Deflection of Electrons by Electric and Magnetic Fields

Size: px
Start display at page:

Download "Deflection of Electrons by Electric and Magnetic Fields"

Transcription

1 Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An electon with chage e in an extenal electic field E expeiences a foce F =! e E. (1) Note that the acceleation is in the diection opposite that of the field. In an extenal magnetic field, B, the foce on the electon is given by F =! e v x B (2) whee v is the velocity of the electon. Note that the acceleation depends on the magnitudes of the velocity and the magnetic field, the angle between them, and is pependicula to both. To analyze the motion of the electons we will use a cathode ay tube (CRT). The CRT is the basic component of oscilloscopes and television sets. The pincipal pats of the CRT used in this expeiment ae shown in Fig. 1. F Figue 1 Side View of the 5DEP1 cathode ay tube. The dimensions ae in cm. The sepaation of the X deflection plates is unknown.

2 The indiectly heated cathode has a coating of baium and stontium oxides which emit a high-density electon steam. These electons ae then acceleated and focussed by the anode and gid stuctue shown. Afte they have passed the second anode, the electons ae not subjected to any moe foce in the z diection since the sceen is at the same potential as the anode and the electons may be consideed to be a "beam" which goes fom the anode to the sceen. The electons will all have the same velocity, given by 1 2 mv 2 = e ( V anode! V cathode ) = e V acc (3) whee V acc is the "acceleating voltage". Eq. 3 may be obtained fom the law of enegy consevation, o, altenatively, fom integating Eq. 1. A voltage applied to the X o Y deflection plates of the CRT poduces an electic field between the plates which will exet a foce on the electons (Eq. 1) as they pass though. As a esult the beam is deflected by this field. The "deflection sensitivity" is defined as the atio of the deflection of the electon beam at the sceen of the CRT to the deflection voltage, V defl. Television sets use magnetic deflection as it has some pactical advantages ove electic deflection. A pai of coils is mounted on the side of the CRT. A cuent passing though the coils poduces a magnetic field which exets a foce on the electons (Eq. 2). Fo this situation the deflection sensitivity is defined as the atio of the deflection of the electon beam at the sceen of the CRT to the cuent in the deflection coils, I defl. Pelab Questions 1. Deive a fomula fo the deflection sensitivity fo deflection by an electic field. Using values of the dimensions given in Fig. 1 compute the deflection sensitivity fo this appaatus. The flae on the plates makes an exact calculation of the deflection sensitivity difficult. A simple appoximation is to assume that the electic field is equal to the voltage divided by the plate sepaation at all points between the plates. The aveage electic field ove the whole 1.8 cm is then given by E = V defl / d eff, whee d eff =.175 cm fo the Y plates of the 5DEP1. We suggest you use this value. 2. Calculate the speed of an electon acceleated though a potential diffeence of 1 volts. How long does it take this electon to tavel fom the second anode to the sceen of the CRT? Calculate the tansvese velocity this electon gains if the voltage on the Y plates is 5 volts. 3. The magnetic field poduced by the deflection coils is not unifom along the tube axis. Thus the calculation of the deflection sensitivity is moe difficult fo magnetic as opposed to electic deflection. The deflection sensitivity fo deflection by a spatially vaying field is deived in the Appendix. The vaiation of the magnetic field along the axis of the CRT fo this appaatus is given in Table 1. Calculate the deflection sensitivity by making a numeical integation of the magnetic field along the axis of the tube. 4. Veify Eq. 4, see below. You will need to assume some quantities ae small compaed to othes, and to make an appopiate appoximation.

