CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS


 Jessie Richards
 1 years ago
 Views:
Transcription
1 9. Intoduction CHAPTER 9 THE TWO BODY PROBLEM IN TWO DIMENSIONS In this chapte we show how Keple s laws can be deived fom Newton s laws of motion and gavitation, and consevation of angula momentum, and we deive fomulas fo the enegy and angula momentum in an obit. We show also how to calculate the position of a planet in its obit as a function of time. It would be foolish to embak upon this chapte without familiaity with much of the mateial coveed in Chapte. The discussion hee is limited to two dimensions. The coesponding poblem in thee dimensions, and how to calculate an ephemeis of a planet o comet in the sky, will be teated in Chapte Keple s Laws Keple s law of planetay motion (the fist two announced in 609, the thid in 69) ae as follows:. Evey planet moves aound the Sun in an obit that is an ellipse with the Sun at a focus.. The adius vecto fom Sun to planet sweeps out equal aeas in equal time. 3. The squaes of the peiods of the planets ae popotional to the cubes of thei semi majo axes. The fist law is a consequence of the invese squae law of gavitation. An invese squae law of attaction will actually esult in a path that is a conic section that is, an ellipse, a paabola o a hypebola, although only an ellipse, of couse, is a closed obit. An invese squae law of epulsion (fo example, αpaticles being deflected by gold nuclei in the famous GeigeMasden expeiment) will esult in a hypebolic path. An attactive foce that is diectly popotional to the fist powe of the distance also esults in an elliptical path (a Lissajous ellipse)  fo example a mass whiled at the end of a Hooke s law elastic sping  but in that case the cente of attaction is at the cente of the ellipse, athe than at a focus. We shall deive, in section 9.5, Keple s fist and thid laws fom an assumed invese squae law of attaction. The poblem facing Newton was the opposite: Stating fom Keple s laws, what is the law of attaction govening the motions of the planets? To stat with, he had to invent the diffeential and integal calculus. This is a fa cy fom the popula notion that he discoveed gavity by seeing an apple fall fom a tee. The second law is a consequence of consevation of angula momentum, and would be valid fo any law of attaction (o epulsion) as long as the foce was entiely adial with no tansvese component. We deive it in section 9.3.
2 Although a full teatment of the fist and thid laws awaits section 9.5, the thid law is tivially easy to deive in the case of a cicula obit. Fo example, if we suppose that a planet of mass m is in a cicula obit of adius a aound a Sun of mass M, M being supposed to be so much lage than m that the Sun can be egaded as stationay, we can just equate the poduct of mass and centipetal acceleation of the planet, maω, to the gavitational foce between planet and Sun, GMm/a ; and, with the peiod being given by P π/ω, we immediately obtain the thid law: P 4 π a GM The eade might like to show that, if the mass of the Sun is not so high that the Sun s motion can be neglected, and that planet and Sun move in cicula obits aound thei mutual cente of mass, the peiod is P 4π 3 a. 9.. G( M + m) Hee a is the distance between Sun and planet. Execise. Expess the peiod in tems of a, the adius of the planet s cicula obit aound the cente of mass. 9.3 Keple s Second Law fom Consevation of Angula Momentum δθ δ θ & δθ O FIGURE IX. In figue IX., a paticle of mass m is moving in some sot of tajectoy in which the only foce on it is diected towads o away fom the point O. At some time, its pola coodinates ae (, θ). At a time δt late these coodinates have inceased by δ and δθ.
3 3 Using the fomula one half base times height fo the aea of a tiangle, we see that the aea swept out by the adius vecto is appoximately δ A δθ + δθδ On dividing both sides by δt and taking the limit as δt 0, we see that the ate at which the adius vecto sweeps out aea is A & θ & But the angula momentum is m θ &, and since this is constant, the aeal speed is also constant. The aeal speed, in fact, is half the angula momentum pe unit mass. 9.4 Some Functions of the Masses In section 9.5 I am going to conside the motion of two masses, M and m aound thei mutual cente of mass unde the influence of thei gavitational attaction. I shall pobably want to make use of seveal functions of the masses, which I shall define hee, as follows: Total mass of the system: M M + m Mm Reduced mass m M + m Mass function : 3 M M ( ). M + m m No paticula name: m + m M Mass atio: q m /M Mass faction: µ m /( M + m) The fist fou ae of dimension M; the last two ae dimensionless. When m << M, m m, M M and m + m.
