The Role of Gravity in Orbital Motion


 Marylou Peters
 3 years ago
 Views:
Transcription
1 ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State Univ.) Oveview Gavity is the natual phenomenon by which all objects in the univese ae attacted to one anothe. Gavity allows stas to fom fom clouds of hydogen gas, planets to fom fom molecules of cosmic dust, and is esponsible fo the obits of all celestial bodies. But, what measuable quantities affect the stength of gavity? In this module, students exploe how gavity affects celestial bodies and thei obits. Science Standads (NGSS) MSESS12 Develop and use a model to descibe the ole of gavity in the motions within galaxies and the sola system. MSPS22 Plan an investigation to povide evidence that the change in an object s motion depends on the sum of the foces on the object and the mass of the object. MSPS24 Constuct and pesent aguments using evidence to suppot the claim that gavitational inteactions ae attactive and depend on the masses of inteacting objects. MSPS25 Conduct an investigation and evaluate the expeimental design to povide evidence that fields exist between objects exeting foces on each othe even though the objects ae not in contact. Focus Question How does the mass of objects and thei distance fom each othe affect the stength of gavitational attaction? Objectives Though this lesson, students will: Constuct and test a hypothesis as a team Detemine the dependence of mass and sepaation on gavitational stength Lean how these same popeties affect escape velocity Undestand gavitational attaction as a field (distoted spacetime)
2 Backgound Gavity acts as an attactive foce that opeates on all objects with mass. The stength of the gavitational attaction is dependent on only two vaiables: the mass of the objects and thei distance of sepaation. As gavity is an attactive foce between all massive objects, the gavitational field pemeates all of space, affecting objects both on and off Eath. This is how Newton came to undestand that gavity was as esponsible fo the apple falling fom the tee as the Moon obiting the Eath. Mateials Fishing line (3 lb. test) 2 wooden batons to hold fishing line (optional: +2 caabines) Mete stick Masking tape Pepaation Tajectoies: With the masking tape, mak an aea fo the Sun as shown in the diagam below. Then make thee small additional makings following the ed line at one half, one, and two metes away fom the Sun. Gavity (batons): Dill holes in the batons fo the fishing line to pass though. Anothe option is to have a caabine attached to the baton this makes it easie to switch out the fishing line duing the activity. Gavity (sting): Cut 7x(2mete) pieces, 1x(4mete) piece, and 1x(8mete) piece of fishing line. Tie each end of fishing line into a loop big enough to fit though the baton/ caabine. It helps to cut the fishing line a little longe than the distance equied to account fo making the loops. Make one copy of the woksheet fo each student and distibute.
3 Pocedue Wam up: Example of Newton s Fist Law of Motion Using the baton attached to a sting, twil the baton aound in a cicle. Ask the students what would happen if you let go of the sting. Ask the students what keeps the baton cicling aound you hand (A: the tension in the sting poduces a foce). Now imagine that the sting was invisible and that this is the same concept as gavity. This is a demonstation of Newton s Fist Law of Motion: An object at est stays at est and an object in motion stays in motion with the same speed and in the same diection unless acted upon by an unbalanced foce. Review the activity with the students and have them make pedictions based on thei intuition and fill in the fist table. Activity: Gavity and Obits In this activity, students will assume the oles of the Sun, gavity, and a neaby planet. Split the class up into goups of 35 students. Choose one student to be the Sun, gavity, and the planet. In the case of 45 student goups, additional students can act as exta mass fo the Sun in the fist few tials. The student epesenting the Sun should stand on the X. The student epesenting the planet should begin some distance away as indicated by the aows. The student epesenting gavity should stand along the ed line on the opposite side of the planet s tajectoy, facing the Sun. Both the Sun and Gavity will hold one baton, both ends attached to the length of sting. The Planet will pass along seveal tajectoies acoss the path of the Sun at a distance of (onehalf, one, and two metes). At the point of closest appoach (eaching the ed line) the planet will expeience the foce of gavity fom the Sun epesented by the fishing line. When the Planet eaches this point they will gab a baton fom Gavity and continue on thei path. Once unde the influence of gavity, the Planet will expeience one of thee possible outcomes: 1. The sting holds. The foce of gavity is stong enough to captue the Planet in obit aound the Sun. 2. The sting beaks. The foce of gavity is not stong enough to captue the Planet, but the staightline tajectoy is changed. 3. The sting beaks. The foce of gavity is too weak to captue Planet o change it s tajectoy. Assessment Constuct Newton s Law of Univesal Gavitation and discuss the affects that a change in mass and a change in sepaation distance has on the stength of the field. Calculate the stength of the gavitational foce of the othe planets in the Sola System elative to the Eath (mass: Eath mass, distance: AU).