3 Appaatus 5DEP1 cathode ay tube chassis DC powe supply Digital multimete plastic ule, venie calipes Expeiment 1) Examine the sample cathode ay tube. Compae it with Fig. 1 and identify the component pats. 2) In any expeiment it is a good idea to become familia with you equipment. Spend some time finding out what the vaious contols (focus, acceleating potential, and bightness) do. Obseve the effects of applying voltages to the X and Y deflection plates of the cathode ay tube. 3) Detemine the deflection sensitivity due to an electic field applied acoss the Y deflection plates. Compae you calculated and expeimental deflection sensitivities. Show how the deflection sensitivity vaies with the acceleating voltage. 4) Detemine the deflection sensitivity due to a magnetic field poduced by a cuent in the magnetic deflection coils. Choose a single value of the acceleating voltage fo this measuement. Explain you easons fo you choice of acceleating voltage. Compae you expeimental obsevations with the esult you calculated above. 5) You pobably have noticed that the spot on the 5DEP1 moves hoizontally when the acceleating potential is vaied. This deflection is due to the motion of the electons in the eath's magnetic field and is given by: x = B v L 2 2 e 2V acc m (4) whee x is the amount of hoizontal deflection, B v is the vetical component of the eath's field, L is the distance fom the second anode to the sceen, and V acc is the acceleating potential. Measue x as a function of V acc and detemine B v. UG2/2

4 Table 1. The magnetic field in Gauss poduced by a cuent of 1 ma in the magnetic deflection coils fo Chassis #5. Values of the field ae quoted as a function of distance fom the second anode along the axis of the CRT. The diection of the magnetic field is pependicula to the axis of the CRT. Owing to small diffeences in constuction and assembly the field poduced by the coils on Chassis #2 is slightly smalle. Multiply the values fo Chassis #5 by.91 to obtain the magnetic field poduced by a cuent of 1 ma in the coils fo Chassis #2. Distance fom second anode (cm) Magnetic field (Gauss) Chassis

5 Appendix: Calculation of Deflection Sensitivities The aim of this appendix is to detemine the deflection sensitivities of the CRT fo both electic and magnetic fields. As illustated below, the electons leave the second anode with velocity v in the z diection and ae subsequently deflected by a tansvese foce F(z) whee F(z) = e E(z) electic fields = e v B(z) magnetic fields Let u(z) be the tansvese velocity and!(z) be the tansvese deflection at z. We assume that as they leave the second anode exit (at z = ), the electons have both zeo tansvese velocity and deflection (i.e., u() = and!() = ). Thei subsequent motion is detemined by Newton's Second Law: m du(z) dt The time dependence of u is of no inteest and so we use the chain ule to wite = F(z) (A1) du(z) dt = du(z) dt = v du(z) wheeby Eqn. (A1) becomes mv du(z) Integating Eqn. (A2) and setting u() =, we obtain u(z) = 1 mv F( z!)d z! The deflection!(z) can now be obtained fom the elationship z = F(z) (A2) " (A3) u(z) = d!(z) dt = d!(z) dt = v d!(z) (A4)

6 Using Eqn. (A4) in Eqn. (A3), we integate once moe and set!() = to get!(z) = 1 z $ z " ' F( z "")d z " mv # # 2 & ) d z " % ( (A5) whee z! and z!! ae dummy vaiables. The integal in Eqn. (A5) is taken ove the shaded aeas in the ( z!, z!!) plane as shown in the diagam. The student can show that by intechanging the ode of integation (i.e., by integating with espect to z" fist and making use of the fact that F is a function of z"" only) Eqn. (A5) can be witten as which becomes!(z) = 1 z $ z ' mv 2 # & # d z ") F( z "")d z "" % ( z " "!(z) = 1 z mv 2 $ (z " z ##)F( z ##)d z ## (A6) The quantity of inteest is the total deflection at the sceen. If L is the distance fom the anode exit to the sceen we then have fo the total deflection "(L) = 1 mv 2 L $ (L # z)f(z) (A7) If the foce F(z) is known in eithe analytical fom (as in the case of the electic field) o in numeical fom (as in the case of the magnetic field) then Eqn. (A7) can fom the basis fo computing the deflection! sensitivity.

