Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2


 Bruno Reeves
 2 years ago
 Views:
Transcription
1 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F Gm 1 m ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple, so if paticle 1 is attacted by paticles 2 and 3, the total foce on 1 is F 12 F 13. Cental foces ae consevative, we can define gavitational V F d d potential enegy: Gm 1 m 2 1 m 2 2 Define also gavitational potential (aka gavitational potential enegy Φ 1 pe unit mass) Gm (set m m and eplace m 2 with 1). Likewise, gavitational field g as gavitational foce pe unit mass: g ˆ Gm 2 g Field and potential ae elated in the usual way: Φ
2 2 Gavity Fom A Spheical Shell: Diect Calculation Conside a thin spheical m shell of adius a, mass pe unit aea ρ and total mass 2 4πρa Supeposition pinciple leads to element of mass: m dm ρ2πasinθadθ sinθdθ 2 Contibution to the potential fom annulus is: dφ Gdm R R Gm sinθdθ 2 Integate ove θ fom 0 to π. Change the integation 2 2 vaiable 2 fom θ to R, via R a 2a cosθ hence sinθdθr dr a
3 Gma a a If a integation limits ae a and a; if Φ a they ae and : Gm a 2a adr a Gm fo a fo 3 Gavitational g field by diffeentiation: a Gm ˆ 2 fo a 0 fo 1. Outside the shell, the potential is just that of a point mass at the cente. 2. Inside the shell, the potential is constant and so the foce vanishes.
4 4 Now Using Analogy With Coulomb Foce Apply integal fom of Gauss Law to gavitational case: g ds 4πG ρ m dv S V That is: to Suface integal of nomal component of gavitational field ove given suface S is equal 4πG times the mass contained within suface, with mass obtained by integating mass density ρ m ove volume V contained by S. Fom spheical symmety g gavitational field g must be adial: g ˆ Choose a concentic spheical suface with adius a: mass enclosed g is just shell mass m and Gauss Law says 4π 4πGm 2 g giving a. Gm ˆ fo 2 Likewise, choose concentic spheical suface inside shell: mass enclosed is zeo and g vanish.
5 F 5 Obits: Peliminaies Twobody Poblem: Reduced Mass Expess position i as CM location R plus displacement 1 ρ i R elative 1 to it: 2 R 2 ρ ρ F 1 Change vaiables fom 1 and 2 to R and 2 (ecall F 12 1 F 21, intenal 2 F foces only): m 1 m M 1 2 Set m m 2, thus M R m 1 m 2 i.e., CM velocity is constant. Conside elative displacement, F 1 m F m i.e., µ 1 m 1 and eencounte educed µ mass m 1 1 m 2 2 m m 1 F m m 1 m 2 2
6 µ 6 Fo consevative foce F thee is potential enegy E V, hence total enegy MṘ2 is: µṙ2 V Likewise, when L F is cental, total angula momentum is R Ṙ M µ ṙ Since CM velocity is constant, R choose inetial fame 0 with oigin at R, i.e.: Hence: E L µṙ2 1 ṙ V 2 Rationale: twobody poblem educes to equivalent single body one of mass µ at position elative to fixed cente, acted F V ˆ upon by foce
7 7 2 If m m 1 µ : 1 2 R m 1 m 2 m 1 m m m 1 1 m m m 2 ( fixed Sun and moving Planet appoximation ). Commentay: 1. Appoximation 2 1 valid fo Keple s Laws (m m and m m Sun ). 2. Can ignoe inteactions between Planets in compaison to gavitational attaction PlanetSun. Planet
8 0 8 Twobody Poblem: Conseved Quantities Gavity is cental foce: gavitational attaction between two bodies acts along line joining them. Gavitational foce on mass µ acts in diection L and no toque is exeted about fixed cente: constant Both magnitude and diection of L ae fixed! Since L p µṙ L is pependicula to plane defined by position and momentum of µ. Convesely: and p must always lie in fixed plane of all diections pependicula to L. Can theefoe descibe motion using plane pola coodinates θ, with oigin at fixed cente! k m 2 Radial and angula equations of motion become: θ 2 θ 2 adial equation 1 d equation dt angula F Gavitational foce is µ m 2 k M kˆ GMm wheein m Planet and m Sun.