4 The Role of Gavity in Obital Motion Intoduction: Today you will investigate the ole gavity plays in obital motion, like the Moon and Eath, o Eath and the Sun. The foce of gavity acts between these celestial bodies and changes thei motions, depicting Newton s Fist Law of Motion. What is Newton s Fist Law of Motion? Pediction: Tial Sun Mass Distance # of sting Sting beak? Path changed? m m m m m 1 (4 m fold x4) m 1 (8 m fold x16) Expeiment: Planet speed Tial Sun Mass Distance # of sting Sting beak? Path changed? m m m m m 1 (4 m fold x4) m 1 (8 m fold x16)
5 Followup Questions Compae you initial pedictions with the esults of you expeiment. Does the dependence on mass and sepaation distance agee with you pedictions? Is gavity diectly o indiectly popotional to the mass of an object? How do the esults of you expeiment suppot this? Knowing how mass elates to the stength of gavity, what would you expect to find if you incease the mass of the planet instead of the Sun? Would gavity s dependence on mass change? Is gavity diectly o indiectly popotional to the distance of sepaation between two objects? How do the esults of you expeiment suppot this? Accoding to the esults of you expeiment, can you pedict the dependance of gavity on Mass M and sepaation distance? (Hint: Fo, look closely at # of stings) F gav /
6 Exta Cedit Add you own exta tials to you Results chat and test what happens with the dependence on the velocity of the Planet. Keep the mass of the Sun and the distance of the Planet appoach constant and vay only the speed at which the Planet follows the initial tajectoy. Descibe you pedictions hee: How does changing the planet s velocity affect the esults? What does this tell you about the ole kinetic enegy plays in detemining the obit?
7 Extensions Fo an object like a planet to escape the gavitational attaction of anothe object, say the Sun, the planet must be moving with enough speed o the attactive foce will be too geat and the planet will be captue into obit. The speed needed to escape is called the escape velocity. If the planet gets too close and is not moving fast enough, it will be captue into obit aound the moe massive Sun. If the planet is moving fast enough then it can escape! We can deive the escape velocity fom consevation of enegy. Fo a bound system (think objects in obit), the kinetic enegy must always be less than the potential enegy. We define kinetic and potential enegy as the following: Consevation of enegy states that: KE = 1 2 mv2 PE = GMm (KE + PE) initial =(KE + PE) final If an object escaped and taveled in infinitely lage distance away, then the final kinetic and potential enegy would be zeo. In that case the above equation becomes: (KE + PE) initial =0 1 2 mv2 = GMm 2GM v escape = Hee we see that given any mass of a lage object M at a given distance, we can calculate the speed needed by the smalle object to beak out of obit. Supplemental escape velocity: Vaiable speed: The students can discove thei escape speed fom the system. Using the 1 mete distance tajectoy, have the students eun the expeiment using diffeent Planet speeds and detemine how fast they must move in ode to beak the sting. The students should find that at slowe speeds, the sting does not beak and they ae captued into obit, but as they incease the speed, eventually the sting will beak and they have eached the escape velocity fo the system.
Revision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More information2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,
3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects
More informationChapter 13 Gravitation
Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the
More informationChapter 13 Gravitation. Problems: 1, 4, 5, 7, 18, 19, 25, 29, 31, 33, 43
Chapte 13 Gavitation Poblems: 1, 4, 5, 7, 18, 19, 5, 9, 31, 33, 43 Evey object in the univese attacts evey othe object. This is called gavitation. We e use to dealing with falling bodies nea the Eath.
More informationFXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.
Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing
More informationExperiment 6: Centripetal Force
Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationGRAVITATIONAL FIELD: CHAPTER 11. The groundwork for Newton s great contribution to understanding gravity was laid by three majors players:
CHAPT 11 TH GAVITATIONAL FILD (GAVITY) GAVITATIONAL FILD: The goundwok fo Newton s geat contibution to undestanding gavity was laid by thee majos playes: Newton s Law of Gavitation o gavitational and inetial
More informationEpisode 401: Newton s law of universal gravitation
Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce
More informationLab 5: Circular Motion
Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion
More informationVoltage ( = Electric Potential )
V1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage
More informationCh. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth
Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate
More informationDo Vibrations Make Sound?
Do Vibations Make Sound? Gade 1: Sound Pobe Aligned with National Standads oveview Students will lean about sound and vibations. This activity will allow students to see and hea how vibations do in fact
More informationF G r. Don't confuse G with g: "Big G" and "little g" are totally different things.
G1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just
More information(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of
Homewok VI Ch. 7  Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the
More informationResources. Circular Motion: From Motor Racing to Satellites. Uniform Circular Motion. Sir Isaac Newton 3/24/10. Dr Jeff McCallum School of Physics
3/4/0 Resouces Cicula Motion: Fom Moto Racing to Satellites D Jeff McCallum School of Physics http://www.gapsystem.og/~histoy/mathematicians/ Newton.html http://www.fga.com http://www.clke.com/clipat
More information81 Newton s Law of Universal Gravitation
81 Newton s Law of Univesal Gavitation One of the most famous stoies of all time is the stoy of Isaac Newton sitting unde an apple tee and being hit on the head by a falling apple. It was this event,
More informationDetermining solar characteristics using planetary data
Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation
More informationPHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013
PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0
More information2. Orbital dynamics and tides
2. Obital dynamics and tides 2.1 The twobody poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body
More informationGravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2
F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,
More informationmv2. Equating the two gives 4! 2. The angular velocity is the angle swept per GM (2! )2 4! 2 " 2 = GM . Combining the results we get !
Chapte. he net foce on the satellite is F = G Mm and this plays the ole of the centipetal foce on the satellite i.e. mv mv. Equating the two gives = G Mm i.e. v = G M. Fo cicula motion we have that v =!
More informationGravitation. AP Physics C
Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What
More informationA) 2 B) 2 C) 2 2 D) 4 E) 8
Page 1 of 8 CTGavity1. m M Two spheical masses m and M ae a distance apat. The distance between thei centes is halved (deceased by a facto of 2). What happens to the magnitude of the foce of gavity between
More informationMagnetic Field and Magnetic Forces. Young and Freedman Chapter 27
Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew  electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field
More informationDeflection of Electrons by Electric and Magnetic Fields
Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An
More informationUNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Approximate time two 100minute sessions
Name St.No.  Date(YY/MM/DD) / / Section Goup# UNIT 21: ELECTRICAL AND GRAVITATIONAL POTENTIAL Appoximate time two 100minute sessions OBJECTIVES I began to think of gavity extending to the ob of the moon,
More informationGravity. A. Law of Gravity. Gravity. Physics: Mechanics. A. The Law of Gravity. Dr. Bill Pezzaglia. B. Gravitational Field. C.
Physics: Mechanics 1 Gavity D. Bill Pezzaglia A. The Law of Gavity Gavity B. Gavitational Field C. Tides Updated: 01Jul09 A. Law of Gavity 3 1a. Invese Squae Law 4 1. Invese Squae Law. Newton s 4 th law
More informationPhysics 202, Lecture 4. Gauss s Law: Review
Physics 202, Lectue 4 Today s Topics Review: Gauss s Law Electic Potential (Ch. 25Pat I) Electic Potential Enegy and Electic Potential Electic Potential and Electic Field Next Tuesday: Electic Potential
More informationExam 3: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationIntroduction to Electric Potential
Univesiti Teknologi MARA Fakulti Sains Gunaan Intoduction to Electic Potential : A Physical Science Activity Name: HP: Lab # 3: The goal of today s activity is fo you to exploe and descibe the electic
More informationCharges, Coulomb s Law, and Electric Fields
Q&E 1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded
More informationChapter 26  Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field
More informationVoltage ( = Electric Potential )
V1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is
More informationThe force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges
The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee
More informationESCAPE VELOCITY EXAMPLES
ESCAPE VELOCITY EXAMPLES 1. Escape velocity is the speed that an object needs to be taveling to beak fee of planet o moon's gavity and ente obit. Fo example, a spacecaft leaving the suface of Eath needs
More informationPhysics HSC Course Stage 6. Space. Part 1: Earth s gravitational field
Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe
More informationExam I. Spring 2004 Serway & Jewett, Chapters 15. Fill in the bubble for the correct answer on the answer sheet. next to the number.
Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 15 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE
More informationPHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013
PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,
More informationLab #7: Energy Conservation
Lab #7: Enegy Consevation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapte 7 Sections 1,, 3, 5, 6 Chapte 8 Sections 14 Intoduction: Pehaps one of the most unusual
More informationProblem Set 6: Solutions
UNIVESITY OF ALABAMA Depatment of Physics and Astonomy PH 164 / LeClai Fall 28 Poblem Set 6: Solutions 1. Seway 29.55 Potons having a kinetic enegy of 5. MeV ae moving in the positive x diection and ente
More informationVISCOSITY OF BIODIESEL FUELS
VISCOSITY OF BIODIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapte 5. Foce and Motion In this chapte we study causes of motion: Why does the windsufe blast acoss the wate in the way he does? The combined foces of the wind, wate, and gavity acceleate him accoding
More informationGeneral Physics (PHY 2130)
Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:
More informationPY1052 Problem Set 8 Autumn 2004 Solutions
PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ighthand end. If H 6.0 m and h 2.0 m, what
More information14. Gravitation Universal Law of Gravitation (Newton):
14. Gavitation 1 Univesal Law of Gavitation (ewton): The attactive foce between two paticles: F = G m 1m 2 2 whee G = 6.67 10 11 m 2 / kg 2 is the univesal gavitational constant. F m 2 m 1 F Paticle #1
More information1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2
Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the
More information12. Rolling, Torque, and Angular Momentum
12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.
More informationPY1052 Problem Set 3 Autumn 2004 Solutions
PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the
More informationLesson 32: Measuring Circular Motion
Lesson 32: Measuing Cicula Motion Velocity hee should be a way to come up with a basic fomula that elates velocity in icle to some of the basic popeties of icle. Let s ty stating off with a fomula that
More informationTrigonometric Functions of Any Angle
Tigonomet Module T2 Tigonometic Functions of An Angle Copight This publication The Nothen Albeta Institute of Technolog 2002. All Rights Reseved. LAST REVISED Decembe, 2008 Tigonometic Functions of An
More informationThe Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = W/q 0 1V [Volt] =1 Nm/C
Geneal Physics  PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit
More informationMultiple choice questions [60 points]
1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions
More informationAnalytical Proof of Newton's Force Laws
Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue
More informationMagnetism: a new force!
1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of Efield kq Efields ae ceated by chages: E = 2 Efield exets a foce on othe
More informationLearning Objectives. Decreasing size. ~10 3 m. ~10 6 m. ~10 10 m 1/22/2013. Describe ionic, covalent, and metallic, hydrogen, and van der Waals bonds.
Lectue #0 Chapte Atomic Bonding Leaning Objectives Descibe ionic, covalent, and metallic, hydogen, and van de Waals bonds. Which mateials exhibit each of these bonding types? What is coulombic foce of
More information2008 QuarterFinal Exam Solutions
2008 Quatefinal Exam  Solutions 1 2008 QuateFinal Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of
More informationChapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom
Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in
More informationOrbital Motion & Gravity
Astonomy: Planetay Motion 1 Obital Motion D. Bill Pezzaglia A. Galileo & Fee Fall Obital Motion & Gavity B. Obits C. Newton s Laws Updated: 013Ma05 D. Einstein A. Galileo & Fee Fall 3 1. Pojectile Motion
More informationChapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment
More informationFarming: It s a Fact! Career & Technical Education, Introduction
Faming: It s a Fact! Caee & Technical Education, Intoduction Whee Does You Food Dolla Go? Mateials Compute Lab o Compute & Pojecto fo Pesentation Compute Speakes o Headphones Compute Intenet Access o Agicultual
More informationSo we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)
Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing
More information2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90
. Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal
More informationIn this section we shall look at the motion of a projectile MOTION IN FIELDS 9.1 PROJECTILE MOTION PROJECTILE MOTION
MOTION IN FIELDS MOTION IN FIELDS 9 9. Pojectile motion 9. Gavitational field, potential and enegy 9.3 Electic field, potential and enegy 9. PROJECTILE MOTION 9.. State the independence of the vetical
More informationSpirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project
Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.