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Magnetic Forces. Physics 231 Lecture 7-1

Magnetic Forces. Physics 231 Lecture 7-1 Magnetic Foces Physics 231 Lectue 7-1 Magnetic Foces Chaged paticles expeience an electic foce when in an electic field egadless of whethe they ae moving o not moving Thee is anothe foce that chaged paticles

More information

Brown University PHYS 0060 ELECTRIC POTENTIAL

Brown University PHYS 0060 ELECTRIC POTENTIAL INTRODUCTION ELECTRIC POTENTIL You have no doubt noticed that TV sets, light bulbs, and othe electic appliances opeate on 115 V, but electic ovens and clothes dyes usually need 220 V. atteies may be ated

More information

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pe-lab Quiz/PHYS 224 Eath s Magnetic Field You name Lab section. What do you investigate in this lab? 2. Fo a pai of Helmholtz coils descibed in this manual and shown in Figue 2, =.5 m, N = 3, I =.4 A,

More information

Introduction to Electric Potential

Introduction to Electric Potential Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic

More information

Physics 212 Final Sample Exam Form A

Physics 212 Final Sample Exam Form A 1. A point chage q is located at position A, a distance away fom a point chage Q. The chage q is moved to position B, which is also located a distance away fom the chaged paticle Q. Which of the following

More information

Electric & Potential Fields

Electric & Potential Fields Electic & Potential Fields Pupose An electic field suounds any assemblage of chaged objects. To detemine the stength and diection of these fields, it is most convenient to fist map the electic potential

More information

Conservation of Momentum

Conservation of Momentum Physics 7 Consevation of Momentum Intoduction Collisions occu all aound us and on many size scales. We obseve them in ou eveyday wold as ca accidents, battes hitting a baseball out of the ballpak, aindops

More information

A current generates magnetic field I

A current generates magnetic field I > Magnetic field geneated by A long, staight cuent =μ o /2π A cuent loop =μ o /2 A cuent geneates magnetic field < N > S A long staight vetical segment of wie taveses a magnetic field of magnitude 2.0

More information

20.3 Magnetic Field Mass Analyzers

20.3 Magnetic Field Mass Analyzers 20.3 Magnetic Field Mass Analyzes magnetic secto dispesion and mass analysis secto design to accommodate angula distibutions of ions fom the souce electic secto dispesion is based on kinetic enegy double

More information

AP Physics Test Magnetic Fields; Sources of Magnetic Field

AP Physics Test Magnetic Fields; Sources of Magnetic Field AP Physics Test Magnetic Fields; Souces of Magnetic Field Pat I. Multiple hoice (4 points each) hoose the one best answe to each of the following poblems. axis 2 A = 0.05 T 0.3 m 0.3 m 1 (AP). A squae

More information

Chapter 24. The Electric Field

Chapter 24. The Electric Field Chapte 4. The lectic Field Physics, 6 th dition Chapte 4. The lectic Field The lectic Field Intensity 4-1. A chage of + C placed at a point P in an electic field epeiences a downwad foce of 8 1-4 N. What

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

Faraday's Law ds B B r r Φ B B S d dφ ε B = dt

Faraday's Law ds B B r r Φ B B S d dφ ε B = dt ds Faaday's Law Φ ε ds dφ = Faaday s Law of Induction Recall the definition of magnetic flux is Φ = da Faaday s Law is the induced EMF in a closed loop equal the negative of the time deivative of magnetic

More information

Course Updates. 2) This week: Finish Chap 27 (magnetic fields and forces)

Course Updates.  2) This week: Finish Chap 27 (magnetic fields and forces) Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Notes fo today: 1) Assignment #7 due Monday 2) This week: Finish Chap 27 (magnetic fields and foces) 3) Next week Chap 28 (Souces

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

2008 Quarter-Final Exam Solutions

2008 Quarter-Final Exam Solutions 2008 Quate-final Exam - Solutions 1 2008 Quate-Final Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of

