Discrete Random Variables and Probability Distributions. Random Variables. Chapter 3 3.1


 Poppy Wheeler
 2 years ago
 Views:
Transcription
1 UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig 4 Chapter 3 Discrete Radom Variables ad Probability Distributios Slide Slide 3. Radom Variables Radom Variable For a give sample space S of some experimet, a radom variable is ay rule that associates a umber with each outcome i S. Slide 3 Slide 4 Beroulli Radom Variable Ay radom variable whose oly possible values are ad is called a Beroulli radom variable. Types of Radom Variables A discrete radom variable is a rv whose possible values either costitute a fiite set or else ca listed i a ifiite sequece. A radom variable is cotiuous if its set of possible values cosists of a etire iterval o a umber lie. Slide 5 Slide 6
2 3. Probability Distributios for Discrete Radom Variables Probability Distributio The probability distributio or probability mass fuctio (pmf) of a discrete rv is defied for every umber x by p(x) = P(all s S : X( s) = x). Slide 7 Slide 8 Parameter of a Probability Distributio Suppose that p(x) depeds o a quatity that ca be assiged ay oe of a umber of possible values, each with differet value determiig a differet probability distributio. Such a quatity is called a parameter of the distributio. The collectio of all distributios for all differet parameters is called a family of distributios. Slide 9 Cumulative Distributio Fuctio The cumulative distributio fuctio (cdf) F(x) of a discrete rv variable X with pmf p(x) is defied for every umber by F( x) = P( X x) = p( y) Slide yy : x For ay umber x, F(x) is the probability that the observed value of X will be at most x. Propositio For ay two umbers a ad b with a b, P( a X b) = F( b) F( a ) a represets the largest possible X value that is strictly less tha a. Note: For itegers Pa ( X b) = Fb ( ) Fa ( ) Probability Distributio for the Radom Variable X A probability distributio for a radom variable X: x P(X = x) Fid a. P( X ).65 b. P 3 X.67 ( ) Slide Slide
3 3.3 Expected Values of Discrete Radom Variables The Expected Value of X Let X be a discrete rv with set of possible values D ad pmf p(x). The expected value or mea value of X, deoted E( X ) or µ X, is E( X) = µ = x p( x) X x D Slide 3 Slide 4 Example I the at least oe of each or at most 3 childre example, where X ={umber of Girls} we have: X 3 pr(x ) Slide 5 8 E( X ) = x P( x) x 5 = =.5 8 Ex. Use the data below to fid out the expected umber of the umber of credit cards that a studet will possess. x = # credit cards x P(x =X) E ( X) = xp+ xp xp = (.8) + (.8) + (.38) + 3(.6) + 4(.6) + 5(.3) + 6(.) =.97 About credit cards Slide 6 The Expected Value of a Fuctio If the rv X has the set of possible values D ad pmf p(x), the the expected value of ay fuctio h(x), deoted EhX [ ( )] or µ hx ( ), is E[ hx ( )] = hx ( ) px ( ) D Rules of the Expected Value E( ax + b) = a E( X ) + b This leads to the followig:. For ay costat a, E( ax ) = a E( X ).. For ay costat b, E( X + b) = E( X) + b. Slide 7 Slide 8 3
4 The Variace ad Stadard Deviatio Let X have pmf p(x), ad expected value µ The the variace of X, deoted V(X) (or σ or σ ), is X V( X) = ( x µ ) p( x) = E[( X µ ) ] D The stadard deviatio (SD) of X is σ X = σ X Ex. The quiz scores for a particular studet are give below:, 5,, 8,,, 4,,, 5, 4, 5, 8 Fid the variace ad stadard deviatio. Value Frequecy Probability µ = ( µ ) ( µ ) ( µ ) V( X) = p x + p x p x σ = V( X) Slide 9 Slide V( X ) = ( ) ( ) ( ) ( ) ( ) ( ) V( X ) = 3.5 σ = V( X) = Shortcut Formula for Variace V( X) = σ = x p( x) µ D ( ) E( X) = E X Slide Slide Rules of Variace + σ V( ax + b) = σax b = a X ad σ + = a σ ax b X This leads to the followig:. σax = a σx, σax = a σx. σx+ b = σx Liear Scalig (affie trasformatios) ax + b For ay costats a ad b, the expectatio of the RV ax + b is equal to the sum of the product of a ad the expectatio of the RV X ad the costat b. E(aX + b) = a E(X) +b Ad similarly for the stadard deviatio (b, a additive factor, does ot affect the SD). SD(aX +b) = a SD(X) Slide 3 Slide 4 4
