Worked Examples. v max =?

Size: px
Start display at page:

Download "Worked Examples. v max =?"

Transcription

1 Exaple iction + Unifo Cicula Motion Cicula Hill A ca i diing oe a ei-cicula hill of adiu. What i the fatet the ca can die oe the top of the hill without it tie lifting off of the gound? ax? (1) Copehend the Poble If the ca die oe a cicula hill, it tael in a cicle. Appaentl, if the ca tael too fat it cannot eain on a cicula path that follow the hill. One o oe of the foce eponible fo the ca taing on the cicle ut be liited in oe wa. Let ue a fee bod diaga to ee if we can deteine what foce ae eponible fo the ca cicula otion. N Gound on Ca W Eath on Ca he net foce on the ca ut point to the cente of the cicle (becaue it in cicula otion). A the ca tael fate and fate, the hill need to poide le and le noal foce to keep the ca fo penetating it. Eentuall the ca could be going fat enough that the noal foce i zeo if it went an fate that thi citical peed, the weight won t be enough to keep the ca going in a cicle coinciding with the hill and the wheel will lift off of the gound. Since the ca tael in a cicle, we ll alot cetainl ue the elationhip between centipetal acceleation and tangential peed. () epeent the Poble in oal e (Decibe the Phic) We hae been gien o identified the following quantitie: the a of the ca the peed of the ca the adiu of the cicle the ca' following (i.e. the hill' adiu) agnitude N N he noal foce fo the gound on the ca diection up agnitude g W he weight fo the eath on the ca diection down

2 Exaple iction + Unifo Cicula Motion We alo know the following elationhip that ight be ueful: Ma (Newton' Second Law) a Ca ca net towad cicle cente (Ca' in unifo cicula otion) (3) Plan the Solution We can appl Newton Second Law to the ca at the top of the hill to elate the foce on the ca to it acceleation. We know the fo of the ca acceleation ince it in cicula otion. We can et the noal foce equal to zeo; thi hould happen when the ca i going a fat a it can and till ta on the cicle. (4) Execute the Solution We ll ue the fee bod diaga to wite Newton Second Law fo the ca at the top of the hill. We chooe downwad a poitie becaue we know that the ca i acceleating downwad (i.e. towad the cente of the cicle) Appl Newton Second Law in the -diection. Cicula otion iplie a / towad the cente of the cicle. At the axiu peed, the noal foce will be zeo. he entie downwad foce towad the cente i upplied b the ca weight alone. net, N W Ca ( N ) a + Ca + g ( 0) N Gound on Ca W ax Eath on Ca + g g ax (5) Intepet and Ealuate the Solution A a quick check, let a the hill had a adiu of aound 100. he fatet peed the ca 1 k 3600 k could go would then be ( )( 100 ) (about 70 ile pe h h hou). hi ee at leat eaonable fo the peed of a ca lifting off the top of a teep hill.

3 Exaple iction + Unifo Cicula Motion Plagound Slipping Soe childen ae plaing with a lage ock on the plagound. he keep putting it on a e-go-ound pinning at 1 eolution ee econd. he e ting to find out how fa awa fo the cente the can place the ock befoe it lide to the outide. You look up the coefficient of tatic fiction fo ock on etal and find it aound 0.3. What i the fathet ditance fo the cente of the e-go-ound that the ock can it and till not lide? (1) Copehend the Poble Let tat with a ketch to ee what going on. he ock i itting on a e-go-ound (a flat, pinning dik) pinning at a known ate. 1 e ec op View Side View We know that the ock i taelling in a cicle. he quetion i how lage of a adiu can the cicle hae befoe the ock ut lip? Since it taelling in a cicle at contant peed, we know that the acceleation of the ock i elated to it elocit (a /). In addition, we know how long it take the ock to ake a coplete eolution ( econd). We need to know what foce poduce the ock acceleation towad the cente of the cicle. Let figue thi out b dawing the fee bod diaga fo the ock (we ll ue the ide iew ). f N loo on ock loo on ock W Eath on ock hee ae thee foce on the ock, the noal foce fo the floo of the e-go-ound, the weight fo the eath, and the tatic fiction foce fo the floo of the e-go-ound. Since the tatic fiction i the onl foce in the hoizontal diection, we know it ut point towad the cente of the cicle in ode to pull the ock towad the cente (a deanded b the ock cente-pointing acceleation). he tatic fiction foce ha a axiu tength it can poide, gien b f tatic, ax µ N. A we oe the ock outwad, the tatic fiction foce equied to keep it going aound the cicle inceae. hee will appaentl be a axiu adiu at which the tatic fiction foce hit thi axiu alue. If the ock i placed an fathe awa, it will lip.