More information

Mapping Electric and Potential Fields

Mapping Electric and Potential Fields Mapping Electic and Potential Fields Pupose We detemined the magnitude and diection of the electic fields suounding thee sets of chaged electodes. Fo each electode set, we measued the electic potential

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Static and Dynamic Balancing of a Piano Key

Static and Dynamic Balancing of a Piano Key Static and Dynamic Balancing of a Piano Key Stephen Bikett 1 Copyight c 2003. All ights eseved. Two Simple Cases The basic pinciples of static and dynamic balancing can be illustated 2 by epesenting the

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

The Magnetic Field. Part 1. Magnetism. Chapter 20. What creates magnetic fields? Unlike electrostatics: Magnetic monopoles have never been detected.

The Magnetic Field. Part 1. Magnetism. Chapter 20. What creates magnetic fields? Unlike electrostatics: Magnetic monopoles have never been detected. The Magnetic Field Magnetism Chapte 0 Pat 1 What ceates magnetic fields Unlike electostatics: Magnetic monopoles have neve been detected. Thee is no magnetic chage! Any pemanent magnet has two poles. What

More information

XIIth PHYSICS (C2, G2, C, G) Solution

XIIth PHYSICS (C2, G2, C, G) Solution XIIth PHYSICS (C, G, C, G) -6- Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of

More information

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature.

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature. Foces of Natue Electic Chages, Foces and Fields Chapte 17 Electic Chage Coulomb s Law Electic Field Electic Field Lines Flux of an Electic Field Physics 111: Analysis of motion - 3 key ideas Pat 1 Foces

More information

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK Magnetic Fields Ch.28: The magnetic field: Loentz Foce Law Ch.29: Electomagnetism: Ampee s Law HOMEWORK Read Chaptes 28 and 29 Do Chapte 28 Questions 1, 7 Do Chapte 28 Poblems 3, 15, 33, 47 Today The Magnetic

More information

Sources of the Magnetic Field. Physics 231 Lecture 8-1

Sources of the Magnetic Field. Physics 231 Lecture 8-1 Souces of the Magnetic Field Physics 31 Lectue 8-1 Magnetic Field of a Point Chage Given a point chage, q, we know that it geneates an electic field egadless of whethe it is moving o not f the chage is

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

DO PHYSICS ONLINE GRAVITATIONAL FIEDS

DO PHYSICS ONLINE GRAVITATIONAL FIEDS DO PHYSICS ONLIN SPAC GRAVITATIONAL FIDS NWTON S LAW OF UNIVRSAL GRAVITATION Newton's Univesal Law of Gavitation states that any two objects exet a gavitational foce of attaction on each othe. The diection

More information

Physics 2102 Lecture 15. Physics 2102

Physics 2102 Lecture 15. Physics 2102 Physics 212 Jonathan Dowling Physics 212 Lectue 15 iot-savat Law Jean-aptiste iot (1774-1862) Felix Savat (1791 1841) What Ae We Going to Lean? A Road Map Electic chage Electic foce on othe electic chages

More information

10 Torque. Lab. What You Need To Know: Physics 211 Lab

10 Torque. Lab. What You Need To Know: Physics 211 Lab b Lab 10 Toque What You Need To Know: F (a) F F Angula Systems Evey lab up to this point has dealt with objects moving in the linea system. In othe wods, objects moving in a staight line. Now we ae going

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the

More information

Problem Set 6: Solutions

Problem Set 6: Solutions UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 16-4 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente

More information

Waves and Superposition (Keating Chapter 21) Light as a Transverse Wave.

Waves and Superposition (Keating Chapter 21) Light as a Transverse Wave. Waves and Supeposition (Keating Chapte 1) The ay model fo light (i.e. light tavels in staight lines) can be used to explain a lot of phenomena (like basic object and image fomation and even abeations)

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Thee-phase Induction Moto Lesson 30 Constuction and Pinciple of Opeation of IM In the pevious, i.e. fist, lesson of this module, the fomation of otating magnetic field in the ai gap of an induction

More information

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1

2 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1 - ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation

More information

Version 001 Review 4 Electric Force, Magnetic fields tubman (19112) 1

Version 001 Review 4 Electric Force, Magnetic fields tubman (19112) 1 Vesion 001 Review 4 Electic Foce, Magnetic fields tubman (19112) 1 This pint-out should have 42 questions. Multiple-choice questions may continue on the next column o page find all choices befoe answeing.

