: Octobe 17, 2005 P441 Analytical Mechanics - I Gavitational Field and its Potential c Alex. Dzieba Isaac Newton What Isaac Newton achieved was tuly

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Universal Gravitation

Universal Gravitation J - The Foce of Gavity Chapte J Univesal Gavitation Blinn College - Physics 45 - Tey Honan Intoduction If Isaac Newton had meely witten down his thee laws of motion he would pobably still be known as the

More information

PHYS-2010: General Physics I Course Lecture Notes Section IX

PHYS-2010: General Physics I Course Lecture Notes Section IX PHYS-200: Geneal Physics I Couse Lectue Notes Section IX D. Donald G. Luttemose East Tennessee State Univesity Edition 2.5 Abstact These class notes ae designed fo use of the instucto and students of the

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Gravitation and Kepler s Laws

Gravitation and Kepler s Laws 3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente

More information

Section 39 Gravitational Potential Energy & General Relativity

Section 39 Gravitational Potential Energy & General Relativity Section 39 Gavitational Potential Enegy & Geneal elativity What is the univese made out of and how do the pats inteact? We ve leaned that objects do what they do because of foces, enegy, linea and angula

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Newton s Law of Universal Gravitation Every object in the universe is attracted to every other object. r 2

Newton s Law of Universal Gravitation Every object in the universe is attracted to every other object. r 2 6//01 Newton s Law of Univesal Gavitation Evey object in the univese is attacted to evey othe object. Cavendish poves the law in 1798 F= Gm 1 m G = 6.67 X 10-11 N-m /kg m 1 = mass of one object m = mass

More information

2008 Quarter-Final Exam Solutions

2008 Quarter-Final Exam Solutions 2008 Quate-final Exam - Solutions 1 2008 Quate-Final Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of

More information

GRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players:

GRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players: CHAPT 11 TH GAVITATIONAL FILD (GAVITY) GAVITATIONAL FILD: The goundwok fo Newton s geat contibution to undestanding gavity was laid by thee majos playes: Newton s Law of Gavitation o gavitational and inetial

More information

Chapter 10. Dynamics of Rotational Motion

Chapter 10. Dynamics of Rotational Motion 10.1 Toque Chapte 10 Dynamics of Rotational Motion The wod toque comes fom the Latin wod that means twist. The toque! of a foce F about a point P in space is equal to the coss poduct (also called vecto

More information

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Lecture 19: Effective Potential, and Gravity

Lecture 19: Effective Potential, and Gravity Lectue 19: Effective Potential, and Gavity The expession fo the enegy of cental-foce motion was: 1 ( ) l E = µ + U + µ We can teat this as a one-dimensional poblem if we define an effective potential:

More information

Brown University PHYS 0060 ELECTRIC POTENTIAL

Brown University PHYS 0060 ELECTRIC POTENTIAL INTRODUCTION ELECTRIC POTENTIL You have no doubt noticed that TV sets, light bulbs, and othe electic appliances opeate on 115 V, but electic ovens and clothes dyes usually need 220 V. atteies may be ated

More information

Chapter 25 Electric Potential

Chapter 25 Electric Potential Chapte 5 Electic Potential Can we apply the concept of potential, fist intoduced in mechanics, to electostatic system and find the law of consevation of enegy? We can define an electostatic potential enegy,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 1 Rotational kinematics Angula speed and acceleation Unifom and non-unifom cicula motion Obits and Keple s laws http://www.physics.wayne.edu/~apeto/phy130/ Lightning Reiew

More information

Gauss s Law. Gauss s law and electric flux. Chapter 24. Electric flux. Electric flux. Electric flux. Electric flux

Gauss s Law. Gauss s law and electric flux. Chapter 24. Electric flux. Electric flux. Electric flux. Electric flux Gauss s law and electic flux Gauss s Law Chapte 4 Gauss s law is based on the concept of flux: You can think of the flux though some suface as a measue of the numbe of field lines which pass though that

More information

Working with Gravity: Potential Energy

Working with Gravity: Potential Energy pevious index next Woking with Gavity: Potential negy Michael Fowle 31/1/07 Gavitational Potential negy nea the ath We fist biefly eview the familia subject of gavitational potential enegy nea the ath

More information

Physics 18 Spring 2011 Homework 9 - Solutions Wednesday March 16, 2011

Physics 18 Spring 2011 Homework 9 - Solutions Wednesday March 16, 2011 Physics 18 Sping 2011 Homewok 9 - s Wednesday Mach 16, 2011 Make sue you name is on you homewok, and please box you final answe. Because we will be giving patial cedit, be sue to attempt all the poblems,

More information

A) 2 B) 2 C) 2 2 D) 4 E) 8

A) 2 B) 2 C) 2 2 D) 4 E) 8 Page 1 of 8 CTGavity-1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between