More informationGravitational Mechanics of the MarsPhobos System: Comparing Methods of Orbital Dynamics Modeling for Exploratory Mission Planning
Gavitational Mechanics of the MasPhobos System: Compaing Methods of Obital Dynamics Modeling fo Exploatoy Mission Planning Alfedo C. Itualde The Pennsylvania State Univesity, Univesity Pak, PA, 6802 This
More informationThe Grating Spectrometer and Atomic Spectra
PHY 19 Gating Spectomete 1 The Gating Spectomete and Atomic Specta Intoduction In the pevious expeiment diffaction and intefeence wee discussed and at the end a diffaction gating was intoduced. In this
More informationAn Introduction to Omega
An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei iskewad chaacteistics? The Finance Development Cente 2002 1 Fom
More informationClassical Lifetime of a Bohr Atom
1 Poblem Classical Lifetime of a Boh Atom James D. Olsen and Kik T. McDonald Joseph Heny Laboatoies, Pinceton Univesity, Pinceton, NJ 85 (Mach 7, 5) In the Boh model of the hydogen atom s gound state,
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More informationPHY002 Lecture Notes for PreDegree Science
PHY00 Lectue Notes fo PeDegee Science Couse Contents: Magnets, Magnetic fields and Electostatic By Odusote Y. A Depatment of Physics Fedeal Univesity of Technology P. M.B. 704, Akue, Ondo State. 1 MAGNETS
More informationSELFINDUCTANCE AND INDUCTORS
MISN0144 SELFINDUCTANCE AND INDUCTORS SELFINDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. SelfInductance L.........................................
More information2. An asteroid revolves around the Sun with a mean orbital radius twice that of Earth s. Predict the period of the asteroid in Earth years.
CHAPTR 7 Gavitation Pactice Poblems 7.1 Planetay Motion and Gavitation pages 171 178 page 174 1. If Ganymede, one of Jupite s moons, has a peiod of days, how many units ae thee in its obital adius? Use
More informationChapter 8, Rotational Kinematics. Angular Displacement
Chapte 8, Rotational Kinematics Sections 1 3 only Rotational motion and angula displacement Angula velocity and angula acceleation Equations of otational kinematics 1 Angula Displacement! B l A The length
More information7 Circular Motion. 71 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary
7 Cicula Motion 71 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o
More informationQuestions & Answers Chapter 10 Software Reliability Prediction, Allocation and Demonstration Testing
M13914 Questions & Answes Chapte 10 Softwae Reliability Pediction, Allocation and Demonstation Testing 1. Homewok: How to deive the fomula of failue ate estimate. λ = χ α,+ t When the failue times follow
More informationGravity and the figure of the Earth
Gavity and the figue of the Eath Eic Calais Pudue Univesity Depatment of Eath and Atmospheic Sciences West Lafayette, IN 479071397 ecalais@pudue.edu http://www.eas.pudue.edu/~calais/ Objectives What is
More information2  ELECTROSTATIC POTENTIAL AND CAPACITANCE Page 1
 ELECTROSTATIC POTENTIAL AND CAPACITANCE Page. Line Integal of Electic Field If a unit positive chage is displaced by `given by dw E. dl dl in an electic field of intensity E, wok done is Line integation
More informationEffects of Projectile Motion in a NonUniform Gravitational Field, with Linearly Varying Air Density
Effects of Pojectile Motion in a NonUnifom Gavitational Field, with Linealy Vaying Ai Density Todd Cutche Decembe 2, 2002 Abstact In ode to study Pojectile Motion one needs to have a good woking model
More informationEXPERIENCE OF USING A CFD CODE FOR ESTIMATING THE NOISE GENERATED BY GUSTS ALONG THE SUN ROOF OF A CAR
EXPERIENCE OF USING A CFD CODE FOR ESTIMATING THE NOISE GENERATED BY GUSTS ALONG THE SUN ROOF OF A CAR Liang S. Lai* 1, Geogi S. Djambazov 1, Choi H. Lai 1, Koulis A. Peicleous 1, and Fédéic Magoulès
More informationGauss Law in dielectrics
Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics,
More informationThank you for participating in Teach It First!