4 Exaple iction + Unifo Cicula Motion () epeent the Poble in oal e (Decibe the Phic) We ae gien o hae identified the following quantitie a ueful: the tie it take the e-go-ound to ake one eolution the a of the ock agnitude N N the noal foce fo the floo on the ock diection up agnitude g W the weight foce fo the eath on the ock diection down agnitude the tatic fictional foce fo the floo on the ock diection towad cente the ditance fo the cicle cente to the ock (the adiu) We alo hae the following elationhip that ight be ipotant. Ma Newton' Second Law f net tatic, ax a c µ N tatic fiction axiu centipetal acceleation (3) Plan the Solution Since it in unifo cicula otion, we know the ock acceleation in te of it elocit and adiu. We can ue Newton Second Law to elate thi acceleation to the foce on the ock. B ineting the axiu alue fo the tatic fictional foce, we hould be able to find the laget adiu at which the ock won t lide. (4) Execute the Solution Daw the fee bod diaga fo the ock. We chooe towad the cente of the cicle a poitie, a thi i the diection the ock actuall acceleate. Appl Newton Second Law in the x- diection. Since the ock i in unifo cicula otion, we know how it acceleation i elated to and. f N net, x a f + N + W a x, x x x x W x

5 Exaple iction + Unifo Cicula Motion Since we don t know the ock elocit, we need to wite it in te of the adiu and the eolution tie (a.k.a. the peiod). he ock tael one cicufeence in tie. eplace the elocit in ou Newton Second Law x-equation with thi expeion fo. Now we hae the adiu in te of thing we know (peiod and a ) and the tatic fiction foce. he axiu adiu i whee the tatic fiction foce i at it axiu. We need the noal foce fo the floo on the ock. We can find thi fo appling Newton Second Law in the -diection. We know the acceleation of the ock in the -diection i zeo. We can inet thi noal foce alue into the expeion fo the axiu adiu to get ou anwe. (Note that the a cancel out) Now we can inet the nueical alue fo the poble tateent. ditance π tie π f ax f, ax ( µ N ) net, f + N + W ( 0), ( g ) a 0 + N + 0 ax ax µ µ g ( ) ( )( ) (. ) N g ( g ) c ax c he ock will lide if it i placed oe than 30 c (about 1 ft) fo the cente of the e-goound. If we place the ock anwhee cloe to the cente than thi, it will not lide on the e-goound. he ock would then jut tael aound the cente in a cicle with the et of the ego-ound.

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Incline and Friction Examples

Incline and Friction Examples Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC

More information

Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by:

Chapter 13 Fluids. Use the definition of density to express the mass of the gold sphere: The mass of the copper sphere is given by: Chapte Fluid 5 One phee i ade of gold and ha a adiu and anothe phee i ade of coppe and ha a adiu. f the phee have equal a, hat i the atio of the adii, /? ictue the oble We can ue the definition of denity

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

10. Collisions. Before During After

10. Collisions. Before During After 10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: -F(t)

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

8.4. Motion of Charged Particles in Magnetic Fields

8.4. Motion of Charged Particles in Magnetic Fields Motion of Chaged Paticles in Magnetic Fields Atos and olecules ae paticles that ae the building blocks of ou uniese. How do scientists study the natue of these sall paticles? The ass spectoete shown in

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Parameter Identification of DC Motors

Parameter Identification of DC Motors Paamete dentification of DC Moto utho: Dipl.-ng. ngo öllmecke dvantage of the Paamete dentification Method Saving time and money in the teting poce: no anical coupling neceay Full infomation: Entie chaacteitic

More information

Standardized Coefficients

Standardized Coefficients Standadized Coefficient Ta. How do ou decide which of the X ae mot impotant fo detemining? In thi handout, we dicu one poile (and contoveial) anwe to thi quetion - the tandadized egeion coefficient. Fomula.