More information

CHAPTER 21 CENTRAL FORCES AND EQUIVALENT POTENTIAL

CHAPTER 21 CENTRAL FORCES AND EQUIVALENT POTENTIAL 1 1.1 Intoduction CHAPTER 1 CENTRA FORCES AND EQUIVAENT POTENTIA Wen a paticle is in obit aound a point unde te influence of a cental attactive foce (i.e. a foce F () wic is diected towads a cental point,

More information

Recap: Newton s Gravitational Law

Recap: Newton s Gravitational Law Recap: Newton s Gavitational Law The gavitational foce between two objects is popotional to thei masses and invesely popotional to the squae of the distance between thei centes. F = G m 1 m (Newtons) F

More information

Newton s Law of Gravity and Orbits of Planets & Satellites

Newton s Law of Gravity and Orbits of Planets & Satellites he Uniesal Law of Gaitation Newton s Law of Gaity and Obits of Planets & Satellites Newton s Uniesal Law of Gaitation states that any two point asses attact each othe with a foce popotional to the poduct

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits.

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.01T Fall Tem 2004 Poblem Set 5: Univesal Law of Gavitation; Cicula Planetay Obits. Available on-line Octobe 1; Due: Octobe 12 at 4:00

More information

Chapter 16 Gyroscopes and Angular Momentum

Chapter 16 Gyroscopes and Angular Momentum Chapte 16 Gyoscopes and Angula Momentum 16.1 Gyoscopes o fa, most of the examples and applications we have consideed concened the otation of igid bodies about a fixed axis, o a moving axis the diection

More information

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics

Resources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics 3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gap-system.og/~histoy/mathematicians/ Newton.html http://www.fg-a.com http://www.clke.com/clipat

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 13 Rotational kinematics Non-unifom cicula motion Obits and Keple s laws http://www.physics.wayne.edu/~apeto/phy130/ Lightning Reiew Last lectue: 1. Rotational kinematics

More information

Sources of the Magnetic Field. Physics 231 Lecture 8-1

Sources of the Magnetic Field. Physics 231 Lecture 8-1 Souces of the Magnetic Field Physics 31 Lectue 8-1 Magnetic Field of a Point Chage Given a point chage, q, we know that it geneates an electic field egadless of whethe it is moving o not f the chage is

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates

Chapter 13. Vector-Valued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates 13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. Vecto-Valued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

14. Gravitation Universal Law of Gravitation (Newton):

14. Gravitation Universal Law of Gravitation (Newton): 14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1

More information

GEOSYNCHRONOUS EARTH SATELLITES

GEOSYNCHRONOUS EARTH SATELLITES GEOSYNCHONOUS EATH SATELLITES Pehaps the most impotant contibution of the wold s space effots ove the last half centuy has been the advent of geosynchonous eath satellites. These devices have made global

More information

Lecture 8.1 Gravitation 1. Gravitational Force

Lecture 8.1 Gravitation 1. Gravitational Force Lectue 8.1 Gavitation 1. Gavitational oce Duing ou discussion of foces we talked about gavitational foce acting on any object nea the eath's suface. We have aleady leaned that this foce povides the sae

More information

3 The Electric Field Due to one or more Point Charges

3 The Electric Field Due to one or more Point Charges Chapte 3 The lectic Field Due to one o moe Point Chages 3 The lectic Field Due to one o moe Point Chages A chaged paticle (a.k.a. a point chage, a.k.a. a souce chage) causes an electic field to exist in

More information

The Schwarzschild Metric

The Schwarzschild Metric The Schwazschild Metic Relativity and Astophysics Lectue 34 Tey Hete Outline Schwazschild metic Spatial pat Time pat Coodinate Fames Fee-float Shell Schwazschild bookkeepe Pinciple of Extemal Aging Consevation

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Gravity. Physics 6B. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Gravity. Physics 6B. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Gavity Physics 6B Pepaed by Vince Zaccone o Capus Leaning Assistance Sevices at UCSB GRAVITY Any pai of objects, anywhee in the univese, feel a utual attaction due to gavity. Thee ae no exceptions if you

More information

The Quantum Mechanical Nature of the Law of Universal Gravitation and the Law of Coulomb s Interactions

The Quantum Mechanical Nature of the Law of Universal Gravitation and the Law of Coulomb s Interactions The Quantum echanical Natue of the Law of Univesal Gavitation and the Law of Coulomb s Inteactions Fayang Qiu Laboatoy of olecula Engineeing, and Laboatoy of Natual Poduct Synthesis, Guangzhou Institute

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature.