4 4 (Fo those who may be inteested, the fonts I have used ae: M Aial bold m Centuy Gothic M Fench scipt MT) 9.5 Keple s Fist and Thid Laws fom Newton s Law of Gavitation M C ' m FIGURE IX. In figue IX. I illustate two masses (they needn t be point masses as long as they ae spheically symmetic, they act gavitationally as if they wee point masses) evolving about thei common cente of mass C. At some time they ae a distance apat, whee m M +,, 9.5. M + m M + m The equations of motion of m in pola coodinates (with C as pole) ae Radial: & θ & GM / Tansvese: & θ + & θ& Elimination of t between these equations will in pinciple give us the equation, in pola coodinates, of the path. A slightly easie appoach is to wite down expessions fo the angula momentum and the enegy. The angula momentum pe unit mass of m with espect to C is h & θ The speed of m is & + θ &, and the speed of M is m/m times this. Some effot will be equied of the eade to detemine that the total enegy E of the system is E m+ GM µ ( + θ& ). & [It is possible that you may have found this line quite difficult. The eason fo the difficulty is that we ae not making the appoximation of a planet of negligible mass moving aound a stationay Sun, but we ae allowing both bodies to have compaable
5 5 masses and the move aound thei common cente of mass. You might fist like to ty the simple poblem of a planet of negligible mass moving aound a stationay Sun. In that case 0 and and m m, M M and m + m.] It is easy to eliminate the time between equations and Thus you can wite d d dθ d &. θ& and then use equation to eliminate θ &. You should dt dθ dt dθ eventually obtain m h d + GM µ. 4 + E dθ This is the diffeential equation, in pola coodinates, fo the path of m. All that is now equied is to integate it to obtain as a function of θ. At fist, integation looks hopelessly difficult, but it poceeds by making one tentative substitution afte anothe to see if we can t make it look a little easie. Fo example, we have (if we multiply out the squae backet) in the denominato thee times in the equation. Let s at least ty the substitution w /. That will suely make it look a little d d dw dw easie. You will have to use, and afte a little algeba, you dθ dw dθ w dθ should obtain dw dθ + GM µ w m h + E m h G M µ m h This may at fist sight not look like much of an impovement, but the ight hand side is just a lot of constants, and, since it is positive, let s call the ight hand side H. (In case you doubt that the ight hand side is positive, the left hand side cetainly is!) Also, make the obvious substitution u GM µ w, m h + and the equation becomes almost tivial: du dθ + u H, fom which we poceed to
6 6. dθ ± H At this stage you can choose eithe the + o the and you can choose to make the next substitution u H sin φ o u H cos φ; you'll get the same esult in the end. I'll choose the plus sign and I ll let u H cos φ, and I get dθ dφ and hence du u θ φ + ω, 9.5. whee ω is the abitay constant of integation. Now you have to go back and emembe what φ was, what u was and what w was and what H was. Thus θ ω φ, âcos (θ ω) cos ( φ) cos φ u/h...and so on. You aim is to get it in the fom function of θ, and, if you pesist, you should eventually get m+ h /( GM µ ) / Eh m cos( θ ω) 4 G M µ You ll immediately ecognize this fom equation.3.37 o.4.6 o.5.8: l ecos ( θ ω) as being the pola equation to a conic section (ellipse, paabola o hypebola). Equation 9.5. is the equation of the path of the mass m about the cente of mass of the two bodies. The eccenticity is / o, if you now ecall what ae meant by µ and m +, (Check the dimensions of this!) Eh m + e +, G M µ / 3 Eh. ( M + m) e G M m The eccenticity is less than, equal to, o geate than (i.e. the path is an ellipse, a paabola o a hypebola) accoding to whethe the total enegy E is negative, zeo o positive.