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

AP Physics Gravity and Circular Motion

AP Physics Gravity and Circular Motion AP Phyic Gity nd icul Motion Newton theoy i ey iple. Gity i foce of ttction between ny two object tht he. Two object itting on dektop ttct ech othe with foce tht we cll gity. They don t go flying togethe

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Chapter 5 Additional Applications of Newton s Laws

Chapter 5 Additional Applications of Newton s Laws Chapte 5 Additioal Applicatio of Newto Law Coceptual Poble [SSM] Vaiou object lie o the bed of a tuc that i oi alo a taiht hoizotal oad. If the tuc aduall peed up, what foce act o the object to caue the

More information

Chapter 11 Relative Velocity

Chapter 11 Relative Velocity Chapter 11 Relatie Velocity 11 Relatie Velocity Vector add like ector, not like nuber. Except in that ery pecial cae in which the ector you are adding lie along one and the ae line, you can t jut add the

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets) Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

More information

PHYSICS 151 Notes for Online Lecture #11

PHYSICS 151 Notes for Online Lecture #11 PHYSICS 151 ote for Online Lecture #11 A free-bod diagra i a wa to repreent all of the force that act on a bod. A free-bod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling

More information

9.5 Amortization. Objectives

9.5 Amortization. Objectives 9.5 Aotization Objectives 1. Calculate the payent to pay off an aotized loan. 2. Constuct an aotization schedule. 3. Find the pesent value of an annuity. 4. Calculate the unpaid balance on a loan. Congatulations!

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative

More information

Solutions to Problems: Chapter 7

Solutions to Problems: Chapter 7 Solution to Poblem: Chapte 7 P7-1. P7-2. P7-3. P7-4. Authoized and available hae LG 2; Baic a. Maximum hae available fo ale Authoized hae 2,000,000 Le: Shae outtanding 1,400,000 Available hae 600,000 b.

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

4.4 VOLUME AND SURFACE AREA

4.4 VOLUME AND SURFACE AREA 160 CHAPTER 4 Geomety 4.4 VOLUME AND SURFACE AREA Textbook Refeence Section 8.4 CLAST OBJECTIVES Calculate volume and uface aea Infe fomula fo meauing geometic figue Select applicable fomula fo computing

More information

1D STEADY STATE HEAT

1D STEADY STATE HEAT D SEADY SAE HEA CONDUCION () Pabal alukda Aociate Pofeo Depatment of Mecanical Engineeing II Deli E-mail: pabal@mec.iitd.ac.in Palukda/Mec-IID emal Contact eitance empeatue ditibution and eat flow line

More information

MECH 2110 - Statics & Dynamics

MECH 2110 - Statics & Dynamics Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11 - Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic - Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions Peason Physics Level 30 Unit VI Foces and Fields: hapte 10 Solutions Student Book page 518 oncept heck 1. It is easie fo ebonite to eove electons fo fu than fo silk.. Ebonite acquies a negative chage when

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.

Gravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C. Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

6. Friction, Experiment and Theory

6. Friction, Experiment and Theory 6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal

More information

Physics Core Topic 9.2 Space

Physics Core Topic 9.2 Space Physics 9. Space Syllabus Notes Physics Coe Topic 9. Space Summay of Contextual Outline Scientists daw on othe aeas of science to deelop iable spacecaft Launch, e enty and landing ae dangeous Huge foces

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Skills Needed for Success in Calculus 1

Skills Needed for Success in Calculus 1 Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell

More information

(d) False. The orbital period of a planet is independent of the planet s mass.

(d) False. The orbital period of a planet is independent of the planet s mass. Chapte Gaity Conceptual Pobles [SS] ue o false: (a) o Keple s law of equal aeas to be alid, the foce of aity ust ay inesely with the squae of the distance between a ien planet and the Sun. (b) he planet

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

Doppler Effect. wavelength

Doppler Effect. wavelength Dopple Eet The Dopple Eet i the hange in the obeed equeny o a oue due to the elatie motion between the oue and the eeie. The elatie motion that aet the obeed equeny i only the motion in the Line-O-Sight

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

AP Physics B 2012 Free-Response Questions

AP Physics B 2012 Free-Response Questions AP Phyic B 01 Fee-Repone Quetion About the College Boad The College Boad i a miion-diven not-fo-pofit oganization that connect tudent to college ucce and oppotunity. Founded in 1900, the College Boad wa

More information

Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis

Effect of Unemployment Insurance Tax On Wages and Employment: A Partial Equilibrium Analysis Effect of Unemployment nuance Tax On Wage and Employment: atial Equilibium nalyi Deegha Raj dhikai, Oklahoma Employment Secuity Commiion ynn Gay, Oklahoma Employment Secuity Commiion Jackie Bun, Texa &

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track

L-9 Conservation of Energy, Friction and Circular Motion. Kinetic energy. conservation of energy. Potential energy. Up and down the track L-9 Conseration of Energy, Friction and Circular Motion Kinetic energy, potential energy and conseration of energy What is friction and what determines how big it is? Friction is what keeps our cars moing

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Motion Control Formulas

Motion Control Formulas ems: A = acceleation ate {in/sec } C = caiage thust foce {oz} D = deceleation ate {in/sec } d = lead of scew {in/ev} e = lead scew efficiency ball scew 90% F = total fictional foce {oz} GR = gea atio J

More information

AP Physics C: Mechanics 2005 Free-Response Questions

AP Physics C: Mechanics 2005 Free-Response Questions AP Phyic C: Mechanic 00 ee-repone Quetion he College Boa: Connecting Stuent to College Succe he College Boa i a not-fo-pofit membehip aociation whoe miion i to connect tuent to college ucce an oppotunity.

More information

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t

v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement

More information

Chapter 10 Velocity, Acceleration, and Calculus

Chapter 10 Velocity, Acceleration, and Calculus Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w

Quantity Formula Meaning of variables. 5 C 1 32 F 5 degrees Fahrenheit, 1 bh A 5 area, b 5 base, h 5 height. P 5 2l 1 2w 1.4 Rewite Fomulas and Equations Befoe You solved equations. Now You will ewite and evaluate fomulas and equations. Why? So you can apply geometic fomulas, as in Ex. 36. Key Vocabulay fomula solve fo a

More information

The Essence of the Electromagnetic Wave is Not Energy

The Essence of the Electromagnetic Wave is Not Energy The Eence of the Electomagnetic Wave i Not Enegy Zeng Qingping Ai Foce Rada Academy Pofeo cienceum@yahoocn Abtact The cutomay opinion i: electic ave o light ave i enegy, TYang expeiment i the intefeence

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

Lecture 14: Transformers. Ideal Transformers

Lecture 14: Transformers. Ideal Transformers White, EE 3 Lecture 14 Page 1 of 9 Lecture 14: Tranforer. deal Tranforer n general, a tranforer i a ultiort ac device that convert voltage, current and iedance fro one value to another. Thi device only

More information

12.4 Problems. Excerpt from "Introduction to Geometry" 2014 AoPS Inc. Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES

12.4 Problems. Excerpt from Introduction to Geometry 2014 AoPS Inc.  Copyrighted Material CHAPTER 12. CIRCLES AND ANGLES HTER 1. IRLES N NGLES Excerpt from "Introduction to Geometry" 014 os Inc. onider the circle with diameter O. all thi circle. Why mut hit O in at leat two di erent point? (b) Why i it impoible for to hit

More information

DSC Baseline Improvements Obtained by a New Heat Flow Measurement Technique

DSC Baseline Improvements Obtained by a New Heat Flow Measurement Technique DS Baeline Impovement Obtained by a New Heat Flow Meauement Technique obet L. Danley, Pete A. aulfield TA Intument, 109 Luken Dive, New atle DE 19720 ABSTAT Nealy all diffeential canning caloimety (DS)

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science aachuett Intitute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric achinery Cla Note 10: Induction achine Control and Simulation c 2003 Jame L. Kirtley Jr. 1 Introduction

More information

www.sakshieducation.com

www.sakshieducation.com Viscosity. The popety of viscosity in gas is due to ) Cohesive foces between the moecues ) Coisions between the moecues ) Not having a definite voume ) Not having a definite size. When tempeatue is inceased

More information

Strength Analysis and Optimization Design about the key parts of the Robot

Strength Analysis and Optimization Design about the key parts of the Robot Intenational Jounal of Reseach in Engineeing and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Pint): 2320-9356 www.ijes.og Volume 3 Issue 3 ǁ Mach 2015 ǁ PP.25-29 Stength Analysis and Optimization Design

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Purchase and rental subsidies in durable-good oligopolies* 1

Purchase and rental subsidies in durable-good oligopolies* 1 Hacienda Pública Epañola / Review of Public Economic, 3-(/05): -40 05, Intituto de Etudio Ficale DOI: 0.7866/HPE-RPE.5.. Puchae and ental ubidie in duable-good oligopolie* AMAGOIA SAGASTA JOSÉ M. USATEGUI

More information

Recall Gibbs eqn. ds. Using h version. for ideal gas. integrate AE3450. for ideal gas. integrate s. s(t,p) behavior? AE3450. T p.

Recall Gibbs eqn. ds. Using h version. for ideal gas. integrate AE3450. for ideal gas. integrate s. s(t,p) behavior? AE3450. T p. Enti Shl f Aeae State Engineeing Eqn. Ideal Gae du eall Gibb eqn. d f ideal ga d integate d d d Ideal Ga Enty State elatin - Cyight 03 by Jey M. Seitzman. All ight eeed. d d d d d ln d ln Enti Shl f Aeae

More information

Physics 111. Exam #1. January 24, 2014

Physics 111. Exam #1. January 24, 2014 Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information