Thank you fo paticipating in Teach It Fist! This Teach It Fist Kit contains a Common Coe Suppot Coach, Foundational Mathematics teache lesson followed by the coesponding student lesson. We ae confident
More information6.2 Orbits and Kepler s Laws
Eath satellite in unstable obit 6. Obits and Keple s Laws satellite in stable obit Figue 1 Compaing stable and unstable obits of an atificial satellite. If a satellite is fa enough fom Eath s suface that
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationSTUDENT RESPONSE TO ANNUITY FORMULA DERIVATION
Page 1 STUDENT RESPONSE TO ANNUITY FORMULA DERIVATION C. Alan Blaylock, Hendeson State Univesity ABSTRACT This pape pesents an intuitive appoach to deiving annuity fomulas fo classoom use and attempts
More informationPhysics: Electromagnetism Spring PROBLEM SET 6 Solutions
Physics: Electomagnetism Sping 7 Physics: Electomagnetism Sping 7 PROBEM SET 6 Solutions Electostatic Enegy Basics: Wolfson and Pasachoff h 6 Poblem 7 p 679 Thee ae si diffeent pais of equal chages and
More informationSimple Harmonic Motion
Simple Hamonic Motion Intoduction Simple hamonic motion occus when the net foce acting on an object is popotional to the object s displacement fom an equilibium position. When the object is at an equilibium
More informationest using the formula I = Prt, where I is the interest earned, P is the principal, r is the interest rate, and t is the time in years.
9.2 Inteest Objectives 1. Undestand the simple inteest fomula. 2. Use the compound inteest fomula to find futue value. 3. Solve the compound inteest fomula fo diffeent unknowns, such as the pesent value,
More information10. Collisions. Before During After
10. Collisions Use conseation of momentum and enegy and the cente of mass to undestand collisions between two objects. Duing a collision, two o moe objects exet a foce on one anothe fo a shot time: F(t)
More informationExperiment MF Magnetic Force
Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuentcaying conducto is basic to evey electic moto  tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating
More informationComparing Availability of Various Rack Power Redundancy Configurations
Compaing Availability of Vaious Rack Powe Redundancy Configuations By Victo Avela White Pape #48 Executive Summay Tansfe switches and dualpath powe distibution to IT equipment ae used to enhance the availability
More informationSemipartial (Part) and Partial Correlation
Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated
More informationStructure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The
More informationChapter F. Magnetism. Blinn College  Physics Terry Honan
Chapte F Magnetism Blinn College  Physics 46  Tey Honan F.  Magnetic Dipoles and Magnetic Fields Electomagnetic Duality Thee ae two types of "magnetic chage" o poles, Noth poles N and South poles S.
More informationXIIth PHYSICS (C2, G2, C, G) Solution
XIIth PHYSICS (C, G, C, G) 6 Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of
More informationQuestions for Review. By buying bonds This period you save s, next period you get s(1+r)
MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the twopeiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume
More informationPAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII  SPETO  1995. pod patronatem. Summary
PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8  TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC
More informationChapter 13. VectorValued Functions and Motion in Space 13.6. Velocity and Acceleration in Polar Coordinates
13.6 Velocity and Acceleation in Pola Coodinates 1 Chapte 13. VectoValued Functions and Motion in Space 13.6. Velocity and Acceleation in Pola Coodinates Definition. When a paticle P(, θ) moves along
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More information