7 7 The semi latus ectum of the path of m elative to the cente of mass is of length m+ h l, GM µ o, if you now ecall what ae meant by m + and µ (see equations and 9.3.6), l h. ( M + m) G M (Check the dimensions of this!) We can also wite equations o as h G M l At this point it is useful to ecall what we mean by M and by h. M is the mass function, given by equation 9.4.3: 3 M M ( ). M + m Let us suppose that the total enegy is negative, so that the obits ae elliptical. The two masses ae evolving in simila elliptic obits aound the cente of masses; the semi latus ectum of the obit of m is l, and the semi latus ectum of the obit of M is l, whee l l M m Relative to M the mass m is evolving in a lage but still simila ellipse with semi latus ectum l given by l M + m l M I am now going to define h as the angula momentum pe unit mass of m elative to M. In othe wods, we ae woking in a fame in which M is stationay and m is moving aound M in an elliptic obit of semi latus ectum l. Now angula momentum pe unit mass is popotional to the aeal speed, and theefoe it is popotional to the squae of the semi latus ectum. Thus we have
8 8 h h l l M + M m Combining equations 9.5.8, 9.4.3, 9.5.9, and 9.4. we obtain h GMl, 9.5. whee M is the total mass of the system. Once again: The angula momentum pe unit mass of m elative to the cente of mass is GM l, whee l is the semi latus ectum of the obit of m elative to the cente of mass, and it is M. GMl elative to M, whee l is the semi latus ectum of the obit of m elative to If you wee to stat this analysis with the assumption that m << M, and that M emains stationay, and that the cente of mass coincides with M, you would find that eithe equation o 9.5. educes to h G M l The peiod of the elliptic obit is aea + aeal speed. The aea of an ellipse is π ab πa e, and the aeal speed is half the angula momentum pe unit mass (see section 9.3) ( h GM l GMa e ). Theefoe the peiod is π 3/ P a, o GM P 4 π a 3, GM which is Keple s thid law. We might also, while we ae at it, expess the eccenticity (equation) in tems of h athe than h, using equation We obtain: / Eh e +. ( ) G Mm M + m
9 9 If we now substitute fo h fom equation 9.5., and invet equation 9.5.4, we obtain, fo the enegy of the system Gm( M + m)( e ) E, l o fo the enegy o the system pe unit mass of m: GM( e ) ) E l Hee M is the mass of the system i.e. M+m. E in equation is the total enegy of the system, which includes the kinetic enegy of both masses as well as the mutual potential enegy of the two, while E in equation is meely E/m. That is, it is, as stated, the enegy of the system pe unit mass of m. Equations 9.5. and apply to any conic section. Fo the diffeent types of conic section they can be witten: Fo an ellipse: h GM GMa( e ), E 9.5.7a,b a Fo a paabola: h GM q, E a,b Fo a hypebola: h GM GM a( e ), E a,b a We see that the enegy of an elliptic obit is detemined by the semi majo axis, wheeas the angula momentum is detemined by the semi majo axis and by the eccenticity. Fo a given semi majo axis, the angula momentum is geatest when the obit is cicula. Still efeing the obit of m with espect to M, we can find the speed V of m by noting that GM E, V and, by making use of the bpats of equations , we find the following elations between speed of m in an obit vesus distance fom M:
10 0 Ellipse: V GM. a Paabola: G M V Hypebola: V GM +. a GM Cicle: V a Execise: Show that in an elliptic obit, the speeds at peihelion and aphelion ae, espectively, 9 to GM a + e e and + e aphelion speed is, theefoe,. e GM a e + e and that the atio of peihelion Chapte It might be noted at this point, fom the definition of the astonomical unit (Chapte 8, section 8.), that if distances ae expessed in astonomical units, peiods and time intevals in sideeal yeas, GM (whee M is the mass of the Sun) has the value 4π. The mass of a comet o asteoid is much smalle than the mass of the Sun, so that M M + m j M. Thus, using these units, and to this appoximation, equation becomes meely 3 P a. A Delightful Constuction I am much indebted to an ecoespondent, D Bob Rimme, fo the following delightful constuction. D Rimme found it the ecent book Feynmann s Lost Lectue, The Motion of the Planets Aound the Sun, by D.L. and J.R. Goodstein, and Feynman in his tun ascibed it to a passage (Section IV, Lemma XV) in the Pincipia of Si Isaac Newton. It has no doubt changed slightly with each telling, and I pesent it hee as follows. C is a cicle of adius a (Figue IX.3). F is the cente of the cicle, and F' is a point inside the cicle such that the distance FF' ae, whee e <. Join F and F' to a point Q on the cicle. MP' is the pependicula bisecto of F'Q, meeting FQ at P.