5 Liear Scalig (affie trasformatios) ax + b Liear Scalig (affie trasformatios) ax + b Why is that so? E(aX + b) = a E(X) +b SD(aX +b) = a SD(X) E(aX + b) = (a x + b) P(X = x) = x = a x P(X = x) + b P(X = x) = x = x = a x P(X = x) + b P(X = x) = x = x = ae(x) + b = ae(x) + b. Slide 5 Example: E(aX + b) = a E(X) +b SD(aX +b) = a SD(X). X={,,, 3, 4,, , }; P(X=x)=/8, for each x. Y = X5 = {7, , 5,, 3, 5, 9, 3} 3. E(X)= 4. E(Y)= 5. Does E(X) = E(X) 5? 6. Compute SD(X), SD(Y). Does SD(Y) = SD(X)? Slide 6 Liear Scalig (affie trasformatios) ax + b Ad why do we care? E(aX + b) = a E(X) +b SD(aX +b) = a SD(X) completely geeral strategy for computig the distributios of RV s which are obtaied from other RV s with kow distributio. E.g., X~N(,), ad Y=aX+b, the we eed ot calculate the mea ad the SD of Y. We kow from the above formulas that E(Y) = b ad SD(Y) = a. These formulas hold for all distributios, ot oly for Biomial ad Normal. Slide 7 Liear Scalig (affie trasformatios) ax + b Ad why do we care? E(aX + b) = a E(X) +b SD(aX +b) = a SD(X) E.g., say the rules for the game of chace we saw before chage ad the ew payoff is as follows: {$, $.5, $3}, with probabilities of {.6,.3,.}, as before. What is the ewly expected retur of the game? Remember the old expectatio was equal to the etrace fee of $.5, ad the game was fair! Y = 3(X)/ {$, $, $3} {$, $.5, $3}, E(Y) = 3/ E(X) 3/ = 3 / 4 = $.75 Ad the game became clearly biased. Note how easy it is to compute E(Y). Slide 8 Meas ad Variaces for (i)depedet Variables! Meas: Idepedet/Depedet Variables {X, X, X3,, X} E(X + X + X3 + + X) = E(X)+ E(X)+ E(X3)+ + E(X) Variaces: Idepedet Variables {X, X, X3,, X}, variaces addup Var(X +X + X3 + + X) = Var(X)+Var(X)+Var(X3)+ +Var(X) Depedet Variables {X, X} Variace cotiget o the variable depedeces, E.g., If X = X + 5, Var(X +X) =Var (X + X +5) = Var(3X +5) =Var(3X) = 9Var(X) Slide The Biomial Probability Distributio Slide 3 5
6 Biomial Experimet A experimet for which the followig four coditios are satisfied is called a biomial experimet.. The experimet cosists of a sequece of trials, where is fixed i advace of the experimet.. The trials are idetical, ad each trial ca result i oe of the same two possible outcomes, which are deoted by success (S) or failure (F). 3. The trials are idepedet. 4. The probability of success is costat from trial to trial: deoted by p. Slide 3 Slide 3 Biomial Experimet Suppose each trial of a experimet ca result i S or F, but the samplig is without replacemet from a populatio of size N. If the sample size is at most 5% of the populatio size, the experimet ca be aalyzed as though it were exactly a biomial experimet. Biomial Radom Variable Give a biomial experimet cosistig of trials, the biomial radom variable X associated with this experimet is defied as X = the umber of S s amog trials Slide 33 Slide 34 Notatio for the pmf of a Biomial rv Because the pmf of a biomial rv X depeds o the two parameters ad p, we deote the pmf by b(x;,p). Computatio of a Biomial pmf x x p ( p ) x =,,,... b( x;, p) = p otherwise Slide 35 Slide 36 6
7 Ex. A card is draw from a stadard 5card deck. If drawig a club is cosidered a success, fid the probability of a. exactly oe success i 4 draws (with replacemet). p = ¼; q = ¼ = ¾ b. o successes i 5 draws (with replacemet) Notatio for cdf For X ~ Bi(, p), the cdf will be deoted by P( X x) = B( x;, p) = b( y;, p) x y= x =,,, Slide 37 Slide 38 Mea ad Variace For X ~ Bi(, p), the E(X) = p, 8 V(X) = p( p) = pq, 6 σ X = pq (where q = p). Ex. 5 cards are draw, with replacemet, from a stadard 5card deck. If drawig a club is cosidered a success, fid the mea, variace, ad stadard deviatio of X (where X is the umber of successes). p = ¼; q = ¼ = ¾ µ = p = 5 = V ( X) = pq = 5 = σ = pq = X Slide 39 Slide 4 Ex. If the probability of a studet successfully passig this course (C or better) is.8, fid the probability that give 8 studets a. all 8 pass b. oe pass. 8 c. at least 6 pass ( ) ( ) 8 ( ) ( ) (.8) (.8) + (.8) (.8) + (.8) (.8) = Hypergeometric ad Negative Biomial Distributios Slide 4 Slide 4 7