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature. Foces of Natue Electic Chages, Foces and Fields Chapte 17 Electic Chage Coulomb s Law Electic Field Electic Field Lines Flux of an Electic Field Physics 111: Analysis of motion - 3 key ideas Pat 1 Foces

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapte 13 Univesal Gavitation CHAPTER OUTLINE 13.1 Newton s Law of Univesal Gavitation 13.2 Measuing the Gavitational Constant 13.3 Fee-Fall Acceleation and the Gavitational Foce 13.4 Keple s Laws and

More information

Net force on a charge due to several other charges: VECTOR SUM of all forces on that charge due to other charges Called Principle of SUPERPOSITON

Net force on a charge due to several other charges: VECTOR SUM of all forces on that charge due to other charges Called Principle of SUPERPOSITON REVIEW: ELECTRIC FORCE, ELECTRIC FIELD, ELECTRIC FIELD LINES, ELECTRIC FLUX, GAUSS S LAW, ELECTRIC POTENTIAL, CONTINUOUS CHARGE DISTRIBUTIONS (ELECTRIC FIELD, ELECTRIC POTENTIAL, GAUSS S LAW), ELECTRIC

More information

Review Module: Cross Product

Review Module: Cross Product MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of hysics 801 Fall 2009 Review Module: Coss oduct We shall now intoduce ou second vecto opeation, called the coss poduct that takes any two vectos and geneates

More information

The Effects of Moons on Saturn s Ring System

The Effects of Moons on Saturn s Ring System The Effects of Moons on Satun s Ring System Kisten Lason Physics Depatment, The College of Wooste, Wooste, Ohio 44691, USA (Dated: May 10, 007) The ing system of Satun is a complex inteaction between numeous

More information

Chapter 24. The Electric Field

Chapter 24. The Electric Field Chapte 4. The lectic Field Physics, 6 th dition Chapte 4. The lectic Field The lectic Field Intensity 4-1. A chage of + C placed at a point P in an electic field epeiences a downwad foce of 8 1-4 N. What

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

PY1052 Problem Set 3 Autumn 2004 Solutions

PY1052 Problem Set 3 Autumn 2004 Solutions PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the

More information

Gauss Law in dielectrics

Gauss Law in dielectrics Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics,

More information

21 Lecture 21: The Schwarzschild Metric and Black Holes

21 Lecture 21: The Schwarzschild Metric and Black Holes PHYS 652: Astophysics 111 21 Lectue 21: The Schwazschild Metic and Black Holes All of physics is eithe impossible o tivial. It is impossible until you undestand it, and then it becomes tivial. Enest Ruthefod

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Chapter 24: Gauss Law

Chapter 24: Gauss Law . Kass P1 Sp Ch 1 Chapte : Gauss Law Gauss Law elates the net amount of electic chage enclosed by a suface to the electic field on that suface. Fo cetain situations Gauss Law povides an easie way to calculate

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK Magnetic Fields Ch.28: The magnetic field: Loentz Foce Law Ch.29: Electomagnetism: Ampee s Law HOMEWORK Read Chaptes 28 and 29 Do Chapte 28 Questions 1, 7 Do Chapte 28 Poblems 3, 15, 33, 47 Today The Magnetic

More information

Chapter 23: Gauss s Law

Chapter 23: Gauss s Law Chapte 3: Gauss s Law Homewok: Read Chapte 3 Questions, 5, 1 Poblems 1, 5, 3 Gauss s Law Gauss s Law is the fist of the fou Maxwell Equations which summaize all of electomagnetic theoy. Gauss s Law gives

More information

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1) Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing

More information

4-7 THE ANGULAR-MOMENTUM PRINCIPLE (continued)

4-7 THE ANGULAR-MOMENTUM PRINCIPLE (continued) 4-7 HE ANGULA-MOMENUM PINCIPLE S-13 But iˆ jˆ kˆ ( z y )ˆ i + ( x z )ˆ j + ( y x )ˆ k x y z y z z x x y x y z Combining these esults, we obtain + + 4-7 HE ANGULA-MOMENUM PINCIPLE (continued) Equation o

More information

Physics 202, Lecture 4. Gauss s Law: Review

Physics 202, Lecture 4. Gauss s Law: Review Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25-Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

PERIHELION ADVANCE OF MERCURY

PERIHELION ADVANCE OF MERCURY PERIHELION ADVANCE OF MERCURY The peihelion of Mecuy, that is, the point in its obit closest to the sun, is obseed to adance 5600 seconds of ac pe centuy. The Eath s pecession, that is, the changing oientation

More information

Two-Dimensional Rotational Kinematics: Angular Momentum

Two-Dimensional Rotational Kinematics: Angular Momentum Two-Dimensional Rotational Kinematics: Angula Momentum Review: Coss Poduct Magnitude: equal to the aea of the paallelogam defined by the two vectos A # B = A B sin! = A(B sin! )=(A sin! )B (0 $! $ " )