11 The eade is invited to show that, as the point Q moves ound the cicle, the point P descibes an ellipse of eccenticity e, with F and F' as foci, and that MP ' is tangent to the ellipse. Q α P' P M C F F' FIGURE IX.3 Hint: It is vey easy no math equied! Daw the line F'P, and let the lengths of FP and F'P be and ' espectively. It will then become vey obvious that + ' is always equal to a, and hence P descibes an ellipse. By looking at an isosceles tiangle, it will also be clea that the angles F'PM and FPP' ae equal, thus satisfying the focustofocus eflection popety of an ellipse, so that MP' is tangent to the ellipse. But thee is bette to come. You ae asked to find the length QF' in tems of a, e and ', o a, e and. An easy way to do it is as follows. Let QF' p, so that QM p. Fom the ightangled tiangle QMP we see that cos α p / '. Apply the cosine ule to tiangle QF'P to find anothe expession fo cos α, and eliminate cos α fom you two equations. You should quickly aive at And, since ' a, this becomes p a ( e ) ' a '
12 a 3/ p a ( e ) a ( e ). a Now the speed at a point P on an elliptic obit, in which a planet of negligible mass is in obit aound a sta of mass M is given by V GM a Thus we aive at the esult that the length of F'Q (o of F'M) is popotional to the speed of a planet P moving aound the Sun F in an elliptic obit, and of couse the diection MP', being tangent to the ellipse, is the diection of motion of the planet. Figue IX.4 shows the ellipse. Q α P' P M C F F' FIGURE IX.4 It is left to the eade to investigate what happens it F' is outside, o on, the cicle 9.6 Position in an Elliptic Obit The eade might like to efe back to Chapte, section.3, especially the pat that deals with the pola equation to an ellipse, to be eminded of the meanings of the angles θ, ω and v, which, in an astonomical context, ae called, espectively, the agument of
13 3 latitude, the agument of peihelion and the tue anomaly. In this section I shall choose the initial line of pola coodinates to coincide with the majo axis of the ellipse, so that ω is zeo and θ v. The equation to the ellipse is then l ecosv FIGURE IX.5 * v I ll suppose that a planet is at peihelion at time t T, and the aim of this section will be to find v as a function of t. The semi majo axis of the ellipse is a, elated to the semi latus ectum by l a( e ) 9.6. and the peiod is given by P 4π 3 a GM Hee the planet, of mass m is supposed to be in obit aound the Sun of mass M, and the oigin, o pole, of the pola coodinates descibed by equation 9.6. is the Sun, athe than the cente of mass of the system. As usual, M M + m. The adius vecto fom Sun to planet does not move at constant speed (indeed Keple s second law states how it moves), but we can say that, ove a complete obit, it moves at π an aveage angula speed of π/p. The angle ( t T ) P is called the mean anomaly of the planet at a time t T afte peihelion passage. It is geneally denoted by the lette M, which is aleady ovewoked in this chapte fo vaious masses and functions of the masses. Fo mean anomaly, I ll ty Coppeplate Gothic Bold italic font, M. Thus
14 4 M π ( t T ) P The fist step in ou effot to find v as a function of t is to calculate the eccentic anomaly E fom the mean anomaly. This was defined in figue II. of Chapte, and it is epoduced below as figue IX.6. In time t T, the aea swept out by the adius vecto is the aea FBP, and, because the adius vecto sweeps out equal aeas in equal times, this aea is equal to the faction ( t T ) πab ( t T ) / P of the aea of the ellipse. In othe wods, this aea is. Now look at P the aea FBP'. Evey odinate of that aea is equal to b/a times the coesponding ( t T ) πa odinate of FBP, and theefoe the aea of FBP' is. The aea FBP' is also P equal to the secto OP'B minus the tiangle OP'F. The aea of the secto OP'B is E πa Ea, and the aea of the tiangle OP'F is ae a sin E a esin. π E ( t T ) πa P Ea a esin E. P' P O E F v B FIGURE IX.6 Multiply both sides by /a, and ecall equation 9.6.4, and we aive at the equied elation between the mean anomaly M and the eccentic anomaly E:
15 5 M E esin E This is Keple s equation. The fist step, then, is to calculate the mean anomaly M fom equation 9.6.4, and then calculate the eccentic anomaly E fom equation This is a tanscendental equation, so I ll say a wod o two about solving it in a moment, but let s pess on fo the time being. We now have to calculate the tue anomaly v fom the eccentic anomaly. This is done fom the geomety of the ellipse, with no dynamics, and the elation is given in Chapte, equations.3.6 and.3.7c, which ae epoduced hee: cose e cosv. ecose.3.6 Fom tigonometic identities, this can also be witten e sin E sinv,.3.7a e cos E o e sin E tanv.3.7b cos E e + e o tan v tan E. e.3.7c If we can just solve equation (Keple s equation), we shall have done what we want namely, find the tue anomaly as a function of the time. The solution of Keple s equation is in fact vey easy. We wite it as f ( E) E esin E M fom which f '( E) ecos E, and then, by the usual NewtonRaphson pocess: E ( E cos E sin E). e M e cos E The computation is then extaodinaily apid (especially if you stoe cos E and don t calculate it twice!).