8 The Hypergeometric Distributio The three assumptios that lead to a hypergeometric distributio:. The populatio or set to be sampled cosists of N idividuals, objects, or elemets (a fiite populatio).. Each idividual ca be characterized as a success (S) or failure (F), ad there are M successes i the populatio. 3. A sample of idividuals is selected without replacemet i such a way that each subset of size is equally likely to be chose. Slide 43 Slide 44 Hypergeometric Distributio If X is the umber of S s i a completely radom sample of size draw from a populatio cosistig of M S s ad (N M) F s, the the probability distributio of X, called the hypergeometric distributio, is give by M N M x x PX ( = x) = hxmn ( ;,, ) = N max(, N + M) x mi(, M) Slide 45 Hypergeometric Mea ad Variace M N M M EX ( ) = VX ( ) = N N N N Slide 46 The Negative Biomial Distributio The egative biomial rv ad distributio are based o a experimet satisfyig the followig four coditios:. The experimet cosists of a sequece of idepedet trials.. Each trial ca result i a success (S) or a failure (F). 3. The probability of success is costat from trial to trial, so P(S o trial i) = p for i =,, 3, 4. The experimet cotiues util a total of r successes have bee observed, where r is a specified positive iteger. Slide 47 Slide 48 8
9 pmf of a Negative Biomial The pmf of the egative biomial rv X with parameters r = umber of S s ad p = P(S) is x+ r+ r x b( x; r, p) = p ( p) r x =,,, Negative Biomial Mea ad Variace ( ) ( ) ( ) r p ( ) r E X = V X = p p p Slide 49 Slide 5 Hypergeometric Distributio & Biomial Biomial approximatio to Hyperheometric M is small (usually <.), the p N N approaches HyperGeom( x; N,, M ) Bi( x;, p) M / N = p Ex: 4, out of, residets are agaist a ew tax. 5 residets are selected at radom. P(at most 7 favor the ew tax) =? Geometric, Hypergeometric, Negative Biomial Negative biomial pmf [X ~ NegBi(r, p), if r= Geometric (p)] x P( X = x) = ( p) p Number of trials (x) util the r th success (egative, sice umber of successes (r) is fixed & umber of trials (X) is radom) x + r r x P( X = x) = p ( p) r r( p) r( p) E( X ) = ; Var( X ) = p p Slide 5 Slide The Poisso Probability Distributio Poisso Distributio A radom variable X is said to have a Poisso distributio with parameter ( >, ) if the pmf of X is x e px ( ; ) = x=,,... x! Slide 53 Slide 54 9
10 The Poisso Distributio as a Limit Suppose that i the biomial pmf b(x;, p), we let ad p i such a way that p approaches a value >. The bxp ( ;, ) px ( ; ). Poisso Distributio Mea ad Variace If X has a Poisso distributio with parameter, the E( X) = V( X) = Slide 55 Slide 56 Poisso Process 3 Assumptios:. There exists a parameter α > such that for ay short time iterval of legth t, the probability that exactly oe evet is received is α t+ o( t).. The probability of more tha oe evet durig t is o( t). 3. The umber of evets durig the time iterval t is idepedet of the umber that occurred prior to this time iterval. Slide 57 Slide 58 Poisso Distributio αt k Pk () t = e ( αt) / k!, so that the umber of pulses (evets) durig a time iterval of legth t is a Poisso rv with parameter = αt. The expected umber of pulses (evets) durig ay such time iterval is αt, so the expected umber durig a uit time iterval is α. Poisso Distributio Defiitio Used to model couts umber of arrivals (k) o a give iterval The Poisso distributio is also sometimes referred to as the distributio of rare evets. Examples of Poisso distributed variables are umber of accidets per perso, umber of sweepstakes wo per perso, or the umber of catastrophic defects foud i a productio process. Slide 59 Slide 6
11 Fuctioal Brai Imagig Positro Emissio Tomography (PET) Fuctioal Brai Imagig  Positro Emissio Tomography (PET) Slide 6 Slide 6 Fuctioal Brai Imagig Positro Emissio Tomography (PET) Fuctioal Brai Imagig Positro Emissio Tomography (PET) Isotope Eergy (MeV) Rage(mm) /life Appl. C.96. mi receptors 5O.7.5 mi stroke/activatio 8 F.6. mi eurology 4I ~ days ocology Slide 63 Slide 64 Hypergeometric Distributio & Biomial Biomial approximatio to Hyperheometric M is small (usually <.), the p N N approaches HyperGeom( x; N,, M ) Bi( x;, p) M / N = p Ex: 4, out of, residets are agaist a ew tax. 5 residets are selected at radom. P(at most 7 favor the ew tax) =? Poisso Distributio Mea Used to model couts umber of arrivals (k) o a give iterval k e Y~Poisso( ), the P(Y=k) =, k =,,, k! Mea of Y, µ Y =, sice k k k e k E( Y ) = k = e = e = k! k! ( k )! = e k = k= k = e ( k )! k = k= k = e k! k = e = Slide 65 Slide 66
