F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.


 Clare Booker
 2 years ago
 Views:
Transcription
1 G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just big ones. G = univesal constant of gavitation = N m / kg (G is vey small, so it is vey difficult to measue!) Don't confuse G with g: "Big G" and "little g" ae totally diffeent things. Newton showed that the foce of gavity must act accoding to this ule in ode to poduce the obseved motions of the planets aound the sun, of the moon aound the eath, and of pojectiles nea the eath. He then had the geat insight to ealize that this same foce acts between all masses. [That gavity acts between all masses, even small ones, was expeimentally veified in 1798 by Cavendish.] Newton couldn't say why gavity acted this way, only how. instein (1915) Geneal Theoy of elativity, explained why gavity acted like this. xample: oce of attaction between two humans. people with masses m 1 m 70 kg, distance = 1 m apat. m 11 1 m ( )( 70) G N This is a vey tiny foce! It is the weight of a mass of gam. A hai weighs 10 3 gams the foce of gavity between two people talking is about 1/60 the weight of a single hai. Computation of g m 1 m Impotant fact about the gavitational foce fom spheical masses: a spheical body exets a gavitational foce on suounding bodies that is the same as if all the sphee's mass wee concentated at its cente. This is difficult to pove (Newton woied about this fo 0 yeas.) 3/1/009 Univesity of Coloado at Boulde
2 G sphee, mass M gav mass m mass m point mass M gav (same as with sphee) We can now compute the acceleation of gavity g! (Befoe, g was expeimentally detemined, and it was a mystey why g was the same fo all masses.) gav = m a = m g ath mass m, dopped nea suface Mm G m g (since = is distance fom m to cente of ath) mass M m's cancel! g GM If you plug in the numbes fo G, M, and, you get g = 9.8 m/s. Newton's Theoy explains why all objects nea the ath's suface fall with the same acceleation (because the m's cancel in gav ma.) Newton's theoy also makes a quantitative pediction fo the value of g, which is coect. xample: g on Planet X. Planet X has the same mass as eath (M X = M ) but has ½ the adius ( X = 0.5 ). What is g x, the acceleation of gavity on planet X? Planet X is dense than eath, so expect g x lage than g. g G M G M 1 G M X x X 1/ g of eath 4 g. Don't need values of G, M, and! Method II, set up a atio: 3/1/009 Univesity of Coloado at Boulde
3 G3 GM X x X X g M g GM M X 1 4, g 4 g X * At height h above the suface of the eath, g is less, since we ae futhe fom the suface, futhe fom the eath's cente. = + h h eath g G M G M ( h) The space shuttle obits eath at an altitude of about 00 mi 1.6 km/mi 30 km. ath's adius is = 6380 km. So the space shuttle is only about 5% futhe fom the eath's cente than we ae. If is 5% lage, then is about 10% lage, and M m ( on mass m in shuttle) G about 10% less than on eath's suface gav ( h) Astonauts on the shuttle expeience almost the same gav as when on eath. So why do we say the astonauts ae weightless?? "Weightless" does not mean "no weight". "Weightless" means "feefall" means the only foce acting is gavity. If you fall down an ailess elevato shaft, you will feel exactly like the astonauts. You will be weightless, you will be in feefall. ath v astonaut gav N gav An astonaut falls towad the eath, as she moves fowad, just as a bullet fied hoizontally fom a gun falls towad eath. Obits Conside a planet like ath, but with no ai. ie pojectiles hoizontally fom a mountain top, with faste and faste initial speeds. 3/1/009 Univesity of Coloado at Boulde
4 G4 Planet would go staight, if no gavity The obit of a satellite aound the eath, o of a planet aound the sun obeys Keple's 3 Laws. Keple, Geman ( ). Befoe Newton. Using obsevational data fom Danish astonome Tycho Bahe ("Bahay"), Keple discoveed that the obits of the planets obey 3 ules. obits! KI : A planet's obit is an ellipse with the Sun at one focus. KII : A line dawn fom planet P to sun S sweeps out equal aeas in equal times. faste S same time intevals, same aeas slowe Sun Planet KIII: o planets aound the sun, the peiod T and the mean distance fom the sun ae elated T TA TB by constant. That is fo any two planets A and B,. This means that A B planets futhe fom the sun (lage ) have longe obital peiods (longe T). Keple's Laws wee empiical ules, based on obsevations of the motions of the planets in the sky. Keple had no theoy to explain these ules. 3/1/009 Univesity of Coloado at Boulde