16 6 Example: Suppose e 0.95 and that M 45 o. Calculate E. Since the eccenticity is vey lage, one might expect the convegence to be slow, and also E is likely to be vey diffeent fom M, so it is not easy to make a fist guess fo E. You might as well ty 45 o fo a fist guess fo E. You should find that it conveges to ten significant figues in a mee fou iteations. Even if you make a mindlessly stupid fist guess of E 0 o, it conveges to ten significant figues in only nine iteations. Thee ae a few exceptional occasions, hadly eve encounteed in pactice, and only fo eccenticities geate than about 0.99, when the NewtonRaphson method will not convege when you make you fist guess fo E equal to M. Chales and Tatum (CelestialMechanics and Dynamical Astonomy 69, 357 (998)) have shown that the NewtonRaphson method will always convege if you make you fist guess E π. Nevetheless, the situations whee NewtonRaphson will not convege with a fist guess of E M ae unlikely to be encounteed except in almost paabolic obits, and usually a fist guess of E M is faste than a fist guess of E π. Τhe chaotic behaviou of Keple s equation on these exceptional occasions is discussed in the above pape and also by Stumpf (Cel. Mechs. and Dyn. Aston. 74, 95 (999)) and efeences theein. Execise: Show that a good fist guess fo E is E M + x( x ), esin M whee x ecosm Execise: Wite a compute pogam in the language of you choice fo solving Keple s equation. The pogam should accept e and M as input, and etun E as output. The NewtonRaphson iteation should be teminated when ( Enew Eold ) / Eold is less than some small faction to be detemined by you. Execise: An asteoid is moving in an elliptic obit of semi majo axis 3 AU and eccenticity 0.6. It is at peihelion at time 0. Calculate its distance fom the Sun and its tue anomaly one sideeal yea late. You may take the mass of the asteoid and the mass of Eath to be negligible compaed with the mass of the Sun. In that case, equation is meely P π G M 4 3 a, whee M is the mass of the Sun, and, if P is expessed in sideeal yeas and a in AU, this becomes just P a 3. Thus you can immediately calculate the peiod in yeas and hence, fom equation you can find the mean anomaly. Fom thee, you have to
17 7 solve Keple s equation to get the eccentic anomaly, and the tue anomaly fom equation.3.6 o 7. Just make sue that you get the quadant ight. Execise: Wite a compute pogam that will give you the tue anomaly and heliocentic distance as a function of time since peihelion passage fo an asteoid whose elliptic obit is chaacteized by a, e. Run the pogam fo the asteoid of the pevious execise fo evey day fo a complete peiod. You ae now making some eal pogess towads ephemeis computation! 9.7 Position in a Paabolic Obit When a longpeiod comet comes in fom the Oot belt, it typically comes in on a highly eccentic obit, of which we can obseve only a vey shot ac. Consequently, it is often impossible to detemine the peiod o semi majo axis with any degee of eliability o to distinguish the obit fom a paabola. Thee is theefoe fequent occasion to have to undestand the dynamics of a paabolic obit. We have no mean o eccentic anomalies. We must ty to get v diectly as a function of t without going though these intemediaies. The angula momentum pe unit mass is given by equation 9.5.8a: h v& GM q, 9.7. whee v is the tue anomaly and q is the peihelion distance. But the equation to the paabola (see equation.4.6) is q, cosv o (see section 3.8 of Chapte 3), by making use of the identity u, cosv whee u tan v, + u 9.7.3a,b the equation to the paabola can be witten q sec v Thus, by substitution of equation into 9.7. and integating, we obtain
18 8 v ( ) d G q v t q sec 4 v M dt T 0 Upon integation (dop me an if you get stuck!) this becomes u + GM ( t ). 3/ q 3 3 u T This equation, when solved fo u (which, emembe, is tan v ), gives us v as a function of t. As explained at the end of section 9.5, if q is in astonomical units and t T is in sideeal yeas, and if the mass of the comet is negligible compaed with the mass of the Sun, this becomes u ( t T ) 3 π + 3 u / q 3 π 8( t T ) o 3u + u C 0, whee C a,b 3/ q Thee is a choice of methods available fo solving equation 9.7.8, so it might be that the only difficulty is to decide which of the seveal methods you want to use! The constant C is sometimes called the paabolic mean anomaly. 3 Method : Just solve it by NewtonRaphson iteation. Thus f 3u + u 3 f ' 3( + u ), so that the NewtonRaphson u u f / f ' becomes C 0 and u 3 u + C, ( + u ) which should convege quickly. Fo economy, calculate u only once pe iteation. Method : Let u x / x and C c / c a,b Then equation 9.7.8a becomes x c / Thus, as soon as c is found, x, u and v can be calculated fom equations 9.7., 0a, and 3a o b, and the poblem is finished as soon as c is found! So, how do we find c? We have to solve equation 9.7.0b.
19 9 Method a: Equation 9.7.0b can be witten as a quadatic equation: c Cc Just be caeful that you choose the coect oot; you should end with v having the same sign as t T. Method b: Let C cot φ and calculate φ. But by a tigonometic identity, cot φ cot φ / cot φ so that, by compaison with equation 9.6.0b, we see that c cot φ Again, just make sue that you choose the ight quadant in calculating φ fom equation 9.7.3, so as to be sue that you end with v having the same sign as t T. Method 3. I am told that equation has the exact analytic solution 3 3 u w w, whee w C C I haven t veified this fo myself, so you might like to have a go. Example: Solve the equation 3u + u 3 3.).6 by all fou methods. (Methods, a, b and Example: A comet is moving in an elliptic obit with peihelion distance 0.9 AU. Calculate the tue anomaly and heliocentic distance 0 days afte peihelion passage. (A sideeal yea is days.)
20 0 Execise: Wite a compute pogam that will etun the tue and anomaly as a function of time, given the peihelion distance of a paabolic obit. Test it with you answe fo the pevious example. 9.8 Position in a Hypebolic Obit If an intestella comet wee to encounte the sola system fom intestella space, it would pusue a hypebolic obit aound the Sun. To date, no such comet with an oiginal hypebolic obit has been found, although thee is no paticula eason why we might not find one some night. Howeve, a comet with a neapaabolic obit fom the Oot belt may appoach Jupite on its way in to the inne sola system, and its obit may be petubed into a hypebolic obit. This will esult in its ultimate loss fom the sola system. Seveal examples of such cometay obits ae known. Thee is evidence, fom ada studies of meteos, of meteooidal dust encounteing Eath at speeds that ae hypebolic with espect to the Sun, although whethe these ae on obits that ae oiginally hypebolic (and ae theefoe fom intestella space) o whethe they ae of sola system oigin and have been petubed by Jupite into hypebolic obits is not known. I must admit to not having actually caied out a calculation fo a hypebolic obit, but I think we can just poceed in a manne simila to an ellipse o a paabola. Thus we can stat with the angula momentum pe unit mass: whee h v& GMl, 9.8. l ecosv and l a( e ) If we use astonomical units fo distance and mass, we obtain v 0 dv π ( + ecosv ) a 3/ ( e ) 3/ t T dt Hee I am using astonomical units of distance and mass and have theefoe substituted 4π fo G M. I m going to wite this as
21 v dv ( + cosv) 0 π( t T ) 3/ a ( e ) 3/ ( e Q ) 3/, π( t T ) whee Q. Now we have to integate this. 3/ a Method. Guided by the elliptical case, but beaing in mind that we ae now dealing with a hypebola, I m going to ty the substitution If you ty this, I think you ll end up with This is just the analogy of Keple s equation. e cosh E cosv ecosh E e sinh E E Q The pocedue, then, would be to calculate Q fom equation Then calculate E fom equation This could be done, fo example, by a NewtonRaphson iteation in quite the same way as was done fo Keple s equation in the elliptic case, the iteation now taking the fom ( E cosh E sinh E). Q + e E ecosh E Then v is found fom equation 9.8.6, and the heliocentic distance is found fom the pola equation to a hypebola: a( e ) ecosv Method. Method should wok all ight, but it has the disadvantage that you may not be as familia with sinh and cosh as you ae with sin and cos, o thee may not be a sinh o cosh button you calculato. I believe thee ae SINH and COSH functions in FORTRAN, and thee may well be in othe computing languages. Ty it and see. But maybe we d like to ty to avoid hypebolic functions, so let s ty the billiant substitution
22 u( u e) + cosv u( eu ) + e You may have noticed, when you wee leaning calculus, that often the pofesso would make a billiant substitution, and you could see that it woked, but you could neve undestand what made the pofesso think of the substitution. I don t want to tell you what made me think of this substitution, because, when I do, you ll see that it isn t eally vey billiant at all. I emembeed that and then I let e E u, so E E ( e + ) cosh E e 9.8. cosh E ( u + / / u ), 9.8. and I just substituted this into equation and I got equation Now if you put the expession fo cos v into equation 9.8.5, you eventually, afte a few lines, get something that you can integate. Please do wok though it. In the end, on integation of equation 9.8.5, you should get e ( u / u ) lnu Q You aleady know fom Chapte how to solve the equation f (x) 0, so thee is no difficulty in solving equation fo u. NewtonRaphson iteation esults in [ e u( Q ln u) ], u u u( eu ) + and this should convege in the usual apid fashion. So the pocedue in method is to calculate Q fom equation 9.8.5, then calculate u fom equation 9.8.4, and finally v fom equation all vey staightfowad. Execise: Set youself a poblem to make sue that you can cay though the calculation. Then wite a compute pogam that will geneate v and as a function of t. 9.9 Obital Elements and Velocity Vecto In two dimensions, an obit can be completely specified by fou obital elements. Thee of them give the size, shape and oientation of the obit. They ae, espectively, a, e and ω. We ae familia with the semi majo axis a and the eccenticity e. The angle ω, the agument of peihelion, was illustated in figue II.9, which is epoduced hee as figue IX.7. It is the angle that the majo axis makes with the initial line of the pola
23 3 coodinates. Figue II.9 eminds us of the elation between the agument of peihelion ω, the agument of latitude θ and the tue anomaly v. We emind ouselves hee of the equation to a conic section l l + e cosv + e cos( θ ω), 9.9. whee the semi latus ectum l is a( e ) fo an ellipse, and a(e ) fo a hypebola. Fo a hypebola, the paamete a is usually called the semi tansvese axis. Fo a paabola, the size is geneally descibed by the peihelion distance q, and l q. The fouth element is needed to give infomation about whee the planet is in its obit at a paticula time. Usually this is T, the time of peihelion passage. In the case of a cicula obit this cannot be used. One could instead give the time when θ 0, o the value of θ at some specified time. θ v + ω v ω FIGURE IX.7 Refe now to figue IX.8. We ll suppose that at some time t we know the coodinates (x, y) o (, θ) of the planet, and also the velocity that is to say the speed and diection, o the x and y o the adial and tansvese components of the velocity. That is, we know fou quantities. The subsequent path of the planet is then detemined. In othe wods, given the fou quantities (two components of the position vecto and two components of the velocity vecto), we should be able to detemine the fou elements a, e, ω and T. Let us ty.
2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationLesson 7 Gauss s Law and Electric Fields
Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationHour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and
Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationContinuous Compounding and Annualization
Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationCHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL
CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationOrbital Motion & Gravity
Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationMultiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationINITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS
INITIAL MARGIN CALCULATION ON DERIVATIVE MARKETS OPTION VALUATION FORMULAS Vesion:.0 Date: June 0 Disclaime This document is solely intended as infomation fo cleaing membes and othes who ae inteested in
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationStructure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationSAMPLE CHAPTERS UNESCO EOLSS THE MOTION OF CELESTIAL BODIES. Kaare Aksnes Institute of Theoretical Astrophysics University of Oslo
THE MOTION OF CELESTIAL BODIES Kaae Aksnes Institute of Theoetical Astophysics Univesity of Oslo Keywods: celestial mechanics, twobody obits, theebody obits, petubations, tides, nongavitational foces,
More informationGravitation and Kepler s Laws
3 Gavitation and Keple s Laws In this chapte we will ecall the law of univesal gavitation and will then deive the esult that a spheically symmetic object acts gavitationally like a point mass at its cente
More information4.1  Trigonometric Functions of Acute Angles
4.1  Tigonometic Functions of cute ngles a is a halfline that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one
More informationQuestions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing
M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow
More informationTrigonometry in the Cartesian Plane
Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom
More informationPhysics 505 Homework No. 5 Solutions S51. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.
Physics 55 Homewok No. 5 s S5. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm
More informationValuation of Floating Rate Bonds 1
Valuation of Floating Rate onds 1 Joge uz Lopez us 316: Deivative Secuities his note explains how to value plain vanilla floating ate bonds. he pupose of this note is to link the concepts that you leaned
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationIlona V. Tregub, ScD., Professor
Investment Potfolio Fomation fo the Pension Fund of Russia Ilona V. egub, ScD., Pofesso Mathematical Modeling of Economic Pocesses Depatment he Financial Univesity unde the Govenment of the Russian Fedeation
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More informationThe LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.
Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More informationConcept and Experiences on using a Wikibased System for Softwarerelated Seminar Papers
Concept and Expeiences on using a Wikibased System fo Softwaeelated Semina Papes Dominik Fanke and Stefan Kowalewski RWTH Aachen Univesity, 52074 Aachen, Gemany, {fanke, kowalewski}@embedded.wthaachen.de,
More information10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: F(t)
More information92.131 Calculus 1 Optimization Problems
9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle
More informationAN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM
AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,
More informationPAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII  SPETO  1995. pod patronatem. Summary
PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8  TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationProblems on Force Exerted by a Magnetic Fields from Ch 26 T&M
Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuentcaying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to
More informationPower and Sample Size Calculations for the 2Sample ZStatistic
Powe and Sample Size Calculations fo the Sample ZStatistic James H. Steige ovembe 4, 004 Topics fo this Module. Reviewing Results fo the Sample Z (a) Powe and Sample Size in Tems of a oncentality Paamete.
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationConverting knowledge Into Practice
Conveting knowledge Into Pactice Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 2 0 1 0 C o p y i g h t s V l a d i m i R i b a k o v 1 Disclaime and Risk Wanings Tading
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More information9.5 Amortization. Objectives
9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!
More informationPhysics 111 Fall 2007 Electrostatic Forces and the Electric Field  Solutions
Physics 111 Fall 007 Electostatic Foces an the Electic Fiel  Solutions 1. Two point chages, 5 µc an 8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationCHAT PreCalculus Section 10.7. Polar Coordinates
CHAT PeCalculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More informationMULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION
MULTIPLE SOLUTIONS OF THE PRESCRIBED MEAN CURVATURE EQUATION K.C. CHANG AND TAN ZHANG In memoy of Pofesso S.S. Chen Abstact. We combine heat flow method with Mose theoy, supe and subsolution method with
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More information1.4 Phase Line and Bifurcation Diag
Dynamical Systems: Pat 2 2 Bifucation Theoy In pactical applications that involve diffeential equations it vey often happens that the diffeential equation contains paametes and the value of these paametes
More informationDefine What Type of Trader Are you?
Define What Type of Tade Ae you? Boke Nightmae srs Tend Ride By Vladimi Ribakov Ceato of Pips Caie 20 of June 2010 1 Disclaime and Risk Wanings Tading any financial maket involves isk. The content of this
More informationrotation  Conservation of mechanical energy for rotation  Angular momentum  Conservation of angular momentum
Final Exam Duing class (13:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday
More informationIntroduction to Electric Potential
Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationChapter 4: Fluid Kinematics
Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian
More informationCONCEPT OF TIME AND VALUE OFMONEY. Simple and Compound interest
CONCEPT OF TIME AND VALUE OFMONEY Simple and Compound inteest What is the futue value of shs 10,000 invested today to ean an inteest of 12% pe annum inteest payable fo 10 yeas and is compounded; a. Annually
More informationPHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013
PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationUNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100minute sessions
Name St.No.  Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,
More informationStrength Analysis and Optimization Design about the key parts of the Robot
Intenational Jounal of Reseach in Engineeing and Science (IJRES) ISSN (Online): 23209364, ISSN (Pint): 23209356 www.ijes.og Volume 3 Issue 3 ǁ Mach 2015 ǁ PP.2529 Stength Analysis and Optimization Design
More information