12 Poisso Distributio  Variace k Y~Poisso( ), the P(Y=k) = e Variace of Y, σ Y = ½ k!, sice σ = = Y Var( Y ) k= ( k ) k e k!, k =,,, For example, suppose that Y deotes the umber of blocked shots (arrivals) i a radomly sampled game for the UCLA Bruis me's basketball team. The a Poisso distributio with mea=4 may be used to model Y. =... = Poisso Distributio  Example For example, suppose that Y deotes the umber of blocked shots i a radomly sampled game for the UCLA Bruis me's basketball team. Poisso distributio with mea=4 may be used to model Y Slide 67 Slide 68 Poisso as a approximatio to Biomial Suppose we have a sequece of Biomial(, p ) models, with lim( p ), as ifiity. For each <=y<=, if Y ~ Biomial(, p ), the y y P(Y =y)= p p y ( ) But this coverges to: y y y e p ( p ) y WHY? p y! Thus, Biomial(, p ) Poisso() Poisso as a approximatio to Biomial Rule of thumb is that approximatio is good if: >= p<=. = p <= The, Biomial(, p ) Poisso() Slide 69 Slide 7 Example usig Poisso approx to Biomial Suppose P(defective chip) =.= 4. Fid the probability that a lot of 5, chips has > defective! Y~ Biomial(5,,.), fid P(Y>). Note that Z~Poisso( = p =5, x.=.5) P( Z > ) = P( Z ) =.5 e! e!.5 Slide 7 z =.5 + e! z.5 e z!.5 = =
Chapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationJoint Probability Distributions and Random Samples
STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More information8 The Poisson Distribution
8 The Poisso Distributio Let X biomial, p ). Recall that this meas that X has pmf ) p,p k) p k k p ) k for k 0,,...,. ) Agai, thik of X as the umber of successes i a series of idepedet experimets, each
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationThe Poisson Distribution
Lecture 5 The Poisso Distributio 5.1 Itroductio Example 5.1: Drowigs i Malta The book [Mou98] cites data from the St. Luke s Hospital Gazette, o the mothly umber of drowigs o Malta, over a period of early
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationReview 1 of Math 727, Probability c Fall 2013 by Professor Yaozhong Hu
Review of Math 727, Probability c Fall 203 by Professor Yaozhog Hu Some Cocepts: Sample space, evet, uio, itersectio, complemet, algebra of evets, probability, 2 A collectio of subsets of S is called
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationStat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept
Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationMIDTERM EXAM  MATH 563, SPRING 2016
MIDTERM EXAM  MATH 563, SPRING 2016 NAME: SOLUTION Exam rules: There are 5 problems o this exam. You must show all work to receive credit, state ay theorems ad defiitios clearly. The istructor will NOT
More informationAdvanced Probability Theory
Advaced Probability Theory Math5411 HKUST Kai Che (Istructor) Chapter 1. Law of Large Numbers 1.1. σalgebra, measure, probability space ad radom variables. This sectio lays the ecessary rigorous foudatio
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationDerivation of the Poisson distribution
Gle Cowa RHUL Physics 1 December, 29 Derivatio of the Poisso distributio I this ote we derive the fuctioal form of the Poisso distributio ad ivestigate some of its properties. Cosider a time t i which
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationSection 9.2 Series and Convergence
Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More information= 1. n n 2 )= n n 2 σ2 = σ2
SAMLE STATISTICS A rado saple of size fro a distributio f(x is a set of rado variables x 1,x,,x which are idepedetly ad idetically distributed with x i f(x for all i Thus, the joit pdf of the rado saple
More informationChapter 3: Discrete Random Variable and Probability Distribution. January 28, 2014
STAT511 Spring 2014 Lecture Notes 1 Chapter 3: Discrete Random Variable and Probability Distribution January 28, 2014 3 Discrete Random Variables Chapter Overview Random Variable (r.v. Definition Discrete
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationif A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,
Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σalgebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio
More informationBASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1.