5 G5 Newton ( ) stated with Keple's Laws and NII ( net = ma) and deduced that MSmP gav G. Newton applied simila easoning to the motion of the athmoon ( Sun planet ) SP M m system (and to an athapple system) and deduced that gav G. ( athmass m ) m Newton then made a mental leap, and ealized that this law applied to any masses, not just to the Sunplanet, the athmoon, and athpojectile systems. Stating with net = ma and gav = G Mm /, Newton was able to deive Keple's Laws (and much moe!). Newton could explain the motion of eveything! Deivation of KIII (fo special case of cicula obits). Conside a small mass m in cicula obit about a lage mass M, with obital adius and peiod T. We aim to show that T / 3 = const. Stat with NII: net = m a M peiod T The only foce acting is gavity, and fo cicula motion a = v / m v M m v M G m G v T [ecall the v = dist / time = / T ] M 4 T 4 G constant, independent of m 3 T G M ( Deiving this esult fo elliptical obits is much hade, but Newton did it. ) An exta esult of this calculation is a fomula fo the speed v of a satellite in cicula obit: GM v. o loweath obit (few hunded miles up), this obital speed is about 7.8 km/s 4.7 miles/second. The Space Shuttle must attain a speed of 4.7 mi/s when it eaches the top of the atmosphee (and it fuel has un out) o else it will fall back to ath. 3/1/009 Univesity of Coloado at Boulde
6 G6 Measuement of Big G The value of G ("big G") was not known until In that yea, Heny Cavendish (nglish) measued the vey tiny gav between lead sphees, using a device called a tosion balance. m1 m gav gav G G = m m 1 ( If gav,, and m's known, can compute G.) GM Befoe Cavendish's expeiment, g and wee known, so using g compute the poduct G M, but G and M could not be detemined sepaately., one could With Cavendish's measuement of G, one could then compute M. Hence, Cavendish "weighed the eath". Gavitational Potential negy Peviously, we showed that P gav = mgh. But to deive P = mgh, we assumed that gav = mg = Mm constant, which is only tue nea the suface of the ath. In geneal, gav G constant (it depends on ). We now show that fo the geneal case, Pgav U( ), [ U( = ) 0 ] This is the gavitational potential fo two masses, M and m, sepaated by a distance. By convention, the zeo of gavitational potential enegy is set at =. [ I will use the common notation U(), instead of P. ] ecall the definition of P: of wok fo the case of 1D motion: x P W () x dx. Hee, we have used the definition i x1 x W d () x dx. ( 1D) x1 3/1/009 Univesity of Coloado at Boulde
7 G7 M gav m 0 x 1 dx x Conside a mass M at the oigin and a mass m at position x 1, as shown in the diagam. We compute the wok done by the foce of gavity as the mass m moves fom x = x 1 to x =. The foce (x) on mass m is in the negative diection, so, indicating diection with a sign, we have x ( ). Hee, the wok done by gavity is negative, since foce and x displacement ae in opposite diections: GMm GMm GMm W ( x) dx dx x x x gav x1 x1 x1 1 GMm om the definition of P, P U U( x= ) U( x1) Wgav. Calling the x initial position (instead of x 1 ), we have U (). 0 1 A slight notation change now: is the adial distance fom the oigin, so is always positive (unlike x which can be positive o negative.) Plotting U() vs., we see a gavitational potential well. 3/1/009 Univesity of Coloado at Boulde
8 G8 U() = 0 U() The "Potential Well" ecall that negative potential enegy simply means less enegy than the zeo of enegy. Question: How is P = mgh a special case of U() = GMm/? U() = eath U(h) U = mgh h = eath scape Speed v escape Thow a ock away fom an (ailess) planet with a speed v. If v < v escape, the ock will ise to a maximum height and then fall back down. If v > v escape, the ock will go to =, and will still have some speed left ove and be moving away fom the planet. If v = v escape, the ock will have just enough initial K to escape the planet: its distance goes to = at the same time its speed appoaches zeo: v 0 as. We can use consevation of enegy to compute the escape speed v esc (often called, incoectly, the "escape velocity" ). 3/1/009 Univesity of Coloado at Boulde
9 G9 Initial configuation: = (suface of planet), v = v esc. inal configuation: =, v = 0. 1 Ki Pi Kf Pf m vesc 0 0 G M vesc Notice that vesc v obit If the ock is thown with speed v > v esc, it will go to =, and will have some K left ove, v final > Ki Pi Kf Pf m vi m vf 0 GM vf vi K P tot constant ( ) ( ) ( ) o ( ) U() tot = K+P P K 3/1/009 Univesity of Coloado at Boulde
A) 2 B) 2 C) 2 2 D) 4 E) 8
Page 1 of 8 CTGavity1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationmv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !
Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More information14. Gravitation Universal Law of Gravitation (Newton):
14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationResources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics
3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gapsystem.og/~histoy/mathematicians/ Newton.html http://www.fga.com http://www.clke.com/clipat
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationThe Role of Gravity in Orbital Motion
! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State
More informationOrbital Motion & Gravity
Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationESCAPE VELOCITY EXAMPLES
ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs
More information2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years.
CHAPTR 7 Gavitation Pactice Poblems 7.1 Planetay Motion and Gavitation pages 171 178 page 174 1. If Ganymede, one of Jupite s moons, has a peiod of days, how many units ae thee in its obital adius? Use
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationExam I. Spring 2004 Serway & Jewett, Chapters 15. Fill in the bubble for the correct answer on the answer sheet. next to the number.
Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 15 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationChapter 26  Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More informationMagnetism: a new force!
1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of Efield kq Efields ae ceated by chages: E = 2 Efield exets a foce on othe
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationGeneral Physics (PHY 2130)
Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:
More informationPY1052 Problem Set 3 Autumn 2004 Solutions
PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationTheory and measurement
Gavity: Theoy and measuement Reading: Today: p11  Theoy of gavity Use two of Newton s laws: 1) Univesal law of gavitation: ) Second law of motion: Gm1m F = F = mg We can combine them to obtain the gavitational
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More informationrotation  Conservation of mechanical energy for rotation  Angular momentum  Conservation of angular momentum
Final Exam Duing class (13:55 pm) on 6/7, Mon Room: 41 FMH (classoom) Bing scientific calculatos No smat phone calculatos l ae allowed. Exam coves eveything leaned in this couse. Review session: Thusday
More informationIn this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION
MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical
More informationThe Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = W/q 0 1V [Volt] =1 Nm/C
Geneal Physics  PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More informationCharges, Coulomb s Law, and Electric Fields
Q&E 1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
More informationFigure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!
1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More informationUNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100minute sessions
Name St.No.  Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding
More information6.2 Orbits and Kepler s Laws
Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that
More informationGravity and the figure of the Earth
Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 479071397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationChapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.
Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming
More informationSo we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)
Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationDisplacement, Velocity And Acceleration
Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More informationPHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013
PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,
More informationPhysics 202, Lecture 4. Gauss s Law: Review
Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential
More informationPhysics 111 Fall 2007 Electrostatic Forces and the Electric Field  Solutions
Physics 111 Fall 007 Electostatic Foces an the Electic Fiel  Solutions 1. Two point chages, 5 µc an 8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the
More information2008 QuarterFinal Exam Solutions
2008 Quatefinal Exam  Solutions 1 2008 QuateFinal Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationCh. 14: Gravitation (Beta Version 7/01) 14 Gravitation
Ch. 14: Gavitation (Beta Vesion 7/01) 14 Gavitation The Milky Way galaxy is a diskshaped collection of dust, planets, and billions of stas, including ou Sun and sola system. The foce that binds it o any
More informationLab M4: The Torsional Pendulum and Moment of Inertia
M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disklike mass suspended fom a thin od o wie. When the mass is twisted about the
More informationClassical Lifetime of a Bohr Atom
1 Poblem Classical Lifetime of a Boh Atom James D. Olsen and Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 85 (Mach 7, 5) In the Boh model of the hydogen atom s gound state,
More informationSolutions to Homework Set #5 Phys2414 Fall 2005
Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationPhysics 107 HOMEWORK ASSIGNMENT #14
Physics 107 HOMEWORK ASSIGNMENT #14 Cutnell & Johnson, 7 th edition Chapte 17: Poblem 44, 60 Chapte 18: Poblems 14, 18, 8 **44 A tube, open at only one end, is cut into two shote (nonequal) lengths. The
More informationOn the Relativistic Forms of Newton's Second Law and Gravitation
On the Relativistic Foms of Newton's Second Law and avitation Mohammad Bahami,*, Mehdi Zaeie 3 and Davood Hashemian Depatment of physics, College of Science, Univesity of Tehan,Tehan, Islamic Republic
More informationIntroduction to Electric Potential
Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic
More informationGauss Law. Physics 231 Lecture 21
Gauss Law Physics 31 Lectue 1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing
More informationChapter F. Magnetism. Blinn College  Physics Terry Honan
Chapte F Magnetism Blinn College  Physics 46  Tey Honan F.  Magnetic Dipoles and Magnetic Fields Electomagnetic Duality Thee ae two types of "magnetic chage" o poles, Noth poles N and South poles S.