More information

Chapter 23 Electrical Potential

Chapter 23 Electrical Potential Chapte 3 Electical Potential 3 [SSM] Two identical positively chaged point paticles ae fied on the -ais at a and a. (a) Wite an epession fo the electic potential () as a function of fo all points on the

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Chapter 16 Gyroscopes and Angular Momentum

Chapter 16 Gyroscopes and Angular Momentum Chapte 16 Gyoscopes and Angula Momentum 16.1 Gyoscopes o fa, most of the examples and applications we have consideed concened the otation of igid bodies about a fixed axis, o a moving axis the diection

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Q.2 In vertical circular motion, the ratio of kinetic energy of a particle at highest point to that at lowest point is (A) 5 (B) 2 (C) 0.5 (D) 0.

Q.2 In vertical circular motion, the ratio of kinetic energy of a particle at highest point to that at lowest point is (A) 5 (B) 2 (C) 0.5 (D) 0. Physics R Q. Fo a gas 0.4, whee R is the univesal gas constant and 'C v ' is mola specific heat at C v constant volume. The gas is made up of molecules which ae (A) Rigid diatomic Monoatomic Non-igid diatomic

More information

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 14. NEWTON'S RINGS

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 14. NEWTON'S RINGS 4. NEWTON'S RINGS. Obective Detemining adius of cuvatue of a long focal length plano-convex lens (lage adius of cuvatue).. Equipment needed Measuing micoscope, plano-convex long focal length lens, monochomatic

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Phys 170 Practice Final 2 Solutions. . The denominator is The application points are B r. = ( 1.5,+1.5,0). The load force is 3.

Phys 170 Practice Final 2 Solutions. . The denominator is The application points are B r. = ( 1.5,+1.5,0). The load force is 3. Phys 170 Pactice Final 2 Solutions 1. The massless semicicula plate with adius 1.5 m is suppoted by cables D and CD and a ball and socket joint A, and a load of 300 N is applied at the point shown. Find

More information

Lab 5: Circular Motion

Lab 5: Circular Motion Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapte 25. lectic Potential Chapte 25. lectic Potential Wok and lectic Potential negy 25-1. n positively chaged plate is 30 mm above a negatively chaged plate, and the electic field intensity has a magnitude

More information

The Quantum Mechanical Nature of the Law of Universal Gravitation and the Law of Coulomb s Interactions

The Quantum Mechanical Nature of the Law of Universal Gravitation and the Law of Coulomb s Interactions The Quantum echanical Natue of the Law of Univesal Gavitation and the Law of Coulomb s Inteactions Fayang Qiu Laboatoy of olecula Engineeing, and Laboatoy of Natual Poduct Synthesis, Guangzhou Institute

More information

Centripetal Force. F c

Centripetal Force. F c 18/P01 Laboatoy Objectives Centipetal Foce In this lab you will Equipment test Newton s nd Law as it applies to unifom cicula motion. detemine the eo in measuing peiod, adius, and mass and use these values

More information

ELECTRICAL RESISTIVITY AND HALL EFFECT IN GERMANIUM

ELECTRICAL RESISTIVITY AND HALL EFFECT IN GERMANIUM ELECTRICAL RESISTIVITY AND HALL EFFECT IN GERMANIUM REFERENCES A. C. Melissinos, Expeiments in Moden Physics, p. 85-98 C. Kittel, Intoduction to Solid State Physics F. Reif, Fundamentals of Statistical