BASIC STATISTICS 1.) Basic Cocepts: Statistics: is a sciece that aalyzes iformatio variables (for istace, populatio age, height of a basketball team, the temperatures of summer moths, etc.) ad attempts
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationSimulation and Monte Carlo integration
Chapter 3 Simulatio ad Mote Carlo itegratio I this chapter we itroduce the cocept of geeratig observatios from a specified distributio or sample, which is ofte called Mote Carlo geeratio. The ame of Mote
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationLecture 7: Borel Sets and Lebesgue Measure
EE50: Probability Foudatios for Electrical Egieers JulyNovember 205 Lecture 7: Borel Sets ad Lebesgue Measure Lecturer: Dr. Krisha Jagaatha Scribes: Ravi Kolla, Aseem Sharma, Vishakh Hegde I this lecture,
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationEntropy Rates of a Stochastic Process
Etropy Rates of a Stochastic Process Best Achievable Data Compressio Radu Trîmbiţaş October 2012 1 Etropy Rates of a Stochastic Process Etropy rates The AEP states that H(X) bits suffice o the average
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More information2.7 Sequences, Sequences of Sets
2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationMATH 361 Homework 9. Royden Royden Royden
MATH 61 Homework 9 Royde..9 First, we show that for ay subset E of the real umbers, E c + y = E + y) c traslatig the complemet is equivalet to the complemet of the traslated set). Without loss of geerality,
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationSection IV.5: Recurrence Relations from Algorithms
Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationLinear Algebra II. Notes 6 25th November 2010
MTH6140 Liear Algebra II Notes 6 25th November 2010 6 Quadratic forms A lot of applicatios of mathematics ivolve dealig with quadratic forms: you meet them i statistics (aalysis of variace) ad mechaics
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationMethods of Evaluating Estimators
Math 541: Statistical Theory II Istructor: Sogfeg Zheg Methods of Evaluatig Estimators Let X 1, X 2,, X be i.i.d. radom variables, i.e., a radom sample from f(x θ), where θ is ukow. A estimator of θ is
More information2.2 The Empirical Probability Measure
The Empirical Probability Measure 65 2.2 The Empirical Probability Measure We assume that we have a dataset, x 1,...,x E, give. This meas that we imagie that we have coducted a experimet times ad obtaied
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationChapter Suppose you wish to use the Principle of Mathematical Induction to prove that 1 1! + 2 2! + 3 3! n n! = (n + 1)! 1 for all n 1.
Chapter 4. Suppose you wish to prove that the followig is true for all positive itegers by usig the Priciple of Mathematical Iductio: + 3 + 5 +... + ( ) =. (a) Write P() (b) Write P(7) (c) Write P(73)
More informationChapter 4 Multivariate distributions
Chapter 4 Multivariate distributios k Multivariate Distributios All the results derived for the bivariate case ca be geeralized to RV. The joit CDF of,,, k will have the form: P(x, x,, x k ) whe the RVs
More informationSection 7.2 Confidence Interval for a Proportion
Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More informationElementary Statistics and Inference. Elementary Statistics and Inference. Chapter 26 Tests of Significance (cont.) 22S:025 or 7P:025.
Elemetary Statistics ad Iferece 22S:25 or 7P:25 Lecture 35 Elemetary Statistics ad Iferece 22S:25 or 7P:25 Chapter 26 (cot.) 2 A) ZeroOe Boxes (Populatios) Recall we ca use the Normal Curve table to study
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationrepresented by 4! different arrangements of boxes, divide by 4! to get ways
Problem Set #6 solutios A juggler colors idetical jugglig balls red, white, ad blue (a I how may ways ca this be doe if each color is used at least oce? Let us preemptively color oe ball i each color,
More informationDiscreteTime Markov Chains
Markov Chais DiscreteTime Markov Chais A discretetime Markov chai is a discretetime, discretevalue radom sequece such that the ext radom variable X +1 depeds oly o X X through the trasitio probability
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More information