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

1. Circular Motion. Explain the terms: Radius vector, Angular displacement (θ) angular velocity ( ) angular acceleration ( )

1. Circular Motion. Explain the terms: Radius vector, Angular displacement (θ) angular velocity ( ) angular acceleration ( ) 1. Cicula Motion SAPTAS HI What is Cicula motion? Give example. Motion of an object along cicumfeence of a cicle is called cicula motion. E.g. Motion of eath ound the sun is appoximately cicula. Electons

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Frames of Reference. Apparent Forces

Frames of Reference. Apparent Forces Fames of Refeence Newton s laws of motion ae valid in a coodinate system that is fixed in space. A coodinate system fixed in space is known as an inetial (o absolute) fame of efeence. A coodinate system

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

9. System of Particles

9. System of Particles 9. System of Paticles Conside a baseball bat being flopped into the ai. Evey pat moves in a diffeent way. Howeve thee is a special point on the bat that moves in a simple paabolic path. This point is called

More information

V (r) = 1 2 kr2. On the same graph, sketch the effective potential in this case for l = 0 and l = 1 and l = 2.

V (r) = 1 2 kr2. On the same graph, sketch the effective potential in this case for l = 0 and l = 1 and l = 2. Poblems:. Peiodic Table. What is the electonic stuctue of Ne, Z =. Make an educated guess about its chemical eactivity. What is the electonic stuctue of Oxygen Z = 8. What is the electonic stuctue of ion,

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential Chapte 3 Electical Potential 3 [SSM] Two identical positively chaged point paticles ae fied on the -ais at a and a. (a) Wite an epession fo the electic potential () as a function of fo all points on the

More information

Schrödinger, 3. 2 y + 2. π y / L 2. )sin(n y. )sin(n z. n x. = 2 π 2 2 L 3 L 2 / 8.

Schrödinger, 3. 2 y + 2. π y / L 2. )sin(n y. )sin(n z. n x. = 2 π 2 2 L 3 L 2 / 8. Schödinge, 3 The 3D infinite squae well: quantum dots, wells, and wies In the peceding discussion of the Schödinge Equation the paticle of inteest was assumed to be moving in the x -diection. Of couse,

More information

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum

rotation -- Conservation of mechanical energy for rotation -- Angular momentum -- Conservation of angular momentum Final Exam Duing class (1-3:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

Derivation of Bohr s Equations for the One-electron Atom. F coulombic

Derivation of Bohr s Equations for the One-electron Atom. F coulombic Deivation of Boh s Equations fo the One-electon Atom Boh set about to devise a model that would explain the obseved line specta of oneelecton atoms, such as H, He +, Li 2+. The model Boh used was based

More information

Uniform Circular Motion. Banked and Unbanked Curves Circular Orbits Nonuniform Circular Motion Tangential and Angular Acceleration Artificial Gravity

Uniform Circular Motion. Banked and Unbanked Curves Circular Orbits Nonuniform Circular Motion Tangential and Angular Acceleration Artificial Gravity Chapte 5: Cicula Motion Unifom Cicula Motion Radial Acceleation Banked and Unbanked Cues Cicula Obits Nonunifom Cicula Motion Tangential and Angula Acceleation Atificial Gaity 1 Unifom Cicula Motion y

More information

Electric & Potential Fields

Electric & Potential Fields Electic & Potential Fields Pupose An electic field suounds any assemblage of chaged objects. To detemine the stength and diection of these fields, it is most convenient to fist map the electic potential

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

DO PHYSICS ONLINE GRAVITATIONAL FIEDS

DO PHYSICS ONLINE GRAVITATIONAL FIEDS DO PHYSICS ONLIN SPAC GRAVITATIONAL FIDS NWTON S LAW OF UNIVRSAL GRAVITATION Newton's Univesal Law of Gavitation states that any two objects exet a gavitational foce of attaction on each othe. The diection

More information

Physics 202, Lecture 4. Today s Topics

Physics 202, Lecture 4. Today s Topics Physics 202, Lectue 4 Today s Topics Moe on Gauss s Law Electic Potential (Ch. 23) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field E Gauss s Law: Review Eid Use it to

More information

Gravity and the figure of the Earth

Gravity and the figure of the Earth Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 47907-1397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

Explosions and collisions obey some surprisingly simple laws that make problem solving easier when comparing the situation before and after an

Explosions and collisions obey some surprisingly simple laws that make problem solving easier when comparing the situation before and after an Chapte 9. Impulse and Momentum Explosions and collisions obey some supisingly simple laws that make poblem solving easie when compaing the situation befoe and afte an inteaction. Chapte Goal: To intoduce

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:

More information

8-1 Newton s Law of Universal Gravitation

8-1 Newton s Law of Universal Gravitation 8-1 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,

More information