More information

Section Review 8-1. Chapter 8 Photosynthesis

Section Review 8-1. Chapter 8 Photosynthesis Name Class Date Chapte 8 Photosynthesis Section Review 8-1 Reviewing Key Concepts Shot Answe On the lines povided, answe the following questions. 1. Whee do autotophs get enegy to poduce food? 2. How do

More information

There are two kinds of charges, namely, positive (+) charge and negative ( ) charge. Like charges repel

There are two kinds of charges, namely, positive (+) charge and negative ( ) charge. Like charges repel Unit 4 Electic Foces, Fields and Cicuits 4 Electic chage 4 Coulomb s law 43 Shell theoems fo electostatics 44 Electic field 45 Electic field lines 46 Shielding and chaging by induction 47 Electic Cicuits

More information

Physics E1ax Solutions: Assignment for Feb. 3 Feb. 10 Homework #1: Electric Potential, Coulomb s Law, Equipotentials

Physics E1ax Solutions: Assignment for Feb. 3 Feb. 10 Homework #1: Electric Potential, Coulomb s Law, Equipotentials Physics Eax Solutions: Assignment fo Feb. 3 Feb. 0 Homewok #: Electic Potential, Coulomb s Law, Equipotentials Afte completing this homewok assignment, you should be able to Undestand the diffeence between

More information

Physics: Electromagnetism Spring PROBLEM SET 6 Solutions

Physics: Electromagnetism Spring PROBLEM SET 6 Solutions Physics: Electomagnetism Sping 7 Physics: Electomagnetism Sping 7 PROBEM SET 6 Solutions Electostatic Enegy Basics: Wolfson and Pasachoff h 6 Poblem 7 p 679 Thee ae si diffeent pais of equal chages and

More information

Magnetism: a new force!

Magnetism: a new force! -1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of E-field kq E-fields ae ceated by chages: E = 2 E-field exets a foce on othe

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Universal Gravitation

Universal Gravitation J - The Foce of Gavity Chapte J Univesal Gavitation Blinn College - Physics 45 - Tey Honan Intoduction If Isaac Newton had meely witten down his thee laws of motion he would pobably still be known as the

More information

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions

UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100-minute sessions Name St.No. - Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100-minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,

More information

CHAPTER 17 MAGNETIC DIPOLE MOMENT

CHAPTER 17 MAGNETIC DIPOLE MOMENT 1 CHAPTER 17 MAGNETIC DIPOLE MOMENT 17.1 Intoduction A numbe of diffeent units fo expessing magnetic dipole moment (heeafte simply magnetic moment ) ae commonly seen in the liteatue, including, fo example,

More information

Physics 2102 Lecture 15. Physics 2102

Physics 2102 Lecture 15. Physics 2102 Physics 2102 Auoa Boealis Jonathan Dowling Physics 2102 Lectue 15 Magnetic fields Sta Quake on a I ll be back. Magneta! Use of Magnetic Fields in You Eveyday Life! Magnetic Fields Electic fields ae ceated:

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Lecture contents Magnetic field Ampere s law Lorentz force, cyclotron frequency, Hall effect Dipole moment, circulation electron, spin

Lecture contents Magnetic field Ampere s law Lorentz force, cyclotron frequency, Hall effect Dipole moment, circulation electron, spin 1 Lectue contents Magnetic field Ampee s law Loentz foce, cycloton fequency, Hall effect Dipole moment, ciculation electon, spin Magnetostatics: Ampee s Law of Foce Ampee s law of foce is the law of action

More information

12 Kirchhoff s Rules, Terminal Voltage

12 Kirchhoff s Rules, Terminal Voltage 12 Kichhoff s Rules, Teminal Voltage Thee ae two cicuit-analysis laws that ae so simple that you may conside them statements of the obvious and yet so poweful as to facilitate the analysis of cicuits of

More information

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !

mv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2  2 = GM . Combining the results we get ! Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!

More information

Gravitational Field and its Potential

Gravitational Field and its Potential Lectue 19 Monday - Octobe 17, 2005 Witten o last updated: Octobe 17, 2005 P441 Analytical Mechanics - I Gavitational Field and its Potential c Alex. Dzieba Isaac Newton What Isaac Newton achieved was tuly

More information

Gauss's Law. EAcos (for E = constant, surface flat ) 1 of 11

Gauss's Law. EAcos (for E = constant, surface flat ) 1 of 11 1 of 11 Gauss's Law Gauss's Law is one of the 4 funmental laws of electicity and magnetism called Maxwell's quations. Gauss's law elates chages and electic fields in a subtle and poweful way, but befoe

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 1-4 Intoduction: Pehaps one of the most unusual

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

ROUGH DRAFT. Helmholtz Coils Uniform Magnetic Fields. by Dr. James E. Parks

ROUGH DRAFT. Helmholtz Coils Uniform Magnetic Fields. by Dr. James E. Parks OUGH DAFT Helmholtz Coils Unifom Magnetic Fields by D. James E. Paks Depatment of Physics and Astonomy 401 Nielsen Physics Building The Univesity of Tennessee Knoxville, Tennessee 37996-100 Copyight Septembe

More information

Laws of Motion; Circular Motion

Laws of Motion; Circular Motion Pactice Test: This test coves Newton s Laws of Motion, foces, coefficients of fiction, fee-body diagams, and centipetal foce. Pat I. Multiple Choice 3m 2m m Engine C B A 1. A locomotive engine of unknown

More information

Solutions to Homework Set #5 Phys2414 Fall 2005

Solutions to Homework Set #5 Phys2414 Fall 2005 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated

More information

AP Physics C: Mechanics 1999 Free-Response Questions

AP Physics C: Mechanics 1999 Free-Response Questions AP Physics C: Mechanics 1999 Fee-Response Questions The mateials included in these files ae intended fo non-commecial use by AP teaches fo couse and exam pepaation pemission fo any othe use must be sought

More information

Magnetism. The Magnetic Force. B x x x x x x x x x x x x v x x x x x x. F = q

Magnetism. The Magnetic Force. B x x x x x x x x x x x x v x x x x x x. F = q Magnetism The Magnetic Foce F = qe + qv x x x x x x x x x x x x v x x x x x x F q v q F v F = q 0 IM intoduced the fist had disk in 1957, when data usually was stoed on tapes. It consisted of 50 plattes,

More information

Chapter 25 Electric Potential

Chapter 25 Electric Potential Chapte 5 Electic Potential Can we apply the concept of potential, fist intoduced in mechanics, to electostatic system and find the law of consevation of enegy? We can define an electostatic potential enegy,

More information

EP 106 General Physics II

EP 106 General Physics II EP 06 Geneal Physics II Chapte : Electic Chage and Coulomb Law Electic chage Electic chage is a fundamental quantity. The unit of electic chage is called the coulomb (C), name afte Chales Coulomb, a ench

More information

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits.

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.01T Fall Tem 2004 Poblem Set 5: Univesal Law of Gavitation; Cicula Planetay Obits. Available on-line Octobe 1; Due: Octobe 12 at 4:00

More information

Frequency-domain: µo J(r )e jk r r. where

Frequency-domain: µo J(r )e jk r r. where 6Spheicalwaves In this lectue we will find out that shot-filaments of oscillato cuents poduceunifom spheical waves of vecto potential popagating awa fom the filament. The elationship between spheical waves

More information

Net force on a charge due to several other charges: VECTOR SUM of all forces on that charge due to other charges Called Principle of SUPERPOSITON

Net force on a charge due to several other charges: VECTOR SUM of all forces on that charge due to other charges Called Principle of SUPERPOSITON REVIEW: ELECTRIC FORCE, ELECTRIC FIELD, ELECTRIC FIELD LINES, ELECTRIC FLUX, GAUSS S LAW, ELECTRIC POTENTIAL, CONTINUOUS CHARGE DISTRIBUTIONS (ELECTRIC FIELD, ELECTRIC POTENTIAL, GAUSS S LAW), ELECTRIC

More information

Electrostatics (RECAP) Electric Current

Electrostatics (RECAP) Electric Current Electostatics (ECAP) Electic Cuent Key ideas Electic chage: conseved and quantized Electic field: foce pe unit chage, field lines, adding vectos Flux: amount of field passing though an aea Electic potential:

More information

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90 . Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal

More information

Psychology 282 Lecture #2 Outline. Review of Pearson correlation coefficient:

Psychology 282 Lecture #2 Outline. Review of Pearson correlation coefficient: Psychology 282 Lectue #2 Outline Review of Peason coelation coefficient: z z ( n 1) Measue of linea elationship. Magnitude Stength Sign Diection Bounded by +1.0 and -1.0. Independent of scales of measuement.

More information

Chapter 10. Dynamics of Rotational Motion

Chapter 10. Dynamics of Rotational Motion 10.1 Toque Chapte 10 Dynamics of Rotational Motion The wod toque comes fom the Latin wod that means twist. The toque! of a foce F about a point P in space is equal to the coss poduct (also called vecto

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

Radiation in the Near Zone of a Hertzian Dipole

Radiation in the Near Zone of a Hertzian Dipole Radiation in the Nea Zone of a Hetzian Dipole 1 Poblem Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 08544 (Apil 22, 2004) Calculate the Poynting vecto of the fields of a Hetzian

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Right Hand Rule. Magnetic field is defined in terms of the force on a moving charge. B=F/qvsinΘ for a moving charge or F=qvxB.

Right Hand Rule. Magnetic field is defined in terms of the force on a moving charge. B=F/qvsinΘ for a moving charge or F=qvxB. Magnetic field is defined in tems of the foce on a moving chage =/qvsinθ fo a moving chage o =qvx =/lsinθ o =lx fo a cuent Right Hand Rule Hold you ight hand open Place you finges in the diection of Place

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Electric Potential. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Electric Potential. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Electic Potential A PowePoint Pesentation by Paul E. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 2007 Objectives: Afte completing this module, you should be able to: Undestand an apply

More information

The Grating Spectrometer and Atomic Spectra

The Grating Spectrometer and Atomic Spectra PHY 19 Gating Spectomete 1 The Gating Spectomete and Atomic Specta Intoduction In the pevious expeiment diffaction and intefeence wee discussed and at the end a diffaction gating was intoduced. In this

More information

Vectors in three dimensions

Vectors in three dimensions Vectos in thee dimensions The concept of a vecto in thee dimensions is not mateially diffeent fom that of a vecto in two dimensions. It is still a quantity with magnitude and diection, except now thee

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

Stuff you asked about:

Stuff you asked about: Stuff you asked about: you dawings ae slowly becoming bette Why does wok need to be defined as the integal of the dot poduct of the foce and displacement? Why can't wok just be defined as foce * displacement?

More information

show an appreciation that a force might act on a current carrying conductor placed in a magnetic field.

show an appreciation that a force might act on a current carrying conductor placed in a magnetic field. 8866 H1 Physics J/011 10. Content 1. oce on a cuent caying conducto. oce on a moving chage 3. Magnetic fields due to cuents 4. oce between cuent caying conductos. Candidates should be able to: (a) (b)

More information

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43

Chapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43 Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.

More information

PES 1120 Spring 2014, Spendier Lecture 30/Page 1. (similar to Coulomb's Law)

PES 1120 Spring 2014, Spendier Lecture 30/Page 1. (similar to Coulomb's Law) PES 110 Sping 014, Spendie Lectue 30/Page 1 Today: - Foce between two paallel, infinite wie cuents - Ampee's Law - Solenoids DEMO: We have seen that moving chages o cuents ae the souce of magnetism. This

More information

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a

F = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a .1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q -q a +q a -q F = kq 1q F 1 = k(q)(q) a F 13

More information