9 9 Angula equation expesses L consevation of angula momentum: 2 θ m Othe conseved quantity is total enegy: k E 1 2 mṙ2 1 2 m2 θ 2 wheein gavitational V potential k enegy is Commentay: 1. Gavitational potential enegy will help deducing shape of planetay obits!
10 10 Twobody Poblem: Two Poblems Comet 1. Comet appoaching Sun in plane of Eath s obit (assumed cicula) cosses obit at angle of 60 tavelling at 50kms1. 2. Closest appoach to Sun is 110 of Eath s obital adius ( e ). µ m 3. Ignoe attaction of comet to Eath compaed to Sun (i.e., educed mass m Comet ). 4. Aim: compute comet s speed at point of closest appoach. Solution L p Key: angula momentum consevation mv of comet about Sun At point of closest appoach v comet s velocity must be tangential only: minv max v At cossing point: e vsin30 Equate two expessions: min v max 0 1 e v max ev 1 2
11 11 Finally, v max 5v 250kms1
12 G m 27 5 m 12 Cygnus X1 1. Cygnus X1 is a binay system of a supegiant sta of 25 sola masses and a black hole of 10 sola masses, each in a cicula obit about CM with peiod 5 6 days. 2. Aim: Detemine distance between supegiant and black hole, given sola mass kg. Solution Key: 2body equation of motion in pola cood.s: Gm 1 m m ω 2 2 ω 2 m m 2 (m mass, distance, ang. velocity). Whee is RHS 2nd tem coming fom? T Intoduce peiod: 2πω Extact distance: 1 3 m 2 T 2 4π m 3 That is, m
13 13 Keple s Laws State Keple s Laws: The obits of the planets ae ellipses with the Sun at one focus. The adius vecto fom the Sun to a planet sweeps out equal aeas in equal times. 3. The squae of the obital peiod of a planet is popotional to the cube of the semimajo axis of the planet s obit (T 2 a 3 ). Next lectue: thei deivation
14 14 Keple s 2nd Law This is statement of angula momentum consevation unde action of cental gavitational foce. Angula equation 2 θ m of motion gives: L const Leads to: 2 θ da 1 L dt 2 2m const
15 15 Obit equation Ellipses ae specific to invese squae law fo foce, hence fist and thid laws ae specific to invese squae law foce. Study adial equation of motion (k GMm) 2 k θ m! 2 (i) Remove θ using angula momentum consevation, θ 2 Lm get 2 k m (ii) Use elation L 2 m 2 3 d θ dt dθ d L d m dθ 2 (diffeential u equation fo in tems of θ). (iii) Substitute 1 to 2 obtain u obit equation: d 2 u mk dθ L 2
16 16 Keple s 1st Law Solution of obit equation 2 1 is 1 mk L ecosθ l 0 e Fist law: fo 1 is an ellipse, with semi latus ectum L 2mk. Keple s 3d Law Stat with 2nd law fo ate of aea: da L dt 2m T A! Integate ove complete obital peiod T: 2mAL πab is aea of ellipse Substituting fo b in 2 tems of a3 a gives thid law: 4π 2 T GM
17 17 Scaling Agument fo Keple s 3d Law Suppose you found a solution to obit equation 2 2 θ km i.e., and θ as functions of t. Scale adial and vaiables by constants α and β: α t βt In tems of and t, LHS of obit equation is: d dt 2 dt 2 β dθ α α α θ θ β 2 β RHS becomes: k 1 m k α m Compae two sides, new 2 solution 3 in tems of and t povided β α That is, T 2 a 3 1. Need solving obit equation fo popotionality constant. 2. Scaling agument makes clea thid law based on invesesquae foce law.
18 18 Poblem Sheet 6 Section B. Eath s speed in cicula motion about Sun!? Obit equation in pola coodinates: 0 l 1! e That is, e l L mk G 2 m 2 v 2 e 2 e m 2 M Sun Inveting, Finally, GM e v 2 GM v 2 e e Sun 2 e Sun e Eveything can be expessed in tems of v e!