More informationSolution Derivations for Capa #8
Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass
More informationNewton s Shell Theorem
Newton Shell Theoem Abtact One of the pincipal eaon Iaac Newton wa motivated to invent the Calculu wa to how that in applying hi Law of Univeal Gavitation to pheicallyymmetic maive bodie (like planet,
More informationProblems on Force Exerted by a Magnetic Fields from Ch 26 T&M
Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuentcaying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to
More informationMon., 3/9 Tues., 3/10 Wed., 3/11 Thurs., 3/12 Fri., 3/ 13. RE19 HW19:RQ.42, 49, 52; P.61, 66, 69 RE20, Exp new RE ,34 Magnetic Force
Mon., 3/9 Tues., 3/10 Wed., 3/11 Thus., 3/12 Fi., 3/ 13 Mon., 3/16 Tues., 3/17 Wed., 3/18 Thus., 3/19 Fi., 3/20 20.1,34 Magnetic Foce 20.2,5 Cuent and Motional Emf Quiz Ch 19, Lab 8 Cycloton & Electon
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationChapter 8, Rotational Kinematics. Angular Displacement
Chapte 8, Rotational Kinematics Sections 1 3 only Rotational motion and angula displacement Angula velocity and angula acceleation Equations of otational kinematics 1 Angula Displacement! B l A The length
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More informationMultiple choice questions [70 points]
Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions
More information2  ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1
 ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation
More informationSolutions for Physics 1301 Course Review (Problems 10 through 18)
Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationGravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field
Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above
More informationL19 Geomagnetic Field Part I
Intoduction to Geophysics L191 L19 Geomagnetic Field Pat I 1. Intoduction We now stat the last majo topic o this class which is magnetic ields and measuing the magnetic popeties o mateials. As a way o
More informationPHY002 Lecture Notes for PreDegree Science
PHY00 Lectue Notes fo PeDegee Science Couse Contents: Magnets, Magnetic fields and Electostatic By Odusote Y. A Depatment of Physics Fedeal Univesity of Technology P. M.B. 704, Akue, Ondo State. 1 MAGNETS
More informationF = kq 1q 2 r 2. F 13 = k( q)(2q) 2a 2 cosθˆx + sinθŷ F 14 = k( 2q)(2q) F 12 = k(q)(2q) a 2. tanθ = a a
.1 What ae the hoizontal and vetical components of the esultant electostatic foce on the chage in the lowe left cone of the squae if q =1. 1 7 and a =5.cm? +q q a +q a q F = kq 1q F 1 = k(q)(q) a F 13
More informationChapter 22 The Electric Field II: Continuous Charge Distributions
Chapte The lectic Field II: Continuous Chage Distibutions 1 [M] A unifom line chage that has a linea chage density l equal to.5 nc/m is on the x axis between x and x 5. m. (a) What is its total chage?
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationA r. (Can you see that this just gives the formula we had above?)
241 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down  you can pedict (o contol) motion
More informationPHYSICS 218 Honors EXAM 2 Retest. Choose 5 of the following 6 problems. Indicate which problem is not to be graded.
PHYSICS 18 Honos EXAM Retest Choose 5 of the following 6 pobles. Indicate which poble is not to be gaded. 1. A ope is affixed at one end to the i of a pulley, and wapped five tuns aound the pulley. The
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationLearning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.
Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationThe Gravity Field of the Earth  Part 1 (Copyright 2002, David T. Sandwell)
1 The Gavity Field of the Eath  Pat 1 (Copyight 00, David T. Sandwell) This chapte coves physical geodesy  the shape of the Eath and its gavity field. This is just electostatic theoy applied to the Eath.
More informationAlgebra and Trig. I. A point is a location or position that has no size or dimension.
Algeba and Tig. I 4.1 Angles and Radian Measues A Point A A B Line AB AB A point is a location o position that has no size o dimension. A line extends indefinitely in both diections and contains an infinite
More informationEffects of Projectile Motion in a NonUniform Gravitational Field, with Linearly Varying Air Density
Effects of Pojectile Motion in a NonUnifom Gavitational Field, with Linealy Vaying Ai Density Todd Cutche Decembe 2, 2002 Abstact In ode to study Pojectile Motion one needs to have a good woking model
More informationSection 53 Angles and Their Measure
5 5 TRIGONOMETRIC FUNCTIONS Section 5 Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,
More information