19 19 Enegy Consideations: Effective Potential Gavitational foce is consevative, hence total enegy E of obiting body is conseved: V E 1 2 mṙ2 1 2 m2 θ 2 Angula momentum is also conseved (foce is cental), hence use 2 θ Lm to emove θ 2 : E 1 2 mṙ2 L 2 2m 2 V Fomally, enegy equation of paticle in linea motion unde effective U potential 2 V L 2 2m 2 Effective potential contains centifugal tem, L 22m aising because V angula momentum l is conseved. Replace k and use L 2mk: k Fig U kl 2 2
20 mk 20 U 2 Intepet as a function of fo given E By definition ṙ E U 0, implying 2 kl U k 2 Daw a hoizontal line fo E, lies below it! U Cicula Obit At minimum c l E, is constant at E 2mk L hence obit is cicula and total enegy is k2l 2 22L Elliptic Obit If k2l E 0, motion p is a allowed fo peihelion p E 2 and aphelion a k given by oots of kl2 E Paabolic Obit If 0, thee is always minimum value fo but escape to infinity is just possible. E Hypebolic Obit Fo 0, escape to infinity is possible with finite kinetic enegy at infinite sepaation.
21 21 Obits in a Yukawa Potential Conside V Yukawa potential 0 κ 0 αeκ α Descibes, e.g., attactive foce between nucleons in an atomic nuclei. Neglect quantummechanics and use classical dynamics. Effective potential U becomes 2 L 2 2m αeκ Tajectoies ae moe complicated: Fig.
22 22 U Intepet E as a function of fo given E 0 but geate than U min Rosette obit, i.e., ellipse with otating oientation, aka pecession of peihelion. Typical of small (κ 0) petubations of planetay obits, e.g., due to othe planets (iegulaities in Uanus motion led to discovey of Neptune, 1846). Lage limit Tem L 22m U 2 dominates exponentially falling Yukawa tem, so becomes positive! If U max E 0, two possible obits classically distinct. In quantum mechanics, tunnelling becomes possible (e.g., alpha decay)!
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationGravitation and Kepler s Laws
3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More information2008 QuarterFinal Exam Solutions
2008 Quatefinal Exam  Solutions 1 2008 QuateFinal Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of
More informationmv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !
Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationA) 2 B) 2 C) 2 2 D) 4 E) 8
Page 1 of 8 CTGavity1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationResources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics
3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gapsystem.og/~histoy/mathematicians/ Newton.html http://www.fga.com http://www.clke.com/clipat
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More information14. Gravitation Universal Law of Gravitation (Newton):
14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationPY1052 Problem Set 3 Autumn 2004 Solutions
PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationGauss Law in dielectrics
Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics,
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationSo we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)
Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationPhysics 202, Lecture 4. Gauss s Law: Review
Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential
More informationPhysics 111 Fall 2007 Electrostatic Forces and the Electric Field  Solutions
Physics 111 Fall 007 Electostatic Foces an the Electic Fiel  Solutions 1. Two point chages, 5 µc an 8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the
More informationrotation  Conservation of mechanical energy for rotation  Angular momentum  Conservation of angular momentum
Final Exam Duing class (13:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday
More informationProblems on Force Exerted by a Magnetic Fields from Ch 26 T&M
Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuentcaying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationChapter 26  Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationGravity and the figure of the Earth
Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 479071397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is
More informationGeneral Physics (PHY 2130)
Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationFluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2D, this velocit
More information2  ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1
 ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More informationHour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and
Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon
More informationPhysics 505 Homework No. 5 Solutions S51. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.
Physics 55 Homewok No. 5 s S5. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationChapter 22 The Electric Field II: Continuous Charge Distributions
Chapte The lectic Field II: Continuous Chage Distibutions 1 [M] A unifom line chage that has a linea chage density l equal to.5 nc/m is on the x axis between x and x 5. m. (a) What is its total chage?
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationChapter F. Magnetism. Blinn College  Physics Terry Honan
Chapte F Magnetism Blinn College  Physics 46  Tey Honan F.  Magnetic Dipoles and Magnetic Fields Electomagnetic Duality Thee ae two types of "magnetic chage" o poles, Noth poles N and South poles S.
More informationNotes on Electric Fields of Continuous Charge Distributions
Notes on Electic Fields of Continuous Chage Distibutions Fo discete pointlike electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution
More informationPHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013
PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,
More informationExam I. Spring 2004 Serway & Jewett, Chapters 15. Fill in the bubble for the correct answer on the answer sheet. next to the number.
Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 15 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE
More informationESCAPE VELOCITY EXAMPLES
ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs
More informationToday in Physics 217: multipole expansion
Today in Physics 17: multipole expansion Multipole expansions Electic multipoles and thei moments Monopole and dipole, in detail Quadupole, octupole, Example use of multipole expansion as appoximate solution
More informationTORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION
MISN034 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................
More informationUNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100minute sessions
Name St.No.  Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,
More information(References to) "Introduction to Electrodynamics" by David J. Griffiths 3rd ed., PrenticeHall, 1999. ISBN 013805326X
lectic Fields in Matte page. Capstones in Physics: lectomagnetism. LCTRIC FILDS IN MATTR.. Multipole xpansion A. Multipole expansion of potential B. Dipole moment C. lectic field of dipole D. Dipole in
More informationSolutions to Homework Set #5 Phys2414 Fall 2005
Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated
More informationSAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo
THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, twobody obits, theebody obits, petubations, tides, nongavitational foces,
More informationCHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS
9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and
More informationClassical Lifetime of a Bohr Atom
1 Poblem Classical Lifetime of a Boh Atom James D. Olsen and Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 85 (Mach 7, 5) In the Boh model of the hydogen atom s gound state,
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationF = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a
.1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q q a +q a q F = kq 1q F 1 = k(q)(q) a F 13
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationNewton s Shell Theorem
Newton Shell Theoem Abtact One of the pincipal eaon Iaac Newton wa motivated to invent the Calculu wa to how that in applying hi Law of Univeal Gavitation to pheicallyymmetic maive bodie (like planet,
More informationChapter 2. Electrostatics
Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.
More informationCh. 14: Gravitation (Beta Version 7/01) 14 Gravitation
Ch. 14: Gavitation (Beta Vesion 7/01) 14 Gavitation The Milky Way galaxy is a diskshaped collection of dust, planets, and billions of stas, including ou Sun and sola system. The foce that binds it o any
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationOrbital Motion & Gravity
Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion
More informationGauss s law relates to total electric flux through a closed surface to the total enclosed charge.
Chapte : Gauss s Law Gauss s Law is an altenative fomulation of the elation between an electic field and the souces of that field in tems of electic flu. lectic Flu Φ though an aea ~ Numbe of Field Lines
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More informationIntroduction to Fluid Mechanics
Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body
More informationLesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationChapter 4. Electric Potential
Chapte 4 Electic Potential 4.1 Potential and Potential Enegy... 43 4.2 Electic Potential in a Unifom Field... 47 4.3 Electic Potential due to Point Chages... 48 4.3.1 Potential Enegy in a System of
More informationPhys 2101 Gabriela González. cos. sin. sin
1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe
More informationNuclear models: FermiGas Model Shell Model
Lectue Nuclea mode: FemiGas Model Shell Model WS/: Intoduction to Nuclea and Paticle Physics The basic concept of the Femigas model The theoetical concept of a Femigas may be applied fo systems of weakly
More information2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years.
CHAPTR 7 Gavitation Pactice Poblems 7.1 Planetay Motion and Gavitation pages 171 178 page 174 1. If Ganymede, one of Jupite s moons, has a peiod of days, how many units ae thee in its obital adius? Use
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationThe Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = W/q 0 1V [Volt] =1 Nm/C
Geneal Physics  PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More information6.2 Orbits and Kepler s Laws
Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationSolutions for Physics 1301 Course Review (Problems 10 through 18)
Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationL19 Geomagnetic Field Part I
Intoduction to Geophysics L191 L19 Geomagnetic Field Pat I 1. Intoduction We now stat the last majo topic o this class which is magnetic ields and measuing the magnetic popeties o mateials. As a way o
More informationTheory and measurement
Gavity: Theoy and measuement Reading: Today: p11  Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationChapter 10 Angular Momentum
Chapte 0 Angula Momentum Conceptual Poblems 5 A paticle tavels in a cicula path and point P is at the cente o the cicle. (a) the paticle s linea momentum p is doubled without changing the adius o the cicle,
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More informationChapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
More informationCharges, Coulomb s Law, and Electric Fields
Q&